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 Quiz EL201 
Basic Semiconductor Physics 

 

 

Lucas Monteiro Nogueira 
 

 

A PROBLEM DISTRIBUTION 
Problems Subject 

1 Basic semiconductor structure 
2 - 3 Fermi-Dirac distribution 
4 - 9 Carrier concentration and transport 

10 - 18 
More on semiconductor characteristics 

(conductivity, electron mobility, etc.) 
 

 
Refer to the Additional Information section for 

semiconductor data. 
 

A PROBLEMS 

B Problem 1 (Pierret, 1996) 

Problem 1.1: The bonding model for gallium arsenide is illustrated 
below. Draw the bonding model for GaAs depicting the removal of the circled 
Ga and As atoms. Bear in mind that Ga and As take their bonding electrons 
with them when they are removed from the lattice. 

 

Problem 1.2: Redraw the bonding model for GaAs showing the 
insertion of silicon atoms into the missing Ga and As atom sites. 

Problem 1.3: Is the GaAs doped p- or n-type when Si atoms replace Ga 
atoms? Explain. 

Problem 1.4: Is the GaAs doped p- or n-type when Si atoms replace As 
atoms? Explain. 

 

■ Background for Problem 2 
     In general, the carrier concentrations n (electrons) and p (holes) can be 
determined from the integrals 

( ) ( )top

c

E

c PE
n g E f E dE= ∫  

 

and  

( ) ( )
bottom

1
E

v PE

vp g E f E dE= −  ∫  
 

   Here, gc(E) and gv(E) are the densities of states in the conduction and 
valence bands, respectively; fP(E) is the Fermi-Dirac function; Ec and Ev are 
the energies in the conduction and valence bands, respectively; and Ebottom 
and Etop are the lowermost and uppermost energy levels in the range under 
consideration, respectively. As the reader may know, the densities of 
states g(E) are actually condensed parameters obtained from quantum-
mechanical considerations, and can be written as 
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     Here, 𝑚𝑚𝑛𝑛
∗  and 𝑚𝑚𝑝𝑝

∗  are the effective electron and hole masses and ℏ is 
Planck’s constant. Substituting these definitions of gc(E) and gv(E) into the 
expressions for n and p, we can carry out the integrations to obtain the 
familiar results 

exp F c
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E En N
kT
− =  
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and 

exp Fv
v
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p N

kT
− =  

 
 

 where EF is Fermi energy, k is Boltzmann’s constant, and Nc and Nv are the 
effective density of states functions for conduction and valence band 
states, which are defined as 

2

3 2
*

2
2

n
c

m kT
N

π
 

=   
 

 

2

3 2
*

2
2

p
v

m kT
N

π

 
=   

 

 

B Problem 2 (Pierret, 1996) 

With the results and definitions above in mind, this problem 
considers what would happen if we began the derivation of the electron 
distribution with a slightly different expression for the density of states 
gc(E), namely:  

( ) constant ;c
c

c
N

g E E E
kT

= = ≥  

where Nc is defined above.  
Problem 2.1: Assuming EF < Ec – 3kT, sketch the electron distribution in the 
conduction band of the hypothetical semiconductor with gc(E) defined by the 
relationship above. 
Problem 2.2: Establish relationships for the electron concentration in the 
hypothetical semiconductor.  

B Problem 3 (Pierret, 1996) 

Let us continue our analysis of carrier energy distributions.  
Problem 3.1: The carrier distributions or number of carriers as a function of 
energy in the conduction and valence bands peak at an energy very close to 
the band edges. Taking the semiconductor to be nondegenerate, show that 
the energies at which the carrier distributions peak are Ec + kT/2 and Ev – kT/2 
for the conduction and valence bands, respectively. 
Problem 3.2: As indicated in Problem 3.1, for a nondegenerate semiconductor 
the peak in the electron distribution versus energy in the conduction band 
occurs at Ec + kT/2. Expressed as a fraction of the electron population at the 
peak energy, what is the electron population in a nondegenerate 
semiconductor at E = Ec + 5kT? 

B Problem 4 (Neamen, 2003, w/ permission) 

Plot the intrinsic carrier concentration, ni, for a temperature range of 
200 ≤ T ≤ 600 K for silicon, germanium, and gallium arsenide. Use a log scale 
for ni. Recall that Boltzmann’s constant k = 8.62×10-5 eV/K.  

B Problem 5 (Neamen, 2003, w/ permission) 

In a particular semiconductor material, the effective density of states 
functions are given by Nc = Nc0(T/300)3/2 and Nv = Nv0(T/300)3/2, where Nc0 and 
Nv0 are constants independent of temperature. Experimentally determined 
intrinsic carrier concentrations are found to be 𝑛𝑛𝑖𝑖 = 1.40×102 cm-3 at T = 200 K 
and 𝑛𝑛𝑖𝑖 = 7.70×1010 cm-3 at T = 400 K. Determine the product Nc0 × Nv0 and the 
bandgap energy Eg. (Assume Eg is constant over this temperature range.) 
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B Problem 6 (Neamen, 2003, w/ permission) 

Silicon at T = 300 K is doped with arsenic atoms such that the 
thermal-equilibrium concentration of electrons is n0 = 7×1015 cm-3.  
Problem 6.1: Find the difference between the conduction band energy and 
the Fermi energy, Ec – EF. 
Problem 6.2: Determine the difference between the Fermi energy and the 
valence band energy, EF – Ev. 
Problem 6.3: Calculate the thermal-equilibrium concentration of holes, p0. 
Problem 6.4: Which carrier is the minority carrier? 
Problem 6.5: Find the difference between Fermi energy and intrinsic Fermi 
energy, EF – EF,i. 

