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Biofluid mechanics  
Vascular Mechanics, Blood Rheology, and Heart Valves 

 

Lucas Montogue  

 
Problems 

→ Problem 1: Vascular Mechanics  

Problem 1A  
 

 Describe the composition of the layers of the wall of a typical artery, 
labeled 1, 2 and 3 in the following figures, from the innermost to the outermost 
layer. 

 

 
Figure 1 Illustration of the vessel wall composition of a typical artery. 

 

 
Figure 2 Scanning of the multi-layer structure of the artery wall (Masson tri-

chrome staining). 
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Problem 1B 
 

Blood vessels are constituted mainly of four structural components: (A) 
elastic fibers, which are mechanically rubber-like and have a key role in the 
stretch of blood vessels; these are mostly either elastin, a protein that allows the 
tissues to recoil after deformation, and micro-fibrils, which are created from 
glycoproteins; (B) collagen fibers, which are the key proteins of the connective 
tissue, and can be stretched by around 3 to 4%, thus being considered much 
stiffer than the elastic fibers; (C) smooth muscle cells, which are present in all 
blood vessels except the capillaries; they contract and relax the normal vessel 
wall in response to vasoactive stimuli; and (D) endothelium, which is a very thin 
layer that lines the interior surface of all vascular segments; indeed, they are the 
only components of the wall of many capillaries. The chart below contains the 
main vessel types and the relative quantity of each structural component in their 
wall composition. Assign the correct component, from A to D, to each color, from 
1 to 4.  

 
 

Figure 3 Relative quantity of each of the four vessel  
wall components in the blood vessels’ walls. 

 

Problem 1C 
 

Comment on the following features of the mechanical behavior of vessel 
walls: 

A) Heterogeneity; 
B) Incompressibility. 

Problem 1D 
 

Artery wall tissue displays a series of special mechanical features, such as 
stress relaxation, creep, and hysteresis. Provide a brief definition of each of these 
terms and note how they apply to blood vessels. What is the term attributed to a 
system that displays these three features?  

Problem 1E 
 

Blood vessels are said to possess residual stress. What is residual stress? 
Illustrate this concept with a drawing and comment on its importance in 
constitutive modeling. Figure 4 shows an arterial ring used by Fung in his study of 
the concept of residual stress, published in 1984.    
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Figure 4 Arterial ring used by Fung in his 1984 study of residual stress. 

 

→ Problem 2: Blood Rheology  

Problem 2A  
 

Explain how a capillary rheometer (Figure 5) and a cone-and-plate 
rheometer (Figure 6) can be used to measure the viscosity of a fluid, with 
reference to the figures below.  

 
 

Figure 5 Capillary viscometer. Variables involved: 
p1 → Pressure at entrance of tube 

p2 → Pressure at exit of tube 
𝑄𝑄 → Flow rate in tube 
𝐿𝐿 → Length of tube 
𝑅𝑅 → Radius of tube 

 

 
Figure 6 Cone-and-plate viscometer. Variables involved: 

𝜔𝜔 → Angular velocity around middle axis 
Ψ → Angle between cone lateral surface and plate 

R → Radius of cone 
𝑠𝑠 → Distance from cone apex to a point in the lateral surface of the cone 

ℎ → height from plate to a point in the lateral surface of the cone 
 

Problem 2B  
 

Show that, for a Couette rheometer – i.e., a rotating cylinder rheometer – 
the viscosity of the fluid being measured can be established with the formula 

3

4Th
D L

µ
π ω

=  

in which T is the torque applied to the device, h is the thickness of the space 
between the two cylinders, D is the diameter of the cylinder being spun, 𝜔𝜔 is the 
angular velocity at which the cylinder is being spun, and L is the length of the 
cylinders. The device is illustrated in Figure 7. 
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Figure 7 Couette viscometer. 

 

Problem 2C  
 

Discuss the effect of rate of shear on blood viscosity in large blood 
vessels subjected to low rates of shear. In these circumstances, is blood a shear-
thickening, Newtonian, or shear-thinning fluid? Use Figure 8 as a reference for 
your answer. 

 
Figure 8 (a) Graph of blood viscosity (mPa∙s) versus shear rate (sec-1) with hematocrit as a parameter; 
(b) Three-dimensional structure of red blood cell aggregates in human blood from a healthy donor.  

 

Problem 2D  
 

Discuss the effect of hematocrit on blood viscosity. Using the graphs in 
Figure 9, discuss how hematocrit and the nature of red blood cells contributes to 
the non-Newtonian character of blood. 

 
Figure 9 (a) Graph of apparent viscosity versus hematocrit for human blood diluted with autologous plasma 
at 21oC and shear rate �̇�𝛾 = 128 s-1; and (b) relative viscosity as a function of hematocrit for blood with normal 

red blood cells, blood with hardened RBCs, and blood with a suspension of rigid spheres. 
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Problem 2E  
 

 Discuss the effect of factors other than shear rate and hematocrit on 
blood viscosity. Use Figure 10.  

 
Figure 10 Effect of plasma proteins on the viscosity of whole blood.  

 

Problem 2F  

 Discuss the existence of a yield stress for blood. 

