Montogue

Quiz EL201
Basic Semiconductor Physics

D> PROBLEM DISTRIBUTION

Problems Subject
1 Basic semiconductor structure

2-3 Fermi-Dirac distribution

4-9 Carrier concentration and transport

10-18 More on semiconductor characteristics
(conductivity, electron mobility, etc.)

Refer to the Additional Information section for
A semiconductor data.

P> PROBLEMS

p| Problem 1 (Pierret, 1996)

Problem 1.1: The bonding model for gallium arsenide is illustrated
below. Draw the bonding model for GaAs depicting the removal of the circled
Ga and As atoms. Bear in mind that Ga and As take their bonding electrons
with them when they are removed from the lattice.

Problem 1.2: Redraw the bonding model for GaAs showing the
insertion of silicon atoms into the missing Ga and As atom sites.

Problem 1.3: Is the GaAs doped p- or n-type when Si atoms replace Ga
atoms? Explain.

Problem 1.4: |s the GaAs doped p- or n-type when Si atoms replace As
atoms? Explain.

m Background for Problem 2
In general, the carrier concentrations n (electrons) and p (holes) can be
determined from the integrals

Etop
n=|"g.(E)f>(E)dE
C
and
EV
p=[" g (E)1-/(E)]dE
bottom
Here, g.(E) and g.(E) are the densities of states in the conduction and
valence bands, respectively; f»(E) is the Fermi-Dirac function; Ec and E, are
the energies in the conduction and valence bands, respectively; and Evottom
and E:p are the lowermost and uppermost energy levels in the range under
consideration, respectively. As the reader may know, the densities of

states g(E) are actually condensed parameters obtained from quantum-
mechanical considerations, and can be written as

* om* (E-E
2. (E)=2 m(E-E) pog

243 4 -
°h ¢
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m\[2m’ (E, —E)
gV(E): p\/ ;2h3

Here, m;, and m;, are the effective electron and hole masses and # is
Planck’s constant. Substituting these definitions of g.(E) and gv(E) into the
expressions forn and p, we can carry out the integrations to obtain the
familiar results

; E<E,

E.—-F
n=N_.exp| ——=
: p( - j
and
E —FE
=N, exp| ——L
p=N, p( ~ j

where Er is Fermi energy, k is Boltzmann’s constant, and Nc and N, are the
effective density of states functions for conduction and valence band
states, which are defined as

T 3/2
m
N. =2 L
¢ 27h’
32
N =2 m;kT
Y oah?

Pl Problem 2 (Pierret, 1996)

With the results and definitions above in mind, this problem
considers what would happen if we began the derivation of the electron
distribution with a slightly different expression for the density of states
gc(E), namely:

c

N,
E)= tant=—=; E>F
g.(E) = constan T

where N. is defined above.

Problem 2.1: Assuming Er < E. - 3kT, sketch the electron distribution in the
conduction band of the hypothetical semiconductor with g.(E) defined by the
relationship above.

Problem 2.2: Establish relationships for the electron concentration in the
hypothetical semiconductor.

Pl Problem 3 (Pierret, 1996)

Let us continue our analysis of carrier energy distributions.
Problem 3.1: The carrier distributions or number of carriers as a function of
energy in the conduction and valence bands peak at an energy very close to
the band edges. Taking the semiconductor to be nondegenerate, show that
the energies at which the carrier distributions peak are Ec + kT/2 and E, - kT/2
for the conduction and valence bands, respectively.
Problem 3.2: As indicated in Problem 3.1, for a nondegenerate semiconductor
the peak in the electron distribution versus energy in the conduction band
occurs at Ec +kT/2. Expressed as a fraction of the electron population at the
peak energy, what is the electron population in a nondegenerate
semiconductor at E = Ec + 5kT?

Pl Problem LI' (Neamen, 2003, w/ permission)

Plot the intrinsic carrier concentration, n;, for a temperature range of
200 < T <600 K for silicon, germanium, and gallium arsenide. Use a log scale
for ni. Recall that Boltzmann’s constant k = 8.62x10 eV/K.

p| Problem 5 (Neamen, 2003, w/ permission)

In a particular semiconductor material, the effective density of states
functions are given by Nc = Nco(T/300)*2 and N = N.o(T/300)*2, where N and
N are constants independent of temperature. Experimentally determined
intrinsic carrier concentrations are found to be n; =1.40x102 cm2 at T = 200 K
and n; =7.70x10"° cm™ at T = 400 K. Determine the product N X Nvo and the
bandgap energy E;. (Assume E; is constant over this temperature range.)
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Pl Problem 6 (Neamen, 2003, w/ permission)

Silicon at T=300 K is doped with arsenic atoms such that the
thermal-equilibrium concentration of electrons is no =7x10" cm.
Problem 6.1: Find the difference between the conduction band energy and
the Fermi energy, Ec - Er.