B Problem 7 

The thermal-equilibrium concentration of holes in a silicon 
semiconductor at T = 300 K is p0 = 2×1016 cm-3.  
Problem 7.1: Determine the difference between the Fermi energy and the 
valence band energy, EF – Ev. 
Problem 7.2: Determine the difference between the conduction band energy 
and the Fermi energy, Ec – EF.  
Problem 7.3: What is the value of the thermal-equilibrium concentration of 
electrons, n0? 
Problem 7.4: Determine the difference between intrinsic Fermi energy and 
Fermi energy, EF,i – EF.   

B Problem 8 

Problem 8.1: For gallium arsenide at 375 K, the difference between the 
conduction band energy and the Fermi energy is Ec – EF = 0.28 eV. Calculate 
the concentrations of electrons, n0, and holes, p0. 
Problem 8.2: Assuming the value of n0 in Problem 8.1 remains constant, 
determine the difference Ec – EF and the value of p0 at T = 300 K. 
 

Problems 9 and 10 require knowledge of both the Fermi-Dirac distribution, 
which we studied in Problems 2 and 3, and charge carrier concentrations, 

which we studied in Problems 4 to 8.  

B Problem 9 

The following statements concern the Fermi-Dirac probability 
function for modelling of charge carriers. 
Problem 9.1: Under equilibrium conditions and temperature T > 0 K, what is the 
probability of an electron state being occupied if it is located at the Fermi level? 
Problem 9.2: If the Fermi energy EF is positioned at the conduction band energy 
Ec, determine the probability of finding electrons in states at Ec + kT.  
Problem 9.3: The probability that a state is filled at Ec + kT is equal to the 
probability that a state is empty at Ec + kT. In view of this observation, determine 
a simple expression for the Fermi level. 

B Problem 10 

The Fermi level in n-type silicon at T = 300 K is 245 meV below the 
conduction band and 200 meV below the donor level. Determine the 
probability of finding an electron: 
Problem 10.1: In the donor level; 
Problem 10.2: In a state in the conduction band kT above the conduction-
band edge. 

B Problem 11 (Neamen, 2003, w/ permission) 

The concentration of donor impurity atoms in silicon is Nd = 1015
 cm-3. 

Assume an electron mobility of 𝜇𝜇𝑛𝑛 = 1300 cm2/V∙s and a hole mobility of 𝜇𝜇𝑝𝑝 = 
450 cm2/V∙s. Calculate the conductivity and resistivity of the material. 

B Problem 12 (Neamen, 2003, w/ permission) 

A p-type silicon material is to have a conductivity of 𝜎𝜎 = 1.80 (Ω-cm)-1. 
If the mobility values are 𝜇𝜇𝑛𝑛 = 1250 cm2/V∙s for electrons and 𝜇𝜇𝑝𝑝 = 380 
cm2/V∙s for holes, what must be the acceptor impurity concentration in the 
material? 

B Problem 13 (Neamen, 2003, w/ permission) 

A silicon sample is 2.5 cm long and has a cross-sectional area of 0.1 
cm2. The silicon is n-type with a donor impurity concentration of Nd = 2×1015 
cm-3. The resistance of the sample was measured to be 70 Ω. What is the 
electron mobility? 



4 
© 2021 Montogue Quiz 

B Problem 14 (Sze and Lee, 2012) 

For a semiconductor with constant mobility ratio b = 𝜇𝜇𝑛𝑛/𝜇𝜇𝑝𝑝 > 1 
independent of impurity concentration, find the maximum resistivity 𝜌𝜌max in 
terms of the intrinsic resistivity 𝜌𝜌𝑖𝑖 and the mobility ratio.  

B Problem 15 (Neamen, 2003, w/ permission) 

In a particular semiconductor material, the mobility values are 𝜇𝜇𝑛𝑛 = 
1000 cm2/V∙s and 𝜇𝜇𝑝𝑝 = 600 cm2/V∙s, and the effective density of states 
functions are Nc = Nv = 1019 cm-3. The measured conductivity of the intrinsic 
material is 𝜎𝜎 = 10-6 (Ω-cm)-1 at T = 300 K. Find the conductivity at T = 500 K. 
Consider Nc, Nv, 𝜇𝜇𝑛𝑛 and 𝜇𝜇𝑝𝑝 to be constant with temperature. 

B Problem 16 (Neamen, 2003, w/ permission) 
The total current in a semiconductor is constant and is composed of 

electron drift current and hole diffusion current. The electron concentration 
is constant and equal to 1016 cm-3. The hole concentration is given by 

 

( ) ( )15 310 exp cm ; 0xp x x
L

−−   = ≥    
 

 

where L = 12 μm. The hole diffusion coefficient is Dp = 12 cm2/s and the 
electron mobility is 𝜇𝜇𝑛𝑛 = 1000 cm2/V∙s. The total current density is J = 4.8 
A/cm2. Calculate: 
Problem 16.1: The hole diffusion current density as a function of x. 
Problem 16.2: The electron current density as a function of x. 
Problem 16.3: The electric field as a function of x. 

B Problem 17 (Neamen, 2003, w/ permission) 
The conductivity of a semiconductor layer varies with depth y as 𝜎𝜎(y) = 

𝜎𝜎𝑜𝑜exp(−y/D), where 𝜎𝜎0 = 20 (Ω-cm)-1 and D = 0.3 μm. If the thickness of the 
semiconductor layer is t = 1.5 μm, determine the average conductivity of this 
layer. 