→ Problem 3: Heart Valves  

Problem 3A  
 

To assess the seriousness of a heart valve stenosis, it would be helpful to 
know the area of the stenosed valve when open, or how much of the valve 
opening is being blocked by the stenosis. In 1951, Gorlin & Gorlin developed an 
equation to empirically predict valve area based on the pressure drop across the 
valve and the flow rate through the valve. Their equation is still used in 
cardiology today. Two observers (Harris & Robiolio, 1999) write that “although the 
‘gold standard’ for assessment of the severity of mitral stenosis has long been the 
Gorlin formula derived from data obtained from cardiac catheterization, advances 
in echocardiography have largely supplanted this procedure. Nonetheless, cardiac 
catheterization remains a mainstay in the management of mitral stenosis.” To 
obtain the Gorlin equation, we note that the average flow rate per heartbeat, Q, 
is the ratio of cardiac output, CO, to the product of heart rate, HR, and ejection 
time per beat, TE, 

E

COQ
HR T

=
×  

Combining the expression above with the Bernoulli equation and the 
equation of continuity, we can state that 

V
E

COA
T HR K p

=
× × × ∆  

in which AV is the area of the stenotic valve, Δ𝑝𝑝 is the mean pressure gradient 
over the ejection period in mmHg, and K is the so-called Gorlin coefficient, which 
encompasses the effects of two other constants, namely, CV, which represents 
actual velocity through the valve, and CC, which adjusts the cross-sectional valve 
area. Even though it is not strictly a constant, the value of K is usually fixed as 
44.3 for aortic valves and 37.7 for mitral valves. Using centimeters, seconds, and 
millimeters of mercury, what are the units of the Gorlin coefficient to ensure 
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that the expression for AV yields an area quantity in cm2? Then, consider a patient 
with a cardiac output of 5 L/min; a systolic ejection period of 358 ms with a heart 
rate of 70 beats per minute; and a mean aortic gradient as measured by 
echocardiography of 81 mmHg. Find the aortic valve area as estimated by the 
Gorlin equation. What is the average flow rate across the aortic valve during 
ejection? 

Problem 3B  
 

Energy loss across a stenotic valve is influenced by more than the 
effective valve area predicted by the Gorlin equation. Garcia et al. (2000) have 
suggested an approach that uses an energy method to more accurately estimate 
the severity of an aortic stenosis. The authors suggest an index that they refer to 
as the energy loss index, EL. Although it is a measure of energy loss, the energy 
loss index yields a value with units of pressure. The energy loss equation can be 
written as 

2

2
V

L VC V
A

AE V V
A

ρ  
= + 

 
 

If we are to express the energy loss in terms of variables that are readily 
measurable through transthoracic echocardiography, EL would be 

2

2L VC
A

COE V
A

ρ  
= + 

 
 

where 𝜌𝜌 is the fluid density (≈1060 kg/m3 for blood), VVC is the blood velocity at 
the vena contracta (Figure 11), CO is the cardiac output, and AA is the cross-
sectional area of the aorta. The unitless energy loss coefficient associated with 
this energy loss is defined by the term 

( )
( )

Energy loss coefficient A

A

EOA A
A EOA

×
=

−  

An energy loss coefficient that is less than 0.5 cm2/m2 should probably be 
considered a critical value. A value less than 0.5 indicates a serious stenosis. Bear 
in mind that the effective orifice area, EOA, is the area at the vena contracta 
derived from the continuity equation; that is, 

V V

VC

V AEOA
V
×

=
 

Suppose that the same patient from the previous problem has a cardiac 
output of 5 L/min. Also, the aortic area = 4.9 cm2, blood density = 1060 kg/m3, and 
velocity at vena contracta = 1.66 m/s. The mean aortic gradient as measured by 
echocardiography is 81 mmHg. Find the “energy loss” in mmHg and the energy 
loss coefficient. 

 
Figure 11 Schematic representation of flow through an aortic valve, where V is the 

left ventricle, VC represents the vena contracta, and A represents the aorta. 
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Problem 3C  
 

Name some of the potential complications faced by individuals with 
prosthetic heart valves. One such possible complication can be noted from the 
echocardiographs of Figure 12. 

 
Figure 12 Transesophageal echocardiography showing degenerative calcification and rupture of a cusp (a) 

determining severe regurgitation, and (b) of a bioprosthesis in the aortic position. 
 

→ Problem 4: Fahraeus and Fahraeus-Lindqvist Effects 

Problem 4A  

Explain the Fahraeus effect, and provide an equation that can be used in 
its mathematical description.  

Problem 4B  

Below, we have a plot of apparent viscosity of blood as a function of tube 
radius at a hematocrit of 40%. With reference to it, explain the Fahraeus-
Lindqvist effect. How does this phenomenon help the body cope with potential 
resistance to blood flow? 

 
Figure 13 Variation of apparent viscosity of blood with tube radius for a fixed 

hematocrit of 40%. 
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Solutions 

► Problem 1 

P.1A c Solution 

 The typical vessel wall consists of the tunica intima, which is the 
innermost layer, labeled 1 in the given figure; the tunica media, which is the 
middle layer, labeled 2; and the tunica adventitia, labeled 3 in the figure provided, 
the outermost layer. The intima is similar in most elastic and muscular arteries, 
typically consisting of a single layer of endothelial cells and an underlying thin (≈ 
80 nm) basal lamina. Exceptions include the aorta and coronary arteries in which 
the intima may contain a subendothelial layer of connective tissue and axially 
oriented smooth muscle cells. Endothelial cells are usually flat and elongated in 
the direction of blood flow, often about 0.2 to 0.5 μm thick, 10 to 15 μm wide, and 
25 to 50 μm long; exceptions occur near bifurcations wherein the blood flow is 
complex and the cells are often polygonal in shape. Endothelial cells may 
communicate directly with underlying smooth muscle cells via short, blunt 
processes that extend through the basal lamina and into the media. The basal 
lamina, sometimes referred to as the basement membrane, consists largely of 
net-like type IV collagen, the adhesion molecules laminin and fibronectin, and 
some proteoglycans. 

