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Project FM202 

Biofluid mechanics  
Blood Flow in Arteries – Bifurcations and Elliptical Tubes 

 

Lucas Montogue  
 

Problems 

→ Problem 1: Vascular Metabolic Rate  

Problem 1A  
 

 The power H required to pump a fluid of viscosity 𝜇𝜇 through a tube of 
radius R and length L, at a steady flow rate Q and under conditions of fully 
developed Hagen-Poiseuille flow, is given by 
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 A well-known implication of this simple formula is the result that almost 
94% of this power can be saved by simply doubling the radius of the tube, all else 
being unchanged. In other words, only 6% of the power is needed to maintain the 
same fluid through a tube of the same length but double the radius. Taking 𝜇𝜇 = 
0.03 P for the viscosity of blood, a blood vessel segment of L = 10 cm, a flow rate 
Q = 100 cm3/s, and a vessel radius of 1 cm, estimate the power required to 
maintain the flow in ergs/s. Then, determine the corresponding power in cal/day. 

Problem 1B  

 For the cardiovascular system as a whole, the pumping power required 
from the heart can be estimated in a simpler form 

H Q p= ∆  

 If one takes Δ𝑝𝑝 = 120 mmHg, Q = 100 cm3/s, and a (rather generous) 
cardiac efficiency of 10%, what would be the metabolic rate of the heart for the 
system with normal radii? In turn, what would be the metabolic rate for the 
system with double the normal radii? And with half the normal radii? Express 
these metabolic rates as a percentage of the total metabolic rate of the host 
organism, which is 2,500 cal/day for an average man at rest.  

→ Problem 2: Bifurcations and Murray’s Law  

Problem 2A  
 

 We know that arteries bifurcate many times before they become 
capillaries. Can we guess a design pattern of the blood vessel bifurcation? To be 
more concrete, let us consider three vessels AB, BC, and BD connecting three 
points A, C, and D in space, as shown in Figure 1. There is a flow Q0 coming 
through A into AB. The flow is divided into Q1 in BC and Q2 in BD. Let the points A, 
C and D be fixed, but the location of B and the vessel radii are left for the 
designer to choose. Is there an optimal position for the point B? By asking such a 
question we are seeking a principle of optimum design, in which a cost function is 
assumed, and the design parameters are chosen so that the cost function is 
minimized. In 1926, Murray suggested that physiological vascular systems, 
subjected through evolution to natural selection, must have achieved an 
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optimum arrangement such that, in every segment of the vessel, flow is achieved 
with the least possible biological work. He and Rosen (1967) thus proposed a cost 
function made up of two terms, namely, a term representing (a) the energy 
required to overcome viscous drag in a fluid obeying Poiseuille’s law, and (b) 
another related to the energy metabolically required to maintain the volume of 
blood and vessel tissue involved in the flow. These energy terms are related to 
the radius of the vessel, but in opposite ways: the larger the radius, the smaller is 
the power Pf required for flow, but the larger is the power Pm required for 
metabolic maintenance of the blood and vessel wall tissue. The vessel can be 
neither too large nor too small if the cost function, 𝑃𝑃𝑡𝑡 = 𝑃𝑃𝑓𝑓 + 𝑃𝑃𝑚𝑚, is to be 

minimized.  

 
Figure 1 Bifurcation of a blood vessel AB into two branches BC and BD supporting blood at a 

rate of 𝑄𝑄0 (cm³/s) from point A to points C and D, with outflow of 𝑄𝑄1 at C and 𝑄𝑄2 at D. 
 

 If gravitational and kinetic energy terms can be neglected, a Newtonian 
fluid exhibits a volumetric flow rate, Q, which is linearly proportional to the 
pressure difference, Δp, to which it is subjected,  

Q c p= ∆  

where c is a conductance coefficient. In cylindrical conduits, the conductance is 
proportional (from Poiseuille’s law) to R4, the fourth power of the radius of the 
tube, 
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=  

where 𝜇𝜇 is the viscosity of the fluid and L is the length of the tube. Letting a = 
8𝜇𝜇𝜇𝜇 𝜋𝜋⁄ , we have 

4 4aQ pR p aQR−= ∆ → ∆ =  

 The power required to maintain flow is then 

2 4
fP pQ aQ R−= ∆ =  

 Hence, the power required to maintain a given flow is dramatically 
reduced by small increases in the radius of a vessel. Offsetting this, however, is a 
metabolic requirement, Pm, which increases linearly with the volume of the blood 
vessel, 