B Problem 18 (Neamen, 2003, w/ permission) 
An n-type silicon resistor has a length L = 150 μm, width W = 7.5 μm, 

and thickness T = 1 μm. A voltage of 2 V is applied across the length of the 
resistor. The donor impurity concentration varies linearly through the 
thickness of the resistor with Nd = 2×1016 cm-3 at the top surface and Nd = 
2×1015 cm-3 at the bottom surface. Assume an average electron mobility 𝜇𝜇𝑛𝑛 = 
750 cm2/V∙s.  
Problem 18.1: What is the electric field per unit length in the resistor? 
Problem 18.2: Determine the average conductivity of the silicon. 
Problem 18.3: Calculate the current in the resistor. 
Problem 18.4: Calculate the current density near the top surface and the 
current density near the bottom surface. 

B Problem 19 (Sze and Lee, 2012) 
Assume that a conduction electron in Si (electron mobility 𝜇𝜇𝑛𝑛 = 1350 

cm2/V-s) has a thermal energy kT, related to its mean thermal velocity by 𝐸𝐸𝑡𝑡ℎ 
= m0𝑣𝑣th2 /2, where 𝑚𝑚0 = 9.1×10-31 kg is the rest mass of an electron. This 
electron is placed in an electric field of 100 V/cm. Show that the drift velocity 
of the electron in this case is small compared to its thermal velocity. Repeat 
for a field of 10,000 V/cm, using the same value of 𝜇𝜇𝑛𝑛. Comment on the 
actual mobility effects at this higher value of field. 
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A ADDITIONAL INFORMATION 
Table 1 Silicon, gallium arsenide, and germanium properties (T = 300 K) 

Property Si GaAs Ge 
Atoms (cm–3) 5.0×1022 4.42×1022 4.42×1022 

Atomic weight 28.09 144.63 72.6 
Crystal structure Diamond Zincblende Diamond 
Density (g/cm3) 2.33 5.32 5.33 

Lattice constant (Å) 5.43 5.65 5.65 
Melting point (oC) 1415 1238 937 

Dielectric constant 11.7 13.1 16.0 
Bandgap energy (eV) 1.12 1.42 0.66 
Effective density of 
states in conduction 

band, Nc (cm–3) 
2.8×1019 4.7×1017 1.04×1019 

Effective density of 
states in valence band, 

Nv (cm–3) 
1.04×1019 7.0×1018 6.0×1018 

Intrinsic carrier 
concentration, ni (cm–3) 1.5×1010 1.8×106 2.4×1013 

Electron mobility, 𝜇𝜇𝑛𝑛 
(cm2/V∙s) 1350 8500 3900 

Hole mobility, 𝜇𝜇𝑝𝑝 
(cm2/V∙s) 

480 400 1900 
 

A SOLUTIONS 

P.1 c Solution 
Problem 1.1: Gallium is a column III element and as such carries 3 

valence electrons. Removing a Ga atom will leave 8 – 3 = 5 dangling bonds in 
the vicinity of the vacancy, as illustrated below. Arsenic is a column V 
element and hence possesses 5 valence electrons. Removing an As atom will 
leave 8 – 5 = 3 dangling bonds in the vicinity of the vacancy, as shown. 

 
Problem 1.2: When a Si atom with four valence electrons is inserted 

into the missing Ga site, there is one extra electron that does not fit snugly 
into the bonding pattern; to illustrate this, we draw one extra straight line 
protruding from the newly inserted silicon dopant. Now, when a Si atom is 
inserted into the missing As site, there are one too few bonds to complete 
the bonding scheme and a hole is formed; such a substitution is represented 
by a missing straight line, as shown. 

 
Problem 1.3: The extra electron afforded by the replacement of Ga 

with Si yields a n-type semiconductor. 
Problem 1.4: The extra hole formed by the replacement of As with Si 

leads to a p-type semiconductor.  
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P.2 c Solution 

Problem 2.1: To determine the electron distribution, simply multiply 
the density of states gc(E) defined in the problem statement by the Fermi-
Dirac function,   

( ) 1

1 exp
P

F

f E
E E

kT

=
− +  

 

 

 

which, for a nondegenerate semiconductor (EF < Ec – 3kT), can be simplified as 
 

( ) ( )1

1 exp

FE E kT
P

F

f E e
E E

kT

− −= ≈
− +  
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so that 

( ) ( ) ( )Electron distribution FE E kTc
c P

Ng E f E e
kT

− −= =  

The ensuing electron distribution has gc(E)fp(E) decaying exponentially with 
increasing energy, as shown. 

 
Problem 2.2: To establish the concentration of electrons, we set up 

the integral 

( ) ( ) ( )
top top

/1 Fc c

E Ec
c P E E kTE E

N dEn g E f E dE
kT e −

= =
+∫ ∫  

Now, let  

; F cc
c

E E E E
kT kT

η η
− −

= =  

and, for simplicity, we extend the upper bound of integration from E = Etop to 
E → ∞; accordingly, 

0 1 cc
dn N
eηη
η∞

=
+∫  

 

The integral above can be written in closed form as 

( )
0

ln 1
1 c c

cd e
eηη

ηη η
∞ − = + + +∫  

so that 

( )ln 1 (I)c
c

cn N e ηη − = + +   

Now, if the semiconductor is degenerate, 𝜂𝜂𝑐𝑐 ≤ 3. Thus, considering 
the logarithm above in isolation, 

 

( ) ( ) ( )ln 1 ln 1 1lnc c c c
c

c
ce e e e eη η η ηη ηη−−  + = + = − + ≈ − +  +  

 

where we used, in the last passage, 
 

( ) ( )exp 1 ; ln 1 if 1c x x xη + ≈   
 

Finally, substituting the approximation above in (I) brings to 
 

( ) ( ) ( )ln 1 expc
c c c c c c

c
cn N e N e Nηηη η η η− = + + = − + =   

exp F c
c

E E
n N

kT
− ∴ =  

 
 

Notice that the electron distribution turned out to have the same 
form as the result posited in the background box.  