The internal elastic lamina separates the intima and media, but is often 
considered to be part of the latter. It is a little thicker in muscular arteries and 
can be considered essentially a fenestrated “sheet” of elastin that allows H2O, 
nutrients, and electrolytes across the wall as well as direct transmural cell-to-cell 
communication. The media contains smooth muscle cells that are embedded in 
an extracellular plexus of elastin and collagen (primarily types I, III, and V) as well 
as an aqueous ground substance matrix containing proteoglycans. Vascular 
smooth muscle cells are spindle-shaped; they are typically 100 μm long and about 
5 μm in diameter, except near the nucleus where they are slightly thicker. Given 
this shape, they are often laid down such that the thicker portion of one cell is 
juxtaposed to the thin ends of the neighboring cells. Smooth muscle cells are 
covered by a thin (40 to 80 nm) basement-type membrane (likely type V collagen); 
hence, 12 to 50% of the volume of vascular smooth muscle is due to this 
investing connective tissue. Like endothelial cells, smooth muscle cells 
communicate, in part, via gap junctions. Their intracellular myofibrils are typically 
oriented along the long axis of the cell, and cell-to-cell force transmission is 
accomplished via thin (reticular) collagen fibers that connect the membranous 
sheaths on each cell. Although the orientation and distribution of the medial 
constituents vary with species and location along the vascular tree, vascular 
smooth muscle tends to be oriented helically, or nearly circumferentially in some 
vessels. This preferential orientation is expected, in part, because the primary 
roles of the contraction of vascular smooth muscle are to modify the 
distensibility of the large arteries or to regulate the luminal diameter in medium 
and small arteries.  

Finally, the adventitia, or outermost layer of the wall, consists primarily 
of a dense network of type I collagen fibers with admixed elastin, nerves, 
fibroblasts, and the vasa vasorum. The adventitial collagen fibers tend to have an 
axial orientation in most arteries, and they are undulated slightly in the basal 
state. Although the adventitia comprises only ~10% and ~50% of the arterial wall 
in elastic and muscular arteries, respectively, it is thought to limit acute 
overdistension in all vessels. That is, the collagenous adventitia may serve 
primarily as a protective sheath, similar to the epicardium of the heart. 
Nonetheless, the presence of nerves within the adventitia also allows innervation 
of smooth muscle in the outer media via the diffusion of neurotransmitters, 
primarily norepinephrine (NE) and acetylcholine (ACh). The fibroblasts are 
responsible for regulating the connective tissue. The vasa vasorum is an 
intramural network of arterioles, capillaries, and venules that serves the outer 
portion of the wall in arteries that are too thick for sufficient transport of O2, 
CO2, nutrients, and metabolites from the intimal surface.  
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P.1B c Solution 

The correct associations are shown below. 

(1) Collagen fibers 
(2) Smooth muscle 
(3) Elastic fibers 
(4) Endothelial cells 

 

P.1C c Solution 

As the artery is a layered structure, it is clearly heterogeneous. 
Experiments suggest that the intima does not contribute significantly to the 
load-carrying capability of the arterial wall, which is comprehensible given the 
fact that it is essentially constituted of no more than a basal lamina and one layer 
of endothelial cells. We can then surmise that the media and the adventitia are 
the most important components of the vessel wall in mechanical terms. 
Heterogeneity is increased in anomalous conditions such as the presence of 
atherosclerotic plaque, thrombi and necrotic tissue. Even today, however, many 
studies consider the artery to be a homogeneous material, which is somewhat of 
a lumped model approach, and may indeed allow for accurate results in models 
involving relatively large scales.  

Because of the constituent regularity within each of the three layers that 
constitute the vessel wall, another common method is to assume that 
mechanical properties vary only from layer to layer, and are homogeneous for any 
one given layer. This separated layer approach is feasible on a large scale, but may 
be unacceptably inaccurate for smaller scale problems. A final alternative 
sometimes adopted by engineers is that there may be smooth gradients in wall 
constituents across the vessel wall. It is remarkable that most mechanical models 
involving vessel walls, including many performed after the advent of modern 
computers, were performed with vessel walls taken as homogeneous structures, 
particularly when the adventitia was sufficiently thin to be ignored altogether. 
The first models that dealt away with these gross simplifications were published 
in the 1980s, with von Maltzahn et al. noting, over the course of 3 years, that “the 
media and adventitia are anisotropic; the media is stiffer, more nonlinear, and 
subjected to higher stresses than commonly assumed; and that both layers are 
stiffer in the axial direction than in the tangential (circumferential) direction.” As 
of the early 2000s, von Maltzahn’s work remained the most complete on the 
heterogeneity of the vessel wall, despite shortcomings such as not considering 
the existence of residual stresses. The first mechanical data on the separate 
response of the media and adventitia were reported by Vito & Demiray in 1982. 
Briefly, they performed uniaxial extension tests in the axial and circumferential 
directions on strips of media and adventitia excised from the canine aorta. Their 
data suggested (visually) that the adventitia was stiffer than the media, but both 
were nearly isotropic. A few years later, the same authors suggested that the 
media was cylindrically orthotropic.  