Problem 6.2: Determine the difference between the Fermi energy and the

valence band energy, Er - E..

Problem 6.3: Calculate the thermal-equilibrium concentration of holes, po.
Problem 6.4: Which carrier is the minority carrier?

Problem 6.5: Find the difference between Fermi energy and intrinsic Fermi
energy, Er - Er,i.

Pl Problem 7

The thermal-equilibrium concentration of holes in a silicon
semiconductor at T =300 K is po = 2x10'® cm"3.
Problem 7.1: Determine the difference between the Fermi energy and the
valence band energy, Er - E..
Problem 7.2: Determine the difference between the conduction band energy
and the Fermi energy, Ec - Er.
Problem 7.3: What is the value of the thermal-equilibrium concentration of
electrons, no?
Problem 7.4: Determine the difference between intrinsic Fermi energy and
Fermi energy, Eri - Er.

p| Problem 8

Problem 8.1: For gallium arsenide at 375 K, the difference between the
conduction band energy and the Fermi energy isEc - EF = 0.28 eV. Calculate
the concentrations of electrons, no, and holes, po.

Problem 8.2: Assuming the value of no in Problem 8.1 remains constant,
determine the difference Ec - Er and the value of po at T =300 K.

Problems 9 and 10 require knowledge of both the Fermi-Dirac distribution,
which we studied in Problems 2 and 3, and charge carrier concentrations,
which we studied in Problems 4 to 8.

Pl Problem 9

The following statements concern the Fermi-Dirac probability
function for modelling of charge carriers.
Problem 9.1: Under equilibrium conditions and temperature T > 0 K, what is the
probability of an electron state being occupied if it is located at the Fermi level?
Problem 9.2: If the Fermi energy Er is positioned at the conduction band energy
E., determine the probability of finding electrons in states at Ec +kT.
Problem 9.3: The probability that a state is filled at Ec+ kT is equal to the
probability that a state is empty at Ec +kT. In view of this observation, determine
a simple expression for the Fermi level.

p| Problem 10

The Fermi level in n-type silicon at T =300 K is 245 meV below the
conduction band and 200 meV below the donor level. Determine the
probability of finding an electron:
Problem 10.1: In the donor level;
Problem 10.2: In a state in the conduction band kT above the conduction-
band edge.

H Problem 1 1 (Neamen, 2003, w/ permission)

The concentration of donor impurity atoms in silicon is Na=10"cm™.
Assume an electron mobility of y,, =1300 cm?/V-s and a hole mobility of u, =

450 cm?/V-s. Calculate the conductivity and resistivity of the material.

H Problem 1 2 (Neamen, 2003, w/ permission)
Ap-type silicon material is to have a conductivity of o =1.80 (Q-cm)™.
If the mobility values are p,, = 1250 cm?/V's for electrons and u, =380

cm?/V-s for holes, what must be the acceptor impurity concentration in the
material?

H Problem 1 3 (Neamen, 2003, w/ permission)

Asilicon sample is 2.5 cm long and has a cross-sectional area of 0.1
cm? The silicon is n-type with a donor impurity concentration of N4 = 2x10"
cm™. The resistance of the sample was measured to be 70 Q. What is the
electron mobility?
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Pl Problem 1 LI' (Sze and Lee, 2012)
For a semiconductor with constant mobility ratio b = u,, /up, > 1

independent of impurity concentration, find the maximum resistivity ppax in
terms of the intrinsic resistivity p; and the mobility ratio.

Pl Problem 1 5 (Neamen, 2003, w/ permission)

In a particular semiconductor material, the mobility values are p,, =
1000 cm?/V's and u, = 600 cm?/V's, and the effective density of states
functions are Nc =N, =10" cm™. The measured conductivity of the intrinsic
material is 0 =10 (Q-cm)” at T = 300 K. Find the conductivity at T = 500 K.
Consider Nc, Ny, 4, and p,, to be constant with temperature.

Pl Problem 1 6 (Neamen, 2003, w/ permission)

The total current in a semiconductor is constant and is composed of
electron drift current and hole diffusion current. The electron concentration
is constant and equal to 10'® cm™. The hole concentration is given by

p(0)=10%exp| | [om ]« (320)

where L =12 um. The hole diffusion coefficient is D, =12 cm?/s and the
electron mobility is u,, =1000 cm?/V-s. The total current density is) = 4.8
A/cm?. Calculate:

Problem 16.1: The hole diffusion current density as a function of x.
Problem 16.2: The electron current density as a function of x.