P.3 c Solution 
Problem 3.1: The distribution of electrons in the conduction band is 

given by gc(E)fP(E), while the distribution of holes in the valence band is given 
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by gv(E)(1 – f(E)). Working with the electron distribution, we first note that for 
a nondegenerate semiconductor, for all E ≥ Ec, 

( ) ( )1

1 exp

F
P

F

E E kTf E e
E E

kT

− −= ≈
− +  

 

 

We proceed to write 
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2 3 2 3
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 
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( ) ( ) ( ) ( )1 2 F
P c

E E kT
cg E f E E E eκ − −∴ = −  

where 𝜅𝜅 is constant. To find the extrema of this relationship, we 
differentiate it with respect to energy and set the resulting expression to 
zero, 
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1 0
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c
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−
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peak 2c
kTE E∴ − =  

peak 2c
kTE E∴ = +  

 

as we intended to show. The development for holes in the valence band is 
completely analogous and leads to 
 

peak 2v
kTE E= −  

Problem 3.2: Using the simplified notation introduced in Problem 3.1, 
we may write   

( ) ( ) ( ) ( )/21 2
/2 /2 /2 c F

c P c c c
E kT E kT

cg E kT f E kT E kT E eκ
 
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and  
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P.4 c Solution 
First, elementary charge carrier theory can be used to state that the 

thermal-equilibrium electron concentration n0 in the conduction band of a 
semiconductor is given by 

( )
0 exp c F

c

E E
n N

kT
− − 

=  
 

 

 

where Nc is the effective density of states function in the conduction band, 
Ec is the conduction-band energy, EF is the Fermi energy, k is Boltzmann’s 
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constant, and T is temperature. In a similar manner, the thermal-equilibrium 
concentration p0 of holes in the valence band is written as 
 

( )
0 exp F v

v

E E
p N

kT
− − 

=  
 

 

 

where Nv is the effective density of states function in the valence band and 
Ev is the valence-band energy. For an intrinsic semiconductor, the 
concentration of electrons in the conduction band is equal to the 
concentration of holes in the valence band. We may denote ni and pI as the 
electron and hole concentrations, respectively, in such a semiconductor; 
importantly, ni = pi, so normally we simply use the parameter ni as the 
intrinsic carrier concentration, which refers to either the intrinsic electron or 
hole concentration. The Fermi energy level for the intrinsic semiconductor is 
called the intrinsic Fermi energy, or 𝐸𝐸𝐹𝐹 = 𝐸𝐸𝐹𝐹𝑖𝑖 . With an intrinsic SC in mind, the 
two preceding equations can be restated as 
 

( ) ( ),
0 exp c F i

i ci

E E
n n N

kT

 − −
= =  

  
 

( ) ( ),
0 exp F i v

i vi

E E
p p N

kT

 − −
= =  

  
 

Multiplying one equation by the other, we obtain 
 



( ) ( ), ,2

`

exp expc F i F i v
i i i c v

in

E E E E
n p n N N

kT kT=

   − − − −
× = = ×   

      
 

( )
, ,2 exp exp g

c v

c F i F i v
i c v c v

E

E E
E E E E

n N N N N
kT kT

=

− − 
 − + − +   ∴ = =    
 
 



 

2 exp g
i c v

E
n N N

kT
− 

∴ =  
 

 

where Eg is the bandgap energy. Now, if Nc and Nv each vary with 
temperature to the 3/2 power, their product will obviously be proportional to 
T3. Taking a temperature of 300 K as the reference value, at which the 
density of states functions attain values denoted by Nc0 and Nv0, respectively, 
we may write 

 

3
2

0 0exp exp
300

g g
i c v c v

E ETn N N N N
kT kT
− −    = =    

    
 

Taking the square root, 
3 3

2
0 0 0 0exp exp

300 300
g g

i c v i c v

E ET Tn N N n N N
kT kT
− −      = → =      

      
 

 

This is the basic equation we have to plot. For silicon, we refer to the 
Additional Information section and read Ne0 = 2.8×1019 cm-3, Nv0 = 1.04×1019 

cm-3 and Eg = 1.12 eV; also, Boltzmann’s constant is 8.62×10-5 eV/K. 
Substituting above brings to 

 

( ) ( ) ( )
3

19 19
5

1.122.8 10 1.04 10 exp
300 8.62 10i
Tn

T−

 −   = × × × × ×  × ×    
 

3
15 3 2 6.50 103.28 10 expin T

T
 − ×

∴ = ×  
 

 

The equation is plotted below for the range T ∈ [200, 600] K, using a 
log scale for ni as prescribed. 
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We now turn to gallium arsenide, for which Ne0 = 4.7×1017 cm-3, Nv0 = 

7.0×1018 cm-3 and Eg = 1.42 eV, giving 
 

( ) ( ) ( )
3

17 18
5

1.424.7 10 7.0 10 exp
300 8.62 10i
Tn

T−

 −   = × × × × ×   × ×   
 

3
14 3 2 8.24 103.49 10 expin T

T
 − ×

∴ = ×  
 

 

The equation is plotted below. 