In a finite elasticity framework, incompressibility means that the det(F) ≡ 
1, F being a tensor that is representative of deformation for all conditions 
experienced by the material; that is, it is taken as a kinematic constraint; in a 
linearized elasticity framework, incompressibility means that the bulk modulus is 
much greater than the shear modulus. In addition to cells and connective tissue, 
the arterial wall contains significant amounts of intracellular and extracellular 
water – indeed, some 70 to 80% by wet weight. Based on histology, therefore, an 
artery can be classified as a “mixture-composite,” that is, it contains a solid part 
that is primarily a layered composite of elastin, collagen, and smooth muscle, and 
a fluid part that is primarily extracellular water. Depending on the application, 
arteries can be treated as either a mixture or a homogenized fluid. Earlier studies 
performed by Lawton and Dobrin & Rovick had found that arteries deform 
approximately isochorically under various applied loads. Experimental 
measurement of wall compressibility of 0.06% at 270 cm of H2O indicates that 
the vessel can indeed be considered incompressible when subjected to 
physiologic pressure and load. That is, although arteries are not truly 
incompressible, due in part to stress-induced movement of water in and out of 
the wall, they appear to experience near isochoric motions under many loading 
conditions of interest (e.g., isothermal, physiologic loads). Compressibility may be 
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important, however, to understanding some physiologic processes related to 
blood vessels, such as transport of interstitial fluid.  

P.1D c Solution 

When a body is suddenly strained and then the strain is maintained 
constant afterward, the corresponding stresses induced in the body decrease 
with time. This phenomenon is called stress relaxation. If the body is suddenly 
stressed and then, with the stress is maintained constant afterward, the body 
continues to deform, a phenomenon called creep is defined. If the body is 
subjected to cyclic loading, the stress-strain relationship in the loading process 
may be somewhat different from that in the unloading process, in which case the 
material is said to have hysteresis. The features of stress relaxation, creep, and 
hysteresis are found in many materials. Collectively, they are features of 
viscoelasticity. 

 As the name implies, a viscoelastic material has properties both of an 
elastic solid and a viscous fluid. When an instantaneous load is applied to vascular 
tissue, the corresponding deformations do not occur instantaneously; rather, one 
observes an initial deformation followed by a slowing time dependent 
deformation, or creep, to an equilibrium value. Similarly, when the load is 
removed, an instantaneous recovery or relaxation occurs followed by time-
dependent recovery. It is thought that the smooth muscle is the primary source 
of the viscoelastic properties of artery walls, although collagen, despite its great 
stiffness, also exhibits viscoelasticity in in vitro experiments. In contrast, elastin 
has a purely elastic response to stress, and it is this component of vessel walls 
that prevents creep or stress relaxation from continuing indefinitely. It is 
important to note that viscoelasticity is only relevant when the stress or strain 
varies with time. For example, if a segment of artery is subjected to a cyclically 
varying strain of given frequency and amplitude, the stress required for a given 
strain is greater during extension than during recoil, that is, the mechanical 
behavior involves hysteresis. For most applications, however, arteries are 
assumed to be purely elastic, and only the loading part of the stress-strain curve 
is applied (this concept, in turn, is known as pseudoelasticity).  

P.1E c Solution 

The arteries possess residual stresses, which can be visualized by 
performing a radial cut on a short, unloaded ring segment such as the one shown 
below. Under normal conditions, the artery section is subjected to a continuously 
changing radial pressure, which keeps the vessel stretched in this direction 
(leftmost drawing). If the pressure were no longer applied, the vessel would 
contract and attain a constant circular shape (middle drawing). Finally, if we 
performed a radial cut in the ring, the artery would spring open, indicating the 
presence of residual stress (rightmost drawing). The ensuing opening occurs as a 
result of the cut ring minimizing its stored strain-energy. The opening angle 𝛼𝛼 
indicates the amount of residual stress. The residual stress results in compressive 
stresses near the wall of the artery and tensile stresses near the outer wall. In the 
loaded configuration, however, the stress through the wall is more uniform. That 
is, the stress at the inner wall would be much higher than the stress at the outer 
wall, which demonstrates that arteries adapt their configuration to account for 
stress concentrations.  

 

A constitutive model ideally defines strain with respect to the truly 
relaxed, “natural” state, the original stress-free configuration to which the 
material will return following any reversible process. This can only be done, if at 
all, with knowledge of residual stress. Fung and other investigators have 
commented that the existence of a single natural configuration for soft tissues is 
unlikely. At best, therefore, the engineer can only obtain a single reference 
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configuration for which the properties are well-known in order to carry out a 
mechanical analysis. Nevertheless, the discovery of residual stress in excised, 
unloaded arteries was of paramount importance in the identification of reference 
configurations.  