Problem 16.3: The electric field as a function of x.

Pl Problem 1 7 (Neamen, 2003, w/ permission)

The conductivity of a semiconductor layer varies with depthy as aly) =
a.exp(—y/D), where o, = 20 (Q-cm)”' and D = 0.3 um. If the thickness of the
semiconductor layer ist = 1.5 um, determine the average conductivity of this
layer.

Pl Problem 1 8 (Neamen, 2003, w/ permission)

An n-type silicon resistor has a length L =150 um, width W =7.5 um,
and thickness T =1pum. A voltage of 2 Vis applied across the length of the
resistor. The donor impurity concentration varies linearly through the
thickness of the resistor with Na =2x10'® cm™ at the top surface and N4 =
2x10" cm™ at the bottom surface. Assume an average electron mobility u,, =
750 cm?/V:-s.

Problem 18.1: What is the electric field per unit length in the resistor?
Problem 18.2: Determine the average conductivity of the silicon.
Problem 18.3: Calculate the current in the resistor.

Problem 18.4: Calculate the current density near the top surface and the
current density near the bottom surface.

Pl Problem 1 9 (Sze and Lee, 2012)

Assume that a conduction electron in Si (electron mobility p,, = 1350
cm?/V-s) has a thermal energy kT, related to its mean thermal velocity by Ey,
=mov§,/2, where my = 9.1x10" kg is the rest mass of an electron. This
electron is placed in an electric field of 100 V/cm. Show that the drift velocity
of the electron in this case is small compared to its thermal velocity. Repeat
for a field of 10,000 V/cm, using the same value of y,,. Comment on the
actual mobility effects at this higher value of field.
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P> ADDITIONAL INFORMATION

Table 1Silicon, gallium arsenide, and germanium properties (T =300 K)

Property Si GaAs Ge
Atoms (cm) 5.0x10% | 4.42x10%2 | 4.42x10%
Atomic weight 28.09 144.63 72.6
Crystal structure Diamond | Zincblende | Diamond
Density (g/cm?) 2.33 5.32 5.33
Lattice constant (A) 5.43 5.65 5.65
Melting point (°C) 1415 1238 937
Dielectric constant 1.7 13.1 16.0
Bandgap energy (eV) 1.12 1.42 0.66

Effective density of
states in conduction 2.8x10" 4.7x10" 1.04%x10"
band, N (cm™)
Effective density of
states in valence band, | 1.04x10"™ | 7.0x10'" 6.0x10'®
N, (cm™3)
Intrinsic carrier
concentration, n; (cm™)
Electron mobility, u,

1.5%x10' 1.8x10° 2.4x10"

(cm?/V-s) 1350 5599 P00
Holicn;c;/b\ill.ist)y, Hp 480 400 1900
P> SOLUTIONS
P.1=) Solution

Problem 1.1: Gallium is a column Il element and as such carries 3
valence electrons. Removing a Ga atom will leave 8 - 3 =5 dangling bonds in
the vicinity of the vacancy, as illustrated below. Arsenic is a column V
element and hence possesses 5 valence electrons. Removing an As atom will
leave 8 - 5 =3 dangling bonds in the vicinity of the vacancy, as shown.

Problem 1.2: When a Si atom with four valence electrons is inserted
into the missing Ga site, there is one extra electron that does not fit snugly
into the bonding pattern; to illustrate this, we draw one extra straight line
protruding from the newly inserted silicon dopant. Now, when a Si atom is
inserted into the missing As site, there are one too few bonds to complete
the bonding scheme and a hole is formed; such a substitution is represented
by a missing straight line, as shown.

Problem 1.3: The extra electron afforded by the replacement of Ga
with Siyields an-type semiconductor.

Problem 1.4: The extra hole formed by the replacement of As with Si
leads to a p-type semiconductor.
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P.2 =) Solution

Problem 2.1: To determine the electron distribution, simply multiply
the density of states g.(E) defined in the problem statement by the Fermi-
Dirac function,

1

Jr(E)= T E
1+exp[ kTFj

which, for a nondegenerate semiconductor (Er < Ec - 3kT), can be simplified as

1(E) = jwww

1+exp( kTF

so that

e N, _e-g,
Electron distribution = g, (E ) fr (E ) = k—%e (E=E ) kT
The ensuing electron distribution has g.(E)f,(E) decaying exponentially with
increasing energy, as shown.