 
The third and last material to consider is germanium, for which Ne0 = 

1.04×1019 cm-3, Nv0 = 6.0×1018 cm-3 and Eg = 0.66 eV, giving 
 

( ) ( ) ( )
3

19 18
5

0.661.04 10 6.0 10 exp
300 8.62 10i
Tn

T−

 −   = × × × × ×   × ×   
 

3
15 3 2 7.66 101.52 10 expin T

T
 − ×

∴ = ×  
 

 

The equation is plotted below. 
 

 
We close this problem by plotting the three curves in a single chart: 
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P.5 c Solution 
Let ni,1 and ni,2 denote the ICC at T1 = 200 K and T2 = 400 K, respectively; 

their ratio is 

( )
( )

2102
17.2

2 22
,1

7.70 10
3.03 10

1.40 10
i

i

n
n

×
= = ×

×
 

or  

( ) ( )
( ) ( )

3 32
0 0 2 2 17.2 2

2 3
,1 1 2 10 0 1 1

300 exp
3.03 10 exp

300 exp
c v g g gi

i c v g

N N T E kT E En T
n T kT kTN N T E kT

−     
= → × = − − −    

−     
 

3
17 2

1 1 2

1 13.03 10 exp g
T E
T kT kT

    
∴ × = −    

    
 

( )

17

3
1 22 1

3.03 10 1 1ln gE
kT kTT T

   ×
∴ = −   

    
 

( ) ( )

17 17

3 3
2 1

5
1 2

3.03 10 3.03 10ln ln
400 200

1.32eV
1 1 11 1

8.62 10 200 400

g

T T
E

kT kT −

   × ×
   
      ∴ = = =
   −−    ×   

 

Lastly, product Nc0 × Nv0 is expressed as 

( ) ( )
3 3

22 21
,1 0 0 0 0 5

1

200 1.32exp 1.40 10 exp
300 300 8.62 10 200

g
i c v c v

ETn N N N N
kT −

       = − → × = × × −     × ×       

 

( )

( )

22
38 6

0 0 3

5

1.40 10
1.18 10 cm

200 1.32exp
300 8.62 10 200

c vN N −

−

×
∴ = = ×

    × −  × ×    

 

P.6 c Solution 
Problem 6.1: Recall that the thermal-equilibrium concentration of 

electrons, n0, can be stated as 

( )
0 exp (I)c F

c

E E
n N

kT
− − 

=  
 

 

For silicon, Nc = 2.8×1019 cm-3; solving for Ec – EF brings to 
 

( ) ( )0
0 exp expc F c F

c
c

E E E En
n N

kT N kT
− − − −   

= → =   
   

 

( )0ln c F

c

E En
N kT

− 
∴ = − 

 
 

( )
15

50
19

7 10ln 8.62 10 300 ln 0.214eV
2.8 10c F

c

n
E E kT

N
−   ×

∴ − = − = − × × × =   ×  
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 Problem 6.2: To find Ec – EF, we appeal to the definition of bandgap 
energy, which equals 1.12 eV for silicon, 

gg c v v cE E E E E E= − → − = −  

F g Fv cE E E E E∴− + = − +  

( )F g Fv cE E E E E∴ − = − −  

1.12 0.214 0.906eVF vE E∴ − = − =  

Problem 6.3: Equipped with EF – Ev, we can easily determine the 
thermal-equilibrium concentration of holes, p0, 

( ) ( ) ( )
19 3 3

0 5

0.906exp 1.04 10 exp 6.33 10 cm
8.62 10 300

F v
v

E E
p N

kT
−

−

  − −
 = = × × − = × 

× ×    
 

Problem 6.4: Holes are the minority carriers.  
Problem 6.5: To determine the difference EF – EF,I, we manipulate the 

slightly modified equation for the thermal-equilibrium concentration of 
electrons, 

, 0
0 ,exp lnF F i

i F F i
i

E E n
n n E E kT

kT n
−   

= → − =   
   

 

( )
15

5
, 10

7 108.62 10 300 ln 0.338eV
1.5 10F F iE E −  ×

∴ − = × × × = × 
 

P.7 c Solution 
Problem 7.1: Note that the thermal-equilibrium concentration of 

holes, p0, can be stated as 

( )
0 exp F v

v

E E
p N

kT
− − 

=  
 

 

For silicon, Nv = 1.04×1019 cm-3; solving for EF – Ev brings to 

( )
0

0

exp lnF v v
v F v

E E N
p N E E kT

kT p
− −   

= → − =   
  

 

( )
19

5
16

1.04 108.62 10 300 ln 0.162eV
2.0 10F vE E −  ×

∴ − = × × × = × 
 

Problem 7.2: To find EF – Ev, we write 

g c v c g vE E E E E E= − → = +  

F Fc g vE E E E E∴ − = + −  

( )Fc g vFE E E E E∴ − = − −  

1.12 0.162 0.958eVFcE E∴ − = − =  

Problem 7.3: Equipped with Ec – EF, we can determine the thermal-
equilibrium concentration of electrons, n0, 

( ) ( ) ( )
19 3 3

0 5

0.958exp 2.8 10 exp 2.28 10 cm
8.62 10 300

c F
c

E E
n N

kT
−

−

 − −  − = = × × = × 
× ×    

 