► Problem 2 

P.2A c Solution 

Capillary viscometry is based on the Poiseuille flow relationship for 
steady flow in a long, cylindrical tube. The tube has a capillary-size cross-section 
to ensure that flow in it is fully developed. The expression in question relates 
flow rate and pressure drop by means of Poiseuille’s law, 

4

8
R pQ

L
π
µ
∆

=
 

Referring to the figure below, the net force pushing fluid to the right is 

( )2 2 2
1 2 1 2pF p r p r p p rπ π π= − = −  

 

while the shear force that retards the motion acts on the circumferential surface 
of the fluid element and is given by 

2F rLτ τ π= ×  

In fully-developed, steady flow, these two forces balance each other and 
we obtain 
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2
1 2
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From this expression for the magnitude of shear stress, the magnitude of 
shear stress at the wall (i.e., where r = R) becomes 

(I)
2
p R
L

τ
∆

=
 

In addition, the constitutive law for a Newtonian fluid is given in 
cylindrical coordinates as 

du
dr

τ µ= −
 

where u is the velocity of the fluid. Combining the two previous expressions, we 
can determine the shear rate at the wall, 
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∆
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Then, using Poiseuille’s law, we can provide an expression for wall shear 
rate based on the flow rate and the wall radius, 

3

4 (II)w
Q
R

γ
π
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Finally, having obtained the wall shear stress with equation (I), and the 
wall shear rate with equation (II), the engineer can establish the viscosity 
coefficient as their ratio, μ = τ |γ̇w|⁄ . Notice that equation (I) requires knowledge 
of the pressure drop, while equation (II) requires the flow rate. In addition to the 
assumptions mentioned heretofore, we have used a linear relationship between 
shear stress and shear rate, τ = μγ̇, which is inherent to a Newtonian fluid. It is to 
be noted, furthermore, that in most types of capillary viscometers part of the 
amount of energy imparted to the system is used to induce kinetic energy to the 
fluid, and a small amount of energy is also expended in overcoming the viscous 
forces at the converging and diverging streamlines at the entrance and exit of the 
capillary. Consequently, kinetic energy and “Couette” corrections need to be 
applied to the measurements for more accurate results. In viscometers with 
externally applied pressure, the effective pressure gradient includes the 
externally applied pressure gradient as well as the hydrostatic head of the fluid in 
the viscometer. Thus, hydrostatic corrections are also needed to account for the 
constantly decreasing hydrostatic head. Use of this correction is crucial for the 
Poiseuille relation to hold (i.e., for a velocity profile in which the rate of shear is a 
function of radial position, r). 

Next, consider the functioning of a cone-and-plate viscometer. For this 
device, the fluid sample is contained between a cone of large apical angle and a 
plate normal to its axis. If the angle between the cone and the plate, Ψ, is small, 
the rate of shear is essentially constant and can be determined as follows. 
Variable ω is the angular velocity at which the cone is rotated. The linear velocity 
of the fluid at any radial distance r is then 

V rω=  

The rate of shear will be given by the ratio of the linear velocity and the 
gap between the cone and plate h at that radius. From the figure we were given, 
it is easy to see that tanΨ = ℎ 𝑟𝑟⁄ . The shear rate �̇�𝛾 = ω𝑟𝑟 𝑟𝑟 tanΨ⁄ ≈ ω Ψ⁄  provided 
that the cone angle Ψ is small. Thus, the shearing stress is independent of the 
radius in this configuration, and the entire fluid sample is being subjected to a 
constant rate of shear. The total torque T is determined by integration, 

rA
T r dAτ= ∫  

where the area element 𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝑟𝑟𝑑𝑑𝜋𝜋. However, the figure enables us to write 𝑟𝑟 =
𝑠𝑠 cosΨ, so that 𝑑𝑑𝑠𝑠 = 𝑑𝑑𝑟𝑟 cosΨ⁄  or simply 𝑑𝑑𝑠𝑠 = 𝑑𝑑𝑟𝑟 if Ψ is small. The integral then 
becomes 
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 For a Newtonian fluid, 𝜏𝜏𝑟𝑟 = 𝜇𝜇�̇�𝛾, with the result that 

3 3

3 3
2 2r

T T
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ωτ µ µ
π π ω

Ψ
= = × → =

Ψ
 

 That is, the viscosity of the fluid can be obtained with knowledge of the 
torque T, the angular velocity 𝜔𝜔, and the geometry of the device. 

P.2B c Solution 

In the coaxial cylinder rheometer, the fluid for which the viscosity is to be 
established is placed in the space between two cylinders. The inner cylinder, also 
referred to as the “bob,” remains stationary while the outer cylinder, named the 
“cup,” is rotated at a constant speed V (although both cylinders may be spun in 
some configurations). The shear stress in the fluid is equal to the force F applied 
to the outer cylinder divided by the surface area A of the internal cylinder, 

F
A

τ =
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The shear rate �̇�𝛾 for the fluid in the gap between the cylinders may be 
calculated as the ratio of the velocity of the cylinder, V, to the gap width h; that 
is, 

V
h

γ =
 

We know that the product of shear rate and viscosity yields the shear 
stress, 

ττ µγ µ
γ

= → =

  

so that 
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Suppose that D is the diameter of the inner rheometer cylinder, and L is 
its length. The fluid velocity at the inner surface is 

2
DV ω=

 

Also, the torque T acting on the system is the product of force F and D/2, 

2
2
D TT F F

D
= → =

 

Substituting the expressions we have for the velocity V and the force F in 
the equation that provides the coefficient of viscosity, it follows that 
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Finally, substituting 𝑑𝑑 = 𝜋𝜋𝜋𝜋𝐿𝐿, we obtain 

2 3

4 4Th Th
DL D D L

µ µ
ω π π ω

= → =
× ×  

Thus, with knowledge of the torque imparted on the system and of the 
angular velocity of one of the cylinders, along with some geometric parameters, 
one could easily determine the viscosity of the fluid. Note that this expression is 
quite similar to the relationship we derived earlier for 𝜇𝜇 in the cone-and-plate 
viscometer, which is to be expected given the similar functioning of these 
devices. Bear in mind that these are simplifications of the real problem and are 
not used in rheometry practice.  