2VolumemP k k LRπ= × =  

where k is a metabolic constant. Letting 𝑏𝑏 = 𝑘𝑘𝑘𝑘𝑘𝑘, we may write 

2
mP bR=  

 The total power required, i.e. the cost function, is then 

2 4 2
t f mP P P aQ R bR−= + = +  

 Of the two coefficients in this expression, a depends only upon the 
viscosity of the flowing fluid, whereas b incorporates the metabolic constant k 
and thus depends upon the metabolism of blood and vessel tissue. For a specified 
value of Q, the cost function Pi depends only upon R. With this information, 
optimize the cost function to obtain its minimum value and the corresponding 
value of R. Show that this optimum value is indeed a minimum Pt. Replace a and b 
with their respective values. What is the proportion between R and Q at optimum 
conditions? 
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Problem 2B  
 

 Let us return to the design problem of a vessel bifurcation. Conservation 
of mass from the main vessel segment AB to the daughter vessels BC and CD 
allows us to state that 

0 1 2Q Q Q= +  

 Use this result and the equation you have obtained for the optimum 
radius R to derive Murray’s law, according to which the cube of the radius of the 
main vessel is equal to the sum of the cubed radii of the daughter vessels. 
Mathematically, 

3 3 3
1 2oR R R= +  

Problem 2C  
 

 Suppose that R* denotes the optimum radius obtained in Problem 2A. Use 
the equation for R* to obtain an expression for the metabolic constant k. Then, 
note that the pressure drop Δ𝑝𝑝 is given by 

4

8 LQp
R

µ
π

∆ =  

which is the basic Poiseuille flow equation with the following interpretation. 
With a fixed flow in a blood vessel of fixed length L, if the vessel radius R is 
changed the pressure drop Δ𝑝𝑝 required to maintain the flow will change 
correspondingly. In particular, when the radius has an optimum value R*, the 
pressure drop will have an optimum value Δ𝑝𝑝* and we thus write the previous 
equation as 

*4

8* LQp
R
µ
π

∆ =  

 Use this relation and the equation you have obtained for R to obtain a 
relationship for the metabolic constant k. Use 𝑉𝑉∗ = 𝜋𝜋𝑅𝑅2𝐿𝐿 as the volume of a 
hypothetical vessel of length L and radius R*. Then, apply the equation to the 
entire cardiovascular system with the approximate data Q = 100 cm3/s, Δ𝑝𝑝∗ = 120 
mmHg, and V* = 4500 cm3 to obtain a value of k. What are the dimensions of k in 
the CGS system? 

 Much of earlier data on cardiovascular system measurements originated 
from Green (1950), who presents his information with the following comments: 
“accurate quantitative data are not available for the capacity of the circulatory 
system. I have, however, made a rough estimate of the relative capacities of the 
component parts of the circulatory system based in part on calculations by Mall 
from detailed microscopic examinations of the mesenteric vascular bed.” The data 
relate to the entire cardiovascular system of a 13-kg dog and are shown 
graphically in Figure 2. The solid triangles refer to arteries, whereas the inverse 
triangles pertain to veins. Also shown in this figure is the optimum relation 
between Q and R* as given by the equation discussed in Problem 2A. For the 
purpose of comparison, this relation has been written in the form 

( )3*Q K R=  

in which K is a constant given by 

1
2

4
kK π
µ

 
=  

 
 

so that, applying logarithms to both sides of the equation, 

( )3log log log *Q K R= +  

 In the graph shown, the vertical axis is the logarithm of flow rate, 
whereas the horizontal axis is the logarithm of R3. What are the units of constant 
K? Use the values provided earlier and 𝜇𝜇 = 0.03 poise to obtain a representative 
value of K.  
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Figure 2 Relation between blood flow Q (cm³/s) and vessel radius R (cm). The solid 
triangles are based on data by Green (1950) for a 13-kg dog where arteries are 

represented by upright triangles and veins by inverse triangles. The straight lines 
are based on the logarithmic relationship presented in Problem 2C.  

 

Problem 2D  
 

Once again, let us consider the bifurcation problem. Since the cost 
functions of all vessels are additive, we see at once that the vessel connecting A, 
C, and D in Figure 1 should be straight and lie in a plane (because this minimizes 
the length, L, when other things are fixed). To find out the details, let the 
geometric parameters be specified as shown in Figure 3. The three branches will 
be denoted by subscripts 0, 1, and 2. The total cost function will be denoted by P.  

( )2 2 2
1 1 2 2

3
2 o o
KP R L R L R Lπ

= + +  

 
Figure 3 Geometric parameters of the branching pattern. Theory shows that B 

should lie in the plane of ACD. 
 