Problem 7.4: To determine the difference EF – EF,I, we manipulate the 
slightly modified equation for the thermal-equilibrium concentration of 
holes, 

( ), 0
0 ,exp lnF F i

i F F i
i

E E p
p n E E kT

kT n

 − −  
= → − =   

    
 

( )
16

5
, 10

2.0 108.62 10 300 ln 0.365eV
1.5 10F F iE E −  ×

∴ − = × × × = × 
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P.8 c Solution 
Problem 8.1: From the Additional Information section, we read a 

density of states function Nc = 4.7×1017 cm-3 for GaAs at T = 300 K. Using the 
3/2-power dependence of carrier concentration on temperature, we may 
write, for the concentration of electrons, 

( ) ( ) ( )
3/2 3/2

17 14 3
0 0 5

375 0.28exp 4.7 10 exp 1.14 10 cm
300 300 8.62 10 375

c F
c

E ETn N
kT

−
−

 − −  −     = = × × × = ×     × ×        

 

To compute the concentration of holes, we first note that Nv = 
7.0×1018 cm-3 for GaAs at 300 K. To estimate the energy difference EF – Ev, 
some quick manipulation gives 

( ) 1.42 0.28 1.14eVF g Fv cE E E E E− = − − = − =  

so that 

( ) ( ) ( )
3/2 3/2

18 3 3
0 0 5

375 1.14exp 7.0 10 exp 4.72 10 cm
300 300 8.62 10 375

F v
v

E ETp N
kT

−
−

 − −  −     = = × × × = ×     × ×        

 

Problem 8.2: To determine Ec – EF, take the equation for n0 and solve 
for this energy difference, giving 

( )
14

50
17

1.14 10ln 8.62 10 300 ln 0.215eV
4.7 10c F

c

nE E kT
N

−   ×
− = − = − × × × =   ×  

 

Before computing p0, note that difference EF – EV at 300 K is stated as 

( ) 1.42 0.215 1.21eVF g Fv cE E E E E− = − − = − =  

so that 

( ) ( ) ( )
18 2 3

0 5

1.21exp 7.0 10 exp 3.34 10 cm
8.62 10 300

F v
v

E E
p N

kT
− −

−

 − −  − = = × × = × 
× ×    

 

P.9 c Solution 
Problem 9.1: The probability of electrons occupying states at a given 

energy under equilibrium conditions is given by the Fermi function, 

( ) 1

1 exp
P

F

f E
E E

kT

=
− +  

 

 

Per the problem statement, we’re looking for fP(E = EF), namely 

( )

1

1 1 0.5
1 11 exp

P F
F F

f E E
E E

kT
=

= = = =
− + +  

 


 

Problem 9.2: In this case, we are told that EF = Ec and the energy of 
interest is E = Ec + kT, so that 

( )
( )

1 1

1 exp1 exp
P c

c c

f E E kT
kTE kT E
kTkT

= + = =
+ −   ++      

 

( ) 1

1 0.269
1P cf E E kT

e
∴ = + = =

+
 

Problem 9.3: In view of the problem statement, we may write fP(Ec + 
kT) = 1 – fP(Ec + kT) or, evoking the Fermi-Dirac function again, 

( ) ( )
( ) ( )

1 11 1
1 exp 1 exp

P c P c
c F c F

f E kT f E kT
E kT E E kT E

kT kT

+ = − + → = −
+ − + −   

+ +   
   
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( )

( )

( ) ( )

1 exp
1 1

1 exp 1 exp 1 exp

c F

c F c F c F

E kT E
kT

E kT E E kT E E kT E
kT kT kT

+ − 
+  

 ∴ = −
+ − + − + −     

+ + +     
     

 

( )

( )

( )

exp
1

1 exp 1 exp

c F

c F c F

E kT E
kT

E kT E E kT E
kT kT

+ − 
 
 ∴ =

+ − + −   
+ +   

   

 

( )

( )

( )

( )

1 1

1 exp exp
1

exp exp

c F c F

c F c F

E kT E E kT E
kT kT

E kT E E kT E
kT kT

∴ =
+ − + −   

+    
   +

+ − + −   
   
   

 

( )
1 1

1 exp1 exp F cc F E E kTE kT E
kTkT

∴ =
− −+ −   ++      

 

Equating exponents, 

c F F cE kT E E E kT+ − = − −  

2 2 2F cE E kT∴ = +  

F cE E kT∴ = +  

P.10 c Solution 
Problem 10.1: It can be shown that the probability function of 

electrons occupying the donor state is 

11 exp
2

d
d

d F

N
n

E E
kT

=
− +  

 

 

where nd is the density of electrons occupying the donor level, Nd is the 
concentration of donors, Ed is the energy of the donor level, and EF is the 
energy of the Fermi level. According to the problem statement, Ed – EF = 200 
meV; the probability we aim for is then 

( )

4

5

1 1 8.75 10
1 1 0.21 exp 1 exp2 2 8.62 10 300

d

d Fd

n
E EN

kT

−

−

= = = ×
−   +    + ×  × ×  

 

0.09%d

d

n
N

∴ ≈  

Problem 10.2: Now, we’re looking for the probability of finding an 
electron in the conduction band with energy kT above the conduction-band 
edge, that is, such that E – Ec = kT. Using this difference and the fact that the 
Fermi level is 245 meV below the conduction band, we write 

( ) ( ) 0.245F c c FE E E E E E kT− = − + − = +  

so that, evoking the Fermi-Dirac probability function, 

( )
( )

( )