E

A

> g (E)f(E)
Problem 2.2: To establish the concentration of electrons, we set up

the integral
Etop . NC Etop dE
n= E, gc (E)fP (E)dE - kT J.Ec 1+e(E—EF)/kT
Now, let
_ E_Ec . _ EF _Ec
i e kT

and, for simplicity, we extend the upper bound of integration from E = E+op to
E — oo; accordingly,

0 d]]
NCJ‘O 1+e77770

The integral above can be written in closed form as

] _
Js 1+8777mc :[nc+ln(1+e UC)J

so that

n=N,|n +in(1+e) | @

Now, if the semiconductor is degenerate, . < 3. Thus, considering
the logarithm above in isolation,

1n(1 +e 'l ) = ln[e_"" (1 + e )] =-1. +ln(1+ e'le ) ~-n, +e'

where we used, in the last passage,
exp(nc)<<1 ; 1n(1+x) ~xif xx1

Finally, substituting the approximation above in (I) brings to
n=N,|n +in(1+e)|= N, (n, -7, +e™ )= N, exp(n,)

EF—ECj

“|n=N, exp(

Notice that the electron distribution turned out to have the same
form as the result posited in the background box.

P.3 =) Solution

Problem 3.1: The distribution of electrons in the conduction band is
given by g(E)f#(E), while the distribution of holes in the valence band is given

6
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by gWE)(1 - f(E)). Working with the electron distribution, we first note that for
a nondegenerate semiconductor, for all E > E.,

fo(B)=

1+exp(El:fFj

We proceed to write

()fp() mm ~(E-Ep)/kT _ mrE E1/2 ~(E—Eg)/kT

2h3

=K

g (E)f, (E)=x(E- E)I/Z ~(E-Ep)JiT

where k is constant. To find the extrema of this relationship, we
differentiate it with respect to energy and set the resulting expression to
zero,

12
i[gc E E)] :;126—(5—517)/” _ K(E_Ec) o EERT _
2(E-E,) kT
X(E-E)"
o >< PN M M:O
Z(E E
o _(E—EJ” »

Co(e-E)? kT
kT
peak _Ec :7
E Epeak = Ec +k_T

as we intended to show. The development for holes in the valence band is
completely analogous and leads to

kT

E. . =E —
2

peak

Problem 3.2: Using the simplified notation introduced in Problem 3.1,
we may write

g.(E,+kT12) f, (E, +kT/2)=«|(E +KkT/2)- ]1/2 o L(EAkT/2)-Ep kT

and
g.(E, +5kT) f, (E. +5kT) = [ (E, +5kT) -
so that

g (E, +SkT) f, (E, +5kT) _ [(ﬁ(+5kT)—><T/2 JA(Eersir)-r it
g (E.+kT/2) f,(E.+kT/2) [(XJrkT/Z) K] BT 12 B i
o (E, +5kT) f, (E. +5kT)  5paC

g (B +kT12) £, (E.+KT12)  [ex /2

8 (E+SKT) fp (E +5KT) _ 5 {_2}: 0.0351
e (EAKTI2) f,(E.+kT12) g2 7 '

E ]1/2 e_[(EC+5kT)—EF] /kT

exp| —(E. +5kT —E, )+(E, +kT/2—E,)]

P.4 =) Solution

First, elementary charge carrier theory can be used to state that the
thermal-equilibrium electron concentration no in the conduction band of a
semiconductor is given by

kT

=N, exp{

where N. is the effective density of states function in the conduction band,
E.is the conduction-band energy, Er is the Fermi energy, k is Boltzmann’s
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constant, and T is temperature. In a similar manner, the thermal-equilibrium
concentration po of holes in the valence band is written as

——

where Ny is the effective density of states function in the valence band and
E.is the valence-band energy. For an intrinsic semiconductor, the
concentration of electrons in the conduction band is equal to the
concentration of holes in the valence band. We may denote n; and p; as the
electron and hole concentrations, respectively, in such a semiconductor;
importantly, ni = pi, so normally we simply use the parameter n; as the
intrinsic carrier concentration, which refers to either the intrinsic electron or
hole concentration. The Fermi energy level for the intrinsic semiconductor is
called the intrinsic Fermi energy, or E = E,. With an intrinsic SC in mind, the

two preceding equations can be restated as

pO :Nvexp|:

(ny). =n, =N, exp %
—\E, —F
(o), =P =N, exp (Fk—T)

Multiplying one equation by the other, we obtain

—(E -E .) —(E.—E)
7. X -:n-zzN,eX M xN ex #
i % ; . €Xp T » €Xp T
_—(EC—EV)-
s -E +E,.,—E,., +E, =E
~.n; =N_N, exp ’ ’ = N_N, exp £
kT kT
i |