P.2C c Solution 

In the lower range of rates of shear, the viscosity of blood decreases with 
increasing �̇�𝛾, as shown in Figure 8. One of the reasons for this behavior is that, at 
low shear rates, the red blood cells tend to agglutinate in rod-shaped stacks of 
individual cells (rouleaux). These structures align themselves in an end-to-side 
and side-to-side fashion and form a secondary structure consisting of branched 
three-dimensional aggregates, a solid-like formation that resists flow and 
contributes significantly to the large viscosity of blood at low �̇�𝛾. The amount of 
cells agglutinated in a rouleaux decreases as the shear rate is augmented; indeed, 
some investigators have shown that, as �̇�𝛾 increased from 5.8 to 46 s-1, each 
doubling of shear rate resulted in a decrease in average rouleaux size of 
approximately 50%. It is believed that, in the majority of the circulation, under 
healthy conditions, the shear rates are too high to allow for the appearance of 
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rouleaux. Since the viscosity of blood in large blood vessels at low rates of shear 
is inversely proportional to �̇�𝛾, blood is said to be a shear-thinning fluid. As �̇�𝛾 
becomes greater than 200 s-1, the viscosity becomes approximately constant, at 
least in the case of large arteries, and the fluid can then be considered Newtonian 
(Figure 8a). When the shear rate is about 1000 s-1, which is typical for many blood 
vessels in vivo, the non-Newtonian behavior is insignificant and the apparent 
viscosity approaches an asymptotic value, which is in the range of 3 – 4 mNs∙m-2.  

P.2D c Solution 

As can be seen in Figure 9a, blood viscosity increases dramatically as the 
hematocrit increases. The strong nonlinear increase in viscosity with hematocrit 
at low shear rates is thought to be due to an increase in rouleaux density, length, 
and cell-cell interaction with increasing RBC concentration. Fluid mechanics 
studies have shown that liquid droplets in a sheared suspension deform. There is 
experimental evidence, obtained with dilute suspensions of red cells, that 
indicates that they too deform when in a sheared flow. Thus, it seems likely that 
it is this deformation and rotation of the red cells which contribute to the non-
Newtonian behavior of blood. Strong support for this argument comes from a 
study with experimentally hardened red cells; a suspension in such modified cells, 
even at a hematocrit of 40%, is approximately Newtonian, much like a suspension 
of rigid spheres. The fact that blood with the same level of suspended red blood 
cells does not display such behavior suggests that the mechanical properties of 
red blood cells play an important role in the hemodynamics of blood vessels. As 
seen in Figure 9b, at relatively large values of hematocrit (i.e., greater than about 
30%), the viscosity of a suspension of rigid spheres becomes larger than that of a 
suspension of hardened cells, and much more so than a suspension of normal 
cells. The flexibility of erythrocytes has an attenuating effect on the relative 
viscosity of the fluid, particularly at high values of hematocrit, and makes the 
suspension less resistant to flow. It is a striking fact that the viscosity of a 
suspension of rigid spheres tends to infinity as the volume concentration 
(equivalent to hematocrit) approaches 60% - that is, it cannot be sheared –
whereas a suspension of normal red cells, on the other hand, will flow even at a 
hematocrit as high as 98%. 

P.2E c Solution 

Walburn & Schneck attempted to obtain a power law expression for 
viscosity based on a number of parameters and verified that, if we were to 
consider a three-parameter model for this quantity, the most important variables 
would be shear rate, hematocrit, and TPMA, or total protein minus albumin, in 
decreasing order of importance. Accordingly, blood proteins other than albumin 
might be yet another important factor in the determination of blood viscosity. 
The graph we were given suggests that globulin has the dominant effect on 
increasing the viscosity of blood, particularly at low shear rates, whereas albumin 
moderates the rise in viscosity. The effect of fibrinogen is insignificant. A fourth 
supposedly influential factor would be temperature, which is kept in a narrow 
range to maintain homeostasis and thus should affect blood viscosity 
substantially if it were changed even slightly. Indeed, blood viscosity does vary 
significantly with this variable; it has been found, for example, that when the 
temperature of blood with Ht = 40% is decreased from body temperature (37oC) 
to room temperature (22oC), the viscosity at a shear rate of 212 s-1 increases from 
3.8 mPa∙s to 6.3 mPa∙s, an increase of nearly 66%. On the other hand, Merrill et al. 
have found that the ratio of whole blood viscosity to the viscosity of water 
remains approximately constant for temperatures ranging from 10 to 40oC and 
shear rates varying from 1 to 100 s-1. Consequently, blood viscosity is often 
reported relative to the viscosity of water at the same temperature. A fifth 
component that may affect the viscosity of blood substantially is plasma, the 
extracellular matrix of blood cells. Properties of this fluid are sufficiently similar 
to water – a density of 1.035 g/cm3, a viscosity ranging from 1.1 cP to 1.6 cP – for 
us to assume that its contribution to the viscosity of blood is identical, or slightly 
greater, than the viscosity of water itself. Also, plasma can be considered a 
Newtonian fluid, despite the existence of mammalian studies that have 
suggested otherwise. Early reports of non-Newtonian behavior in plasma were 
attributed to the formation of a surface film at the plasma/air interface in the 
rheometer.  
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P.2F c Solution 