 The lengths Lo, L1, and L2 are affected by the location of point B, and the 
radii RO, R1, and R2 are related to the flows Qo, Q1, and Q2 through the equation 
developed in Problem 2A. You must minimize P by properly choosing the location 
of the bifurcation point B. Since a small movement of B changes P by  

 

( )2 2 2
1 1 2 2

3
2 o o
KP R L R L R Lπδ δ δ δ= + +

 

 
an optimal location of B would make 𝛿𝛿𝛿𝛿 = 0 for an arbitrary small movement of B. 
Consider three special movements of B. First, let B move to B’ in the direction of 
AB, as shown in Figure 4. In this case, 

( )
1 2

2 2 2
1 2

; cos ; cos

3 cos cos
2

o

o

L L L

kP R R R

δ δ δ δ θ δ δ φ

πδ δ θ φ

= = − = −

∴ = − −
 

 The optimum is obtained when 

2 2 2
1 2cos cosoR R Rθ φ= +  

Next, let B move to B’ in the direction of CB, as shown in Figure 5. Finally, 
let B move a short distance 𝛿𝛿 in the direction of DB, as shown in Figure 6. Use the 
three equations derived from these small displacements to show the following 
relationships, 



5 
© 2019 Montogue Quiz 

( )
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1 2
2 2

1 2
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2

cos
2

cos
2

o

o

o

o

o

R R R
R R

R R R
R R

R R R
R R

θ

φ
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+ −
=

− +
=

− −
+ =

 

 Then, use Murray’s Law to simplify the equations and obtain the 
following results, 

( )

( )

( ) ( )

4
4 4 3 3 3
0 1 0 1

2 2
0 1

4
4 4 3 3 3
0 2 0 2

2 2
0 2

4
3 3 4 43
1 2 1 2

2 2
1 2

cos
2

cos
2

cos
2

R R R R
R R

R R R R
R R

R R R R
R R

θ

φ

θ φ

+ − −
=

+ − −
=

+ − −
+ =

 

 
  

Figure 4 A particular 
variation of 𝛿𝛿𝐿𝐿0, 𝛿𝛿𝐿𝐿1, 𝛿𝛿𝐿𝐿2 by 
a small displacement of B 

in the direction of AB. 

Figure 5 Another 
particular variation of 
𝛿𝛿𝐿𝐿0, 𝛿𝛿𝐿𝐿1, 𝛿𝛿𝐿𝐿2 by a 

displacement of B to B’ 
along BC. 

Figure 6 A third variation 
caused by a displacement of 

B to B’ along BD. 

 

Problem 2E  

Show that, according to Murray’s cost function, if 𝑅𝑅1 = 𝑅𝑅2, then 𝜃𝜃 = 𝜙𝜙. 
That is, if the radii of the daughter branches are equal, the bifurcating angles are 
equal. Then, demonstrate that if 𝑅𝑅2 ≫ 𝑅𝑅1, then 𝑅𝑅2 ≐ 𝑅𝑅𝑜𝑜 and 𝜃𝜃 ≐ 𝜋𝜋 2⁄ . 

Problem 2F  

In 1808, Thomas Young, in his Croonian Lecture, established that when he 
wished to estimate the resistance of an arterial system: “in order to calculate the 
magnitude of the resistance, it is necessary to determine the dimensions of the 
arterial system, and the velocity of the blood which flows through it.” Starting with 
assumed dimensions for the aorta and for the capillaries, Young had to decide 
upon a probable branching pattern which would connect one with the other. He 
chose a symmetrical, dichotomous system in which the diameter of each branch 
was “about 4/5 of that of the trunk, or more accurately 1:21/3”. By assuming this 
geometric ratio between the diameters of daughter and parent vessels, Young 
calculated that 29 bifurcations were necessary to diminish the aorta to the size 
of the capillaries. From estimates of the lengths of the aorta and capillaries, he 
constructed another geometric series for lengths of the thirty generations of 
vessels and went on to calculate blood volumes, velocities of flow, and 
resistances in the different stages of the system. Young does not say why he 
chose a ratio of 21/3:1, but it seems certain that he was familiar with a rule – either 
empirical or theoretical – that favored this choice. 

Support Young’s results by demonstrating that when 𝑅𝑅1 = 𝑅𝑅2, we have 
𝑅𝑅1 𝑅𝑅0⁄ = 2−1 3⁄ = 0.794, and cos𝜃𝜃 = 0.794, so that 𝜃𝜃 = 37.5o. Let Ro denote the 
radius of the aorta, and assume equal bifurcation in all generations. Accordingly, 
the radius of the first generation is 0.794𝑅𝑅0, the radius of the second generation 
is 0.7942𝑅𝑅0, and, generally, that of the n-th generation is 
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( ) 00.794 n
nR R=  

 If a capillary blood vessel has a radius of 5×10-4 cm and the radius of the 
aorta is 𝑅𝑅𝑜𝑜 = 1.5 cm, is the number of generations consistent with Young’s 
results? 

→ Problem 3: Flow in Elliptical Tubes 

Problem 3A  

 Explain the need to consider flow in noncircular vessels in some regions 
of the human circulation. 