2 —E,
s.n; =N_N, exp
kT

where E; is the bandgap energy. Now, if Nc and N, each vary with
temperature to the 3/2 power, their product will obviously be proportional to
T3. Taking a temperature of 300 K as the reference value, at which the
density of states functions attain values denoted by N« and Nvo, respectively,
we may write

-E 7Y )
n’ =N N ex El=N N, | — | ex £
i ct 'y p[ ij c0 v0(300j p( ij

Taking the square root,

T Y -E TY -E
n=N_N [—j ex £l >n=|N_N (—] ex g
: ™01 300 ) Pl oy : 0| 300 ) Pl ar

This is the basic equation we have to plot. For silicon, we refer to the
Additional Information section and read Neo =2.8%10" cm™3, Nvo = 1.04x10"
cm3and E;=1.12 eV; also, Boltzmann’s constant is 8.62x107° eV/K.
Substituting above brings to

Ty ~1.12
N P o
300 (8.62x107)xT
3
n =328x10°T% exp L%J

The equation is plotted below for the range T € [200, 600] K, using a
log scale for n; as prescribed.
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We now turn to gallium arsenide, for which Neo = 4.7%10" cm™, Nvo =
7.0x10"®cm™ and E; = 1.42 eV, giving

TV —-1.42
%= (4'7X1017)X(mxmlg)x(ﬁj Xexp[(&&xms)xT}

—8.24x10°
T

oo, =3.49x10" 7Y exp(

The equation is plotted below.

0% -

— —
o o
[EEY [EEY
o w

-
o
=4

-
o
S

Int. Carrier Conc. (cm‘a)

Y
o

200 300 400 500 600

Temperature (K)

The third and last material to consider is germanium, for which Neo =
1.04x10" cm™,Nvw = 6.0x10"® cm™ and E; = 0.66 eV, giving

7Y —0.66
n = (1.04><1019)x(6.0x1018)><(ﬁj xexp[(gﬁzxms)ﬂ}

-7.66x10°
T

son, =1.52x10° T exp(

The equation is plotted below.
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We close this problem by plotting the three curves in a single chart:

9
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P.5 =) Solution
Let ni; and ni> denote the ICC at T: = 200 K and T2 = 400 K, respectively;
their ratio is
> (7.70x10°)
B2 _ )2 =3.03x10"
i (1.40x107)
or
> NN, (T,/300) exp(-E, /kT. 7Y
o XML SO OB 0= o] -
my NN, (T,/300) exp(-E, /kT,) T kT,

3
3.03x107 =| 22| exp E,|———
T KT, KT,

3.03x10"
(/1)

3.03x10" 3.03x10"

Inj —————— Inf ————

. (1,/T)) (400/200)
(1 1)y ( 1
kT kT, ) 8.62x107 (200 400

Lastly, product Nco X Nvo is expressed as

7Y E 2
n’, =N N, ——| exp| —= | > (1.40x10
7,1 c0 v0(300] p kT]v ( )

(1.40x10° )2

j{ (

= NcONVO

NCONVO =
1.32
8.62x10‘5)x200

(20
300

|

P.6 = Solution

j: 1.32eV
x(ﬂfxex .
300 P (

=11.18x10® cm™®

1.32

Problem 6.1: Recall that the thermal-equilibrium concentration of

electrons, no, can be stated as

E

F

_(Ec_
nocheXp k—T

)} (D

For silicon, Nc = 2.8x10" cm™?; solving for Ec - Er brings to

8.62><10"5)><200

—(E, —-E (£, —-E

n, = N, exp —( -~ Er) —>n—°:exp —( -~ Er)
kT N, kT
~n| Jo :——(EC_EF)
N, kT
15
" E,~E, =—kTIn| 2% | = ~(8.62x10)x300xIn X0 _6214ev
N, 2.8x10
10
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Problem 6.2: To find E. - EF, we appeal to the definition of bandgap
energy, which equals 1.12 eV for silicon,

E,=E.,~E,>-E,=E, -E,
S—E,+E,=E,-E . +E;
.E.-E,=E,—(E.—E,)

~E.—E,=1.12-0.214=]0.906eV

Problem 6.3: Equipped with Er - E,, we can easily determine the
thermal-equilibrium concentration of holes, po,

—(E,.—E
Py =N, exp{w} - (1.O4><1019)><exp[— 0.906 ]: 6.33x10° cm™
kT (

8.62x10-5)x300

Problem 6.4: Holes are the minority carriers.
Problem 6.5: To determine the difference Er - Er;, we manipulate the
slightly modified equation for the thermal-equilibrium concentration of

electrons,
E.—FE..
n, =n, exp{%}—) E,-E,, :len{n—O)

n.
7%10" j

=10.338eV

W E.—E,, :(8.62><105)x300xln[1-5x1010

P.7 = Solution

Problem 7.1: Note that the thermal-equilibrium concentration of
holes, po, can be stated as