When blood is subjected to very low rates of shear, rouleaux are known to 
form in blood and a tangled network of aggregated red cells can be observed. If 
such blood is subjected to a shear stress below a critical value, the aggregated 
cell structure is believed to deform, without the blood flowing; that is, the fluid 
exhibits a yield stress. There is certain experimental evidence supporting the 
existence of a yield stress for blood, and careful measurements have suggested a 
yield stress of 1.5 – 5.0 mN/m2. Predictably, this decreases with hematocrit, and 
there is a critical hematocrit below which no yield stress is found, which usually 
ranges between 5 and 8%. It is presumed that there are then too few red cells per 
unit volume of blood to permit complete bridging of the sample by a structure of 
aggregated red cells. The yield stress of blood is increased if the concentration of 
fibrinogen or gamma globulin in the blood is high, which is expected because of 
the tendency for these asymptotic protein molecules to promote rouleaux 
formation. In closing, it can be noted that, despite the existence of such a yield 
stress for blood, its value is far too small to be of physiological importance in 
most cases.   

► Problem 3 

P.3A c Solution 
Before anything else, we need to investigate the dimensions of AV for it 

to be given in cm2. Substituting [CO] = [cm]3/[min], [TE] = [s]/[beat], [HR] = 
[beat]/[min], and [Δ𝑝𝑝] = [mmHg], it follows that 
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 That is to say, the Gorlin coefficient has units of cm divided by seconds 
times the square root of millimeters of mercury. Let us consider the hypothetical 
patient for the present problem. The cardiac output is 5 L/min = 5000 cm3/min, 
the ejection time per beat is 358 ms = 0.358 s, the heart rate is 70 beats per 
minute, and the pressure gradient is 81 mmHg. Also, K = 44.3 cm s�mmHg⁄ . Then, 
substituting the pertaining variables, AV is computed as 

25 0.50 cm
0.358 70 44.3 81VA = =

× × ×
 

 The average flow rate across the valve is 5000 mL/25 s = 200 mL/s.  

P.3B c Solution 
Given the blood density 𝜌𝜌 = 1060 kg/m3, the flow velocity at the vena 

contracta VVC = 1.66 m/s, the cardiac output CO = 5000/60 = 83.33 cm3/s, and the 
aortic area AA = 4.9 cm2, we can determine the energy loss as 

2
1060 5000 60 1 11.66 13 mmHg

2 4.9 100 133.3LE     = + × × =        
 

where the terms in parentheses are unit conversion factors. We proceed to 
compute the effective orifice area, EOA, as 

( )
25000 60 0.50 cm

1.66 100
V V

VC VC

V A COEOA
V V

= = = =
×

 

where, as before, 100 is introduced in the denominator as a unit conversion 
factor. Finally, to obtain the energy loss coefficient, all we have to do is 
substitute the values of EOA and AA into the formula we were given, namely, 

( ) 0.50 4.9Energy loss coefficient 0.56
4.9 0.50

A

A

EOA A
A EOA

× ×
= = =

− −
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P.3C c Solution 

After valve replacement, heart valve patients never recover completely, 
and are prone to a number of deleterious, and sometimes fatal, events. Incidence 
of potential valve-related complications, such as thromboembolic events, ranges 
between 2 and 4% per patient-year, and risk of death is about 1% per year of life 
with the prosthesis. Heart valve patients should be examined annually by a 
cardiologist. Some clinicians request annual echocardiograms, but examination 
every 3 to 5 years is probably adequate, with an increase in the frequency of 
examination for tissue valves starting 10 years after implantation. 

Thromboembolic complications – namely, thrombolic stenosis, which is 
the partial blockage of part of the prosthesis, and thromboembolism - are a major 
cause of morbidity and mortality in patients with a prosthetic heart valve, with 
an estimated clinical event rate between 0.6% and 2.3% per patient year. 
Thrombosis of mechanical valves can also increase regurgitation.    

Stenosis of bioprosthetic valves is often a consequence of progressive 
valve calcification, with a variable time from valve implantation to calcification 
depending on the specific valve type and on patient characteristics. An increased 
rate of tissue valve calcification is seen with younger age, pregnancy, mitral valve 
position, chronic renal failure, and hypercalcemia. Patients with prosthetic valve 
stenosis have symptoms, physical examination, and echocardiographic findings 
similar to those with native valve stenosis.  

A small degree of prosthetic valve regurgitation is normal with 
characteristic patterns of regurgitation for each valve type. Pathologic 
mechanical prosthetic valve regurgitation most often is paravalvular or may be 
related to leaflet calcification and degeneration. Specifically, tissue valves are 
prone to rupture of thin areas adjacent to a calcific nodule and in the setting of 
endocarditis. After closure of the valve, paraprosthetic blood regurgitation of 
various degrees of severity occurs through this communication. It seldom 
surpasses 10 percent of systolic volume. Paraprosthetic regurgitation is always 
pathological and has to be distinguished from transvalvular regurgitation, which 
is in a minimal quantity present in all prostheses.  

Another common dangerous event in blood flow across valves is 
hemolysis, the destruction of blood cells. Heart valves typically give rise to 
regions of locally accelerated blood flow, inducing abnormally high fluid forces 
and shear stresses that may destroy red blood cells. Fortunately, this is often 
compensated by the body’s capacity to bolster the production of erythrocytes 
when needed, although anemia may result if the rate of cell destruction 
surpasses that of cell production.  