5
5

5

1 1 2.83 10
8.62 10 300 0.2451 exp 1 exp

8.62 10 300

P
F

f E
E E

kT

−

−

−

= = = ×
−   × × ++    +  × ×  

 

0.003%d

d

n
N

∴ ≈  
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P.11 c Solution 
The conductivity is given by the product of elementary charge, 

electron mobility, and dopant concentration, 

( ) ( ) 119 151.60 10 1300 10 0.208 -cmn de Nσ µ −−= = × × × = Ω  

The resistivity is simply the reciprocal of conductivity, 

1 1 4.81 -cm
0.208n de N

ρ
µ

= = = Ω  

P.12 c Solution 
Noting that the conductivity of a p-type material is calculated on the 

basis of the hole mobility 𝜇𝜇𝑝𝑝, we write 

p d d
p

e N N
e
σσ µ
µ

= → =  

( )
16 3

19

1.80 2.96 10 cm
1.60 10 380dN −

−
∴ = = ×

× ×
 

P.13 c Solution 
All we have to do is write Ohm’s law of resistivity and solve for 

electron mobility, 

L L LR
A A RA
ρ σ

σ
= = → =  

n d
Le N

RA
µ∴ =  

n
d

L
eN RA

µ∴ =  

( ) ( )
2

19 15

2.5 1120cm /V s
1.6 10 2.0 10 70 0.1nµ −

∴ = = ⋅
× × × × ×

 

P.14 c Solution 
Noting that 𝜇𝜇𝑛𝑛 = b𝜇𝜇𝑝𝑝 and p = 𝑛𝑛𝑖𝑖2/𝑛𝑛, we restate the conductivity 𝜎𝜎, 




2

2 2

(I)
i

p i i
n p p p

p n nb

n n
e n p e b n e bn

n n
µ

µ
σ µ µ µ µ

==

      = + = + = +          

 

With n = ni, the corresponding intrinsic value is 

( )
2

1 (II)i
i p i p i

i

n
e bn e n b

n
σ µ µ

 
= + = + 

 
 

We’re interested in the maximum resistivity 𝜌𝜌max, which is essentially 
equivalent to looking for the minimum conductivity 𝜎𝜎min; accordingly, we 
differentiate (I) and set the result to zero, giving 

2 2

2
p i p i

p p

e n e nde bn e b
n dn n
µ µσσ µ µ= + → = −  

peµ∴
pe

b
µ

=
2

2

in

n
 

inn
b

∴ =  

Differentiating a second time yields 

22

2 3
p ie nd

dn n
µσ

=  
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Substituting n = ni/√𝑏𝑏 would give a positive result; hence, 𝜎𝜎(ni/√𝑏𝑏) 
indeed constitutes a local minimum. Evaluating (I) at n = ni/√𝑏𝑏 brings to 

( ) ( ) ( )
2

min 2i i
p p i i p i

i

n ne b e bn bn e bn
b n b

σ µ µ µ
   = × + = + = ×    

 

Finally, 

( )

max min

1
21
11

1

pp i

i i

p i

ee bn

e n b

µµρ σ
ρ σ

µ

×
= = =

+

in ( )1

p

b

eµ

+

2 ib n×
1

2
b

b
+

=  

P.15 c Solution 
Using the conductivity of the intrinsic material at 300 K, we can 

determine the corresponding intrinsic carrier concentration ni, 

( ) ( )
,300

,300 ,300 ,300
i

i i n p i
n p

en n
e

σ
σ µ µ

µ µ
= + → =

+
 

( ) ( )

6
9 3

,300 19

10 3.91 10 cm
1.60 10 1000 600in

−
−

−
∴ = = ×

× × +
 

The conductivity of the material at 500 K can be established from the 
same equation, 

( ),500 .500 (I)i i n penσ µ µ= +  
 

Before proceeding, we need the intrinsic carrier concentration of the 
material at 500 K; this in turn requires the bandgap energy of the 
semiconductor material, namely 

2
,3002

,300 exp lng i
i c v g

c v

E n
n N N E kT

kT N N
 − 

= → = −        
 

( ) ( )29
5

19 19

3.91 10
8.62 10 300 ln 1.12eV

10 10gE −
 ×
 ∴ = − × × × =
 ×
 

 

so that 

( )
2 19 19 26 3

5

1.12exp 10 10 exp 5.18 10 cm
8.62 10 500

g
i c v

E
n N N

kT
−

−

 −  − = = × × = × 
× ×    

 

Substituting in (I), 

( ) ( ) ( ) ( ) 119 26 3
,500 .500 1.60 10 5.18 10 1000 600 5.83 10 -cmi i n penσ µ µ −− −= + = × × × × + = × Ω  

P.16 c Solution 
Problem 16.1: The hole diffusion current is given by the product 

( ) 15
15

,diff

10
10 exp expp

p p p

eDdp x d x xJ eD eD
dx dx L L L

 −  −   = − = − =        
 

( )15 19

,diff 4 4

10 1.6 10 12
exp

12 10 12 10p
xJ

−

− −

× × × − ∴ = ×  × × 
 

( ) 2
,diff 1.6exp 833 A/cmpJ x  ∴ = −    

with x given in cm. 
Problem 16.2: Given the total current density J = 4.8 A/cm2 and the 

hole diffusion current density obtained just now, the electron current 
density can be established with the simple difference 

,drift ,diff ,drift ,diffn p n pJ J J J J J= + → = −  
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( ) 2
,drift 4.8 1.6exp 833 A/cmnJ x  ∴ = − −    