=N ex
pO Y p|: kT

For silicon, Ny =1.04%10" cm; solving for Er - E, brings to
—(EF -F N

V)}%EF—Evszln Vj
Dy

pO :Nv eXp|:

T R

19
S E.—E = (8.62x10_5)x300xln(M} =

Problem 7.2: To find Er - E,, we write
Eg =FE.-E, > FE, :Eg +E,
~E . —FE, =Eg +E,-E,
“.E.—E,=E,—(E;-E,)
SLE. —-FE,.=112-0.162=]0.958¢eV

Problem 7.3: Equipped with Ec - Er, we can determine the thermal-
equilibrium concentration of electrons, no,

~(E,~E _
n, = N, exp M =(2-8X1019)Xexp 0.958 _
kT (8.62x107)x300

Problem 7.4: To determine the difference Er - Er;, we manipulate the
slightly modified equation for the thermal-equilibrium concentration of

holes,
—(E.—E..
Do =1, €Xp M —FE.—E,, =kT'In P
kT ’ n

1

0.365eV

) 2.0x10"
r By —E;, =(8.62x10 5)X3OOXI“(W) B

2.28%x10° cm™

11
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P.8 mp Solution

Problem 8.1: From the Additional Information section, we read a
density of states function Nc = 4.7x10" cm™ for GaAs at T = 300 K. Using the
3/2-power dependence of carrier concentration on temperature, we may
write, for the concentration of electrons,

3/2 3/2
—(E —-FE —0.
ny=N, (Lj exp ~(E—E) =(4.7><10”)><(£j x exp 0.28 =[1.14x10" cm™
300 kT 300 (8.62x107°)x375

To compute the concentration of holes, we first note that Ny =
7.0x10" cm™ for GaAs at 300 K. To estimate the energy difference Er - E,,
some quick manipulation gives

E,—E,=E,—(E.-E,)=142-028=1.14eV
so that

3/2 3/2
—(E.-E _
Dy =N, (Lj exp M :(7.Ox1018)x(3£j X exp L.14 =14.72x10° cm™
300 kT 300 (8.62x10’5)x375

Problem 8.2: To determine E. - Er, take the equation for no and solve
for this energy difference, giving

My

E —E, =—kT1n[

14
j: —(8.62x10_5)x300xln£wj -

g | 0215eV

c

Before computing po, note that difference Er - Ev at 300 K is stated as

E,.—E,=E, —(E.-E.)=142-0215=121eV

so that
—(E, -E,) y ~1.21 -
p, =N, exp| ———= | =(7.0x10" ) xexp =13.34x10" cm
‘ { kT } ( ) (8.62x107*)x300
P.9 =) Solution

Problem 9.1: The probability of electrons occupying states at a given
energy under equilibrium conditions is given by the Fermi function,

1
E-FE
1+exp L
kT
Per the problem statement, we're looking for f#(E = E¢), namely

1 1
uf; (lz = ZZF‘) = l; __ZT = 1_+_1 ::‘IIIEI
1+exp EFkTFj

=1

fo(E)=

Problem 9.2: In this case, we are told that Er =E. and the energy of
interest isE =E. +KkT, so that

1 1
E=E +kT)= =
fr(E=E +kT) 1 (E.+KT)-E, ] |, ., (kT)
+exp T 1Y T
1
fP(E:EC+kT):1+e1 =10.269

Problem 9.3: In view of the problem statement, we may write fp(E. +
kT)=1-fpEc +kT) or, evoking the Fermi-Dirac function again,

fo(E, +kT)=1-f,(E, +kT) > ! 1 1

1+exp{(Ec+kT)—EF} 1+exp{(Ec+kT)—EF}
kT kT

12
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1+exp{(Ec+kT)—EF}
1 kT 1

1+exp[(E" +kT)—EF} 1+exp{(E" +kT)—EF} 1+exp{(E" +kT)—EF}
kT kT kT

exp[(Ec +kT)—EF}

. 1 B kT
1+exp{(Ec+kT)—EF} 1+exp[(Ec+kT)—EF}
kT kT
1 ~ 1
1+eXp[(EC+kT)—EF} exp{(ECH’cT)—EF}
kT 1 kT
E +kT)-E, | [(E.+kT)-E
exp{( ¢ r } exp{” r }
kT kT
' 1 ~ 1
o (E+kT)-E, | | [EF—EC—kT}
1+6Xp[kT +exp T