The most serious complication of prosthetic heart valves is prosthetic 
valve endocarditis, which is the infection of the implanted heart valve either in 
early or late postoperative course. The characteristic lesion of valve prosthesis 
endocarditis is similar to vegetations in native valves. Small vegetations are 
immobile and attached to valve components, but the larger ones become sessile 
and move following the blood flow through the valve. It has been reported that 
vegetations longer than 10 mm are associated with an increased risk of 
embolization, and large vegetations can occasionally cause prosthesis 
obstruction. Vegetation size is a useful indicator to plan the urgency of surgical 
intervention. Incidence of prosthetic endocarditis is reported in the literature to 
be most often between 0.2 and 0.8% for each year of life with an implanted valve. 

► Problem 4 

P.4A c Solution 

Fahraeus studied the flow of blood from large feeding tubes into long, 
narrow glass tubes (i.e., capillary tubes) of diameters between 0.05 and 1.5 mm. 
He found that in capillary tubes with diameters below 0.3 mm the ratio of the 
tube hematocrit to that in the feeding tube decreased with decreasing diameter. 
If we measure the hematocrit of whole blood in a reservoir and flowing out 
through a tube attached to the reservoir, hematocrit will be found to be lower in 
the tube. Fahraeus conjectured that as the red blood cells migrate toward the 
center of the capillary tube, their average velocity increases. For the mass flow 
rate of RBC in the larger feeding tube to be the equal to that in the capillary tube, 
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the density of RBCs must be lower in the capillary tube. This reduced hematocrit 
is a consequence of the cell-free layer, for the suspended red cells move down 
the central portion of the tube at a relatively fast velocity, whereas plasma also 
flows in the slower moving region near the wall. This effect will occur regardless 
of the velocity profile. The mean time for red cells to traverse a given length of 
tube becomes less than that for the plasma; if the dynamic hematocrit were the 
same as the static value at the entrance, then we would end up with an increased 
concentration of red cells at the end of the tube. In fact, the dynamic hematocrit 
measured in any fairly narrow tube is always less than the static hematocrit, so 
that while the transit time per cell is reduced relative to the plasma, the total 
number of cells passing through the tube is maintained at the appropriate level. 
This phenomenon is known as the Fahraeus effect, but is sometimes referred to 
simply as dynamic hematocrit. Note that this is a separate effect from any change 
in the tube hematocrit due to entrance or “screening” effects as blood flows from 
the feeding tube into the capillary tube. 

Mathematically, the hematocrit within a microsize vessel (Ht) is lower 
than the hematocrit in the blood entering and the blood discharge hematocrit 
(Hd), i.e., Ht  < Hd. This is attributed to the pronounced axial migration of the 
erythrocytes. One expression used to provide Ht as a function of Hd and vessel 
diameter D, given in μm, was proposed by Pries et al. in 1990, 

( )( )0.415 0.0111 1 1.7 0.6D Dt
d d

d

H H H e e
H

− −= + − + −
 

P.4B c Solution 

As noted in the graph, the apparent viscosity for blood has a very low 
value in very small diameter tubes (i.e., tubes with diameters ranging from 0.04 
and 0.5 mm). The viscosity increases with the increase in tube diameter and 
approaches an asymptotic value at tube diameters larger than about 0.5 mm. This 
phenomenon of a decrease in the apparent viscosity in small diameter tubes is 
referred to as the Fahraeus-Lindqvist effect. To obtain a reasoning for this 
phenomenon, consider the following illustration. 

 

Above we have a red blood cell moving close to the lower tube wall of a 
vessel. As the blood flows through a tube, the blood cells tend to rotate as shown. 
Due to the spinning of the red blood cells, they tend to move toward the center 
of the tube, and, consequently, a cell-free layer, known as the plasma-skimming 
layer, exists near the wall. In tubes with small diameters, the cross-sectional area 
of the cell-free zone is comparable with the central core. Hence, the net effect of 
the cell-free zone with a lower viscosity (that of plasma alone) is to reduce the 
apparent viscosity of flow through the tube. The smaller the vessel, the larger the 
fraction of volume occupied by the cell-free layer, and the lower the hematocrit. 
As the tube diameter increases, the effect of the cell-free zone reduces and 
hence the viscosity approaches an asymptotic value. Note that Fahraeus and 
Lindqvist, as well as Barbee and Cokelet and others who have investigated this 
phenomenon since the 1930s, provided their conduits with flow rates large 
enough for blood viscosity not to vary with this parameter. 

 It is evident that the potential resistance to blood flow through a 
vascular network is enormous. One of the ways the body copes with such a 
resistance is by means of the radial migration of red blood cells, that is, the 
Fahraeus-Lindqvist effect itself. In the case of the arteriolar bifurcations, the 
cells tend to occupy the central flow axis in a parabolic profile, resulting in lower 
hematocrit values at the luminal wall. On reaching a branching system, the blood 
cells follow the larger daughter vessel due to the shear stresses and the pressure 
drop caused by the faster flow through it, thereby ensuring that the 
progressively smaller diameter branches have lower hematocrit values, and 
eventually helps reduce hematocrit to near-zero values. In summary, the body 
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copes with resistance to blood flow by maintaining an adequate traffic of blood 
cells across the circulation, which is guaranteed, among other mechanisms, by 
the aforementioned FL effect. 

 Finally, it should be noted that, for microvessels close to the size of a 
capillary, the Fahraeus-Lindqvist is reversed and a large increase in viscosity is 
observed. 
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