Problem 16.3: Recall that electron current density can be expressed as 
Jn,drift = envd, where e is elementary charge, n is electron concentration, and vd 
is drift velocity,  

,drift dnJ env=  

Also, vd = 𝜇𝜇𝑛𝑛E. Substituting and solving for E, we obtain 

,drift
,drift n

n

n
n

J
J en E E

en
µ

µ
= → =  

( )
( ) ( ) [ ]19 16

4.8 1.6exp 833
3 1.0exp 833 V/cm

1.6 10 10 1000
x

E x
−

− −
∴ = = − −

× × ×
 

P.17 c Solution 
Appealing to the mean value theorem for integrals, integrate from 

ymin = 0 to ymax = t, then divide by ymax – ymin = t – 0 = t, 

( ) ( )max

min

0
avg 0 0

max min

1 y t

y

y D y De dy e dy
y y t

σ
σ σ − −= =

− ∫ ∫  

( ) ( ) ( )0 0 0
avg

0
1 1Dy D t Dt tD D D

e e e
t t t
σ σ σ

σ −− −    ∴ = − = − − = −       
 

( ) ( ) 11.5 0.3
avg

0.3 20 1 3.97 -cm
1.5

eσ −−×  ∴ = − = Ω  
 

P.18 c Solution 
Problem 18.1: This conversation starter should be obvious to the 

student: 

6

2.0 13,300V/m 133V/cm
150 10

VE
L −= = = =

×
 

 

Problem 18.2: The conductivity is written as 

( ) ( ) (I)n dx e N xσ µ=  

where x is the depth along the thickness of the resistor. If the dopant 
concentration Nd(x) = b - ax varies linearly from Nd = 2×1016 cm-3 at x = 0 to Nd 
= 2×1015 cm-3 at x = 1 μm = 10-4 cm, we may write, for these two data points, 

( )
16

15 4

2 10 0
2 10 10d

b a
N x b ax

b a −

 × = − ×= − → 
× = − ×

 

From the first equation, 
 

16 32 10 cmb −= ×  

Substituting in the second, 
16 15

15 16 4 20 3
4

2 10 2 102 10 2 10 10 1.8 10 cm
10

a a− −
−

× − ×
× = × − × → = = ×  

Accordingly, 

( ) 16 202 10 1.8 10dN x x= × − ×  

Substituting in (I) and making use of the mean value theorem, we get 

( )
410

avg 4 0

1
10 0n de N xσ µ

−

−

 =  − ∫  

( ) ( )
41019 16 20

avg 4 0

11.6 10 750 2 10 1.8 10
10

x dxσ
−

−
−

 ∴ = × × × × − ×  ∫  

( ) ( )
4

19 16 20 2
avg 4

10

0

11.6 10 750 2 10 0.9 10
10

x xσ
−

−
−

 
∴ = × × × × − ×  

 

( ) ( ) ( ) 119 16 4 20 8
avg 4

11.6 10 750 2 10 10 0.9 10 10 1.32 -cm
10

σ −− − −
−

 ∴ = × × × × × − × × = Ω  
 



17 
© 2021 Montogue Quiz 

Problem 18.3: The resistance of the resistor is 

( )
4

4 4
avg

150 10 152k
1.32 7.5 10 10

LR
Aσ

−

− −

×
= = = Ω

 × × × 
 

 

and the current follows from Ohm’s law, 
 

5
3

2.0 1.32 10 A 13.2μA
152 10

VI
R

−= = = × =
×

 

 

Problem 18.4: The current density can be found by multiplying the 
conductivity 𝜎𝜎 by the electric field E. The conductivity at the top surface, 
wherein x = 0, is 

( ) ( ) ( ) ( ) ( ) 119 16 200 0 1.6 10 750 2 10 1.8 10 0 2.4 Ω-cmn de Nσ µ −−  = = × × × × − × × =   

so that 

( ) ( ) 20 0 2.4 133 319A/cmJ Eσ= = × =  

Likewise, at the bottom surface, x = 10-4 cm and 

( ) ( ) ( ) ( ) 14 4 19 16 20 410 10 1.6 10 750 2 10 1.8 10 10 0.24 Ω-cmn de Nσ µ −− − − − = = × × × × − × × =   

giving  

( ) ( )4 4 210 10 0.24 133 31.9A/cmJ Eσ− −= = × =  

P.19 c Solution 
Taking a standard temperature of 300 K, defining 𝐸𝐸𝑡𝑡ℎ = kT and solving 

for thermal velocity, we obtain 
2 2

2
th

th th
mv kTE kT v

m
= = → =  

( )23
4 6

31

2 1.38 10 300
9.54 10 m/s 9.54 10 cm/s

9.1 10thv
−

−

× × ×
∴ = = × = ×

×
 

 

The corresponding drift velocity under an electric field E = 100 V/cm is 
 

 

51350 100 1.35 10 cmd nv Eµ= = × = ×  
 

Thus, the thermal velocity, vth, is about 70.6 times greater than the 
drift velocity, vd. Now, under an electric field E’ = 10,000 V/cm, the theoretical 
drift velocity becomes 

71350 10,000 1.35 10 cmd nv Eµ′ ′= = × = ×  
 

That is, in this case the drift velocity and the thermal velocity are 
within approximately 40% of each other; as a result, the linear relationship 
between drift velocity and electric field intensity is no longer appropriate.  
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Was this material helpful to you? If so, please consider donating a small 
amount to our project at www.montoguequiz.com/donate so we can keep 

posting free, high-quality materials like this one on a regular basis. 
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