Equating exponents,
E +kT-E,=E,—-E —kT

n2E, =2E +2kT
|Ep.=E +kT

P.10 = Solution

Problem 10.1: It can be shown that the probability function of
electrons occupying the donor state is

N,

o Lexp| Ea—Er
2 kT

n, =

where nq is the density of electrons occupying the donor level, N4 is the
concentration of donors, Eq is the energy of the donor level, and Er is the
energy of the Fermi level. According to the problem statement, E4 - Er =200
meV; the probability we aim for is then

;d= 1 IE = ! ~8.75%x10™
d 1+26xp(“’kTF) 1+l><exp 0.2
2 (8.62><10‘5)><300
24 £ 0.09%
Nd

Problem 10.2: Now, we're looking for the probability of finding an
electron in the conduction band with energy kT above the conduction-band
edge, that is, such that E - Ec =kT. Using this difference and the fact that the
Fermi level is 245 meV below the conduction band, we write

E-E.=(E-E,)+(E —E,)=kI'+0.245
so that, evoking the Fermi-Dirac probability function,

fr(E)= ! = ! =2.83x107°

E-E 8.62x107 )x300 +0.245
1+exp[ Fj 1+exp ( )
(8.62x10’5)x300

12~ 0.003%

d
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P.11 =) Solution

The conductivity is given by the product of elementary charge,
electron mobility, and dopant concentration,

o =eu,N, =(1.60x10")x1300x10* =|0.208 (Q-cm) '

The resistivity is simply the reciprocal of conductivity,
o= 11
eu N, 0.208

4.81 Q-cm

P.12 =) Solution

Noting that the conductivity of a p-type material is calculated on the
basis of the hole mobility u,, we write

o
O'ZelUde —)Nd :J
p

e .80 =[2.96x10" ¢cm™
(1.60x10—l9)x380

P.13 = Solution

All we have to do is write Ohm’s law of resistivity and solve for

electron mobility,

S 2.5 - -
A _(1.6x10f19)x(2.0x1o”)><70><0.1 =[1120em’ Vs

P.14 =) Solution

Noting that pu, =bu, and p = n?/n, we restate the conductivity g,

2

n’ ;
:eib,upn+'up l Jzeyp Ebn+n—’j (D)
n n

o=e W, ntpu, p
—— [

=buy =nl2/n

With n =n;, the corresponding intrinsic value is

2

o, =eu, Lbni +’;—’j =ep,n, (b+1) (IT)

1

We're interested in the maximum resistivity ppax, Which is essentially
equivalent to looking for the minimum conductivity op,i,; accordingly, we

differentiate (I) and set the result to zero, giving
2 2
e n do eL,n;

o=eu,bn+ 2’ _)dn =eu,b— e

2
- ouh = %{2""

i

S

Son=

[«
=

Differentiating a second time yields

2 2

do _ eﬂpni
2 3
dn n

14
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Substituting n =ni/v/b would give a positive result; hence, a(ni/vb)
indeed constitutes a local minimum. Evaluating () at n =ni/v/b brings to

W =€l bx( J ( /\/_) :e,up(\/an.+x/Eni):eypx(2\/Eni)

Finally,
1
lomax _ 1/Gmin _ eﬂpXZ\/En XX b+1 b+1
p. o, 1 ><x2f>< 2b
eu,n, (b+1)
P.15 =) Solution

Using the conductivity of the intrinsic material at 300 K, we can
determine the corresponding intrinsic carrier concentration n;,

_ O
0300 = €M 300 (:Un + lLlp) 500 = e(,u i )
n T Hp
10°° 9 3
M 300 = =3.91x10" cm

(1.60x107")x (1000 +600)

The conductivity of the material at 500 K can be established from the
same equation,

0500 = €M 500 (,un + /Jp) (D

Before proceeding, we need the intrinsic carrier concentration of the
material at 500 K; this in turn requires the bandgap energy of the
semiconductor material, namely

= N_N, exp = —E, =—kTln i
l 300 kT g NCNV

(3.91x10°)’

. _ -5 _
o E, =—(8.62x107)x300xIn g |7 12V
so that
-E, _
n> =N_N, exp| —= [=10" x10" xexp 112 =5.18x10* cm™
kT (8.62x107*)x500

Substituting in (1),

Gso0 = €Nyson (14, + 11, ) = (1.60x107" ) x~/5.18x10% % (1000+600) =5.83x10 (Q-cm)) "

P.16 =) Solution

Problem 16.1: The hole diffusion current is given by the product

dp(x) d s (_xj 10°eD (_Xj
J o=—eD ——~2=—eD 107 ex = 2 exp| —
P&t P dx pdx{ Pl L PlL

y 10* x(1.6x10™" )x12 —x
o — X X _—
Pt 12x107* p(lleo“j

|, = 1.6exp(~833x) [ Alem’ |

with x given in cm.

Problem 16.2: Given the total current density) = 4.8 A/cm? and the
hole diffusion current density obtained just now, the electron current
density can be established with the simple difference

J= Jn,drift + Jp,diff - Jn,drift =J - ']p,diff

15
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|V arin = 4.8—1.6exp(~833x) [Alem” |

Problem 16.3: Recall that electron current density can be expressed as
Jnarife = enva, where e is elementary charge, n is electron concentration, and v4
is drift velocity,
S aiee = €V,

Also, va = u,E. Substituting and solving for E, we obtain

Jn ,drift

enf,

Jn,drift =enpu E—E=

4.8-1.6exp(-
g 8- 16cxp(833x) =[3-1.0exp(~833x) [V/em]

- (1.6x107")x10" x1000 -

P.17 &) Solution

Appealing to the mean value theorem for integrals, integrate from
Ymin = O0to Ymax =t, then divide by Ymax = Ymin =t - 0=t,

o B Iym O'Oe(fy/D)dy = ﬁ_"le(j)/l))czf)/

avg = _ ) 0
ymax ymin Fin !

_ _%P—wm f } _ Doy ] :%[l_e—wq
t 0 t t

avg

Oag = 0.?;><520 [1 - e_(l's/w)} =(3.97 (Q—cm)_]

P.18 =) Solution

Problem 18.1: This conversation starter should be obvious to the
student:

Vo209 _13300v/m=[133V/em

L 150x10°

Problem 18.2: The conductivity is written as
o(x)=eu,N,(x)(I)

where x is the depth along the thickness of the resistor. If the dopant
concentration Na(x) = b - ax varies linearly from Na=2X10" cm= atx =0 to N4
=2x10" cm?atx =1pum =10 cm, we may write, for these two data points,

2x10" =h—ax0

N, (x)=b—ax—
2x10° =b—ax10™

From the first equation,
b=2x10"cm™
Substituting in the second,

2x10"° -=2x10"

0= =1.8x10" cm™

2x10° =2x10" —ax10™* > a =

Accordingly,
N, (x)=2><1016 —1.8x10*x

Substituting in (1) and making use of the mean value theorem, we get

1 107
O-avg = elun |:10_4 _ O jO Nd (.X'):|

jol (2x10'° ~1.8x10™x) dx

—4 7

10

Oy = (1.6><1019)><750><[

.'.Gavg:(1.6x10_19)x750>{ (2xlo‘6x—o.9x1oz°x2)100

074

S O = (1.6x1019)><750><l: (2><1016 x10™* —0.9%10% XIOS):| _

16
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Problem 18.3: The resistance of the resistor is

-4
R L _ 150x10 _152kO
Tued 132 (7.5%107 )10 |
and the current follows from Ohm’s law,
I:K:L3:1.32XIO’SA= 13.2pA
R 15210

Problem 18.4: The current density can be found by multiplying the
conductivity o by the electric field E. The conductivity at the top surface,
whereinx =0, is

o(0)=eu,N,(0)=(1.6x10"")x750x] 2x10'* ~1.8x10* x(0) | = 2.4(Q-cm) '

so that

J(0)=0(0)E =2.4x133=|319 A/em’

Likewise, at the bottom surface,x =10 cm and

o(10™)=eu,N, (10™)=(1.6x10™)x 750x[ 2x10'* ~=1.8x10% x10™* | = 0.24(Q-cm) "

giving

J(IO“‘) = 6(10_4)E =0.24x133=(31.9 A/cm>

P.19 =) Solution

Taking a standard temperature of 300 K, defining E;; =kT and solving
for thermal velocity, we obtain

2
2T
E, —kr =", _ |2
2 m

2x(1.38x10—23)><300 \ .
VY, = — =9.54x10" m/s =9.54x10" cm/s
9.1x10

The corresponding drift velocity under an electric field E=100 V/cm is
v, =u,E=1350x100 = 1.35x10° cm

Thus, the thermal velocity, vi, is about 70.6 times greater than the
drift velocity, va. Now, under an electric field E'=10,000 V/cm, the theoretical
drift velocity becomes

Vv, = u E'=1350x10,000=1.35x10" cm

That is, in this case the drift velocity and the thermal velocity are
within approximately 40% of each other; as a result, the linear relationship
between drift velocity and electric field intensity is no longer appropriate.
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Was this material helpful to you? If so, please consider donating a small

amount to our project at www.montoguequiz.com/donate so we can keep

posting free, high-quality materials like this one on a regular basis.
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