Problem 3B  

 
 

Figure 7  Circular and elliptical cross-sections. 
 

Consider steady flow of blood (assumed as a Newtonian fluid) in a rigid 
tube of elliptical cross-section, as illustrated in Figure 7. Flow occurs along the x-
plane, and the ellipse is defined in the yz-plane by the expression 

2 2

2 2 1y z
b c

+ =  

 The velocity profile has the form 

( ) ( )
2 2 2 2

2 22 2
, 1

2
kb c y zu y z

b cb cµ
 

= + − +  
 

where k is the pressure gradient in the x-axis, assumed to be a constant (𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑⁄ =
Δ𝑝𝑝 𝐿𝐿⁄ = 𝑘𝑘), and 𝜇𝜇 is the viscosity of blood (also a constant). Obtain an expression 
for the flow rate q. Use factor 𝛿𝛿 to simplify your result,  

1 43 3

2 2

2b c
b c

δ
 

=  + 
 

 Next, obtain an expression for the pumping power, 𝐻𝐻 (such that 𝐻𝐻 = Δ𝑝𝑝 ×
𝑞𝑞). Also, show that the flow rate reduces to the expression for a tube of circular 
cross-section when 𝑏𝑏 = 𝑐𝑐 = 𝑎𝑎, where a is the radius of a circle described by the 
equation 

2 2 2y z a+ =  

Problem 3C  

Flow in a tube of circular cross-section is more efficient than flow in a 
conduit of any other cross-section geometry, including an elliptical section. Flow 
inefficiency in a tube of noncircular cross-section manifests itself in terms of 
lower flow rate for a given pumping power or higher pumping power for a given 
flow rate. For a meaningful comparison between the two cases, either the areas 
or perimeters of the circular and the noncircular cross-sections must be made 
equal. In the case of the elliptic cross-section, this establishes a relation between 
the radius of the circular cross-section and the axes of the elliptic cross-section. 
The perimeter of an ellipse of semi minor and major axes b and c is equal to that 
of a circle of radius a if 

( )2 2 21
2

a b c≈ +  

 Consider an elliptical section for which the ratio of the major axis to the 
minor axis is 𝜆𝜆 = 2:1. Suppose that the pumping power driving the flow is left 
unchanged. Show that, in this case, the flow rate of the elliptical blood vessel will 
be a fraction 𝑞𝑞𝑒𝑒 = (64 125⁄ )𝑞𝑞𝑐𝑐 of the flow rate 𝑞𝑞𝑐𝑐 expected for the circular cross-
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section. Next, suppose that the flow rate is kept unchanged. Show that the 
pumping power required to drive the flow in the elliptical blood vessel will be a 
portion 𝐻𝐻𝑒𝑒 = (125 64⁄ )𝐻𝐻𝑐𝑐 of the pumping power 𝐻𝐻𝑐𝑐 expected for the circular 
cross-section.  

Solutions 

► Problem 1 

P.1A c Solution 

  All we have to do is substitute the pertaining variables in the expression 
for H, 

2 2

4 4

8 8 0.03 10 100 7,640 ergs/s
1

LQH
R

µ
π π

× × ×
= = =

×
 

 Knowing that 1 erg = 10-7 joules, 1 J = 0.239 cal, and 1 day = 86,400 s, the 
energy consumption for a full day is such that 

daily

erg
7,640H =

s
s86,400× 7 J10

day
−×

erg
cal0.239
J

× 16 cal/day≈  

P.1B c Solution 

 Substituting 𝑄𝑄 = 100 cm3/s and Δ𝑝𝑝 = 120 mmHg and performing the 
necessary unit conversions (Q = 10-4 m3/s, Δ𝑝𝑝 = 16 kPa), we obtain H = 33 cal/day. If 
all blood vessels in the cardiovascular system were of double their normal radii 
while still conveying the same flow, the pumping power required from the heart 
would be approximately 2 cal/day (since Poiseuille’s law implies that it would 
drop 16-fold). Similarly, if all blood vessels had their radii reduced by half, the new 
pumping power would be 528 cal/day. For a cardiac efficiency of 10% (i.e., only a 
tenth of power received is converted to effective pumping power), the 
corresponding metabolic rates for the heart would be 330 cal/day for the system 
with normal radii, 20 cal/day for the configuration with double radii, and 5280 
cal/day for the setting with half the normal radii. Expressed in terms of the total 
metabolic rate of the host organism, which was given as approximately 2500 
cal/day for an average man at rest, these metabolic rates correspond to 330/2500 
= 13% for normal conditions, 0.8% for dilated radii conditions, and 211% for 
contracted radii conditions; this means that adjustments in the radius of the 
vessel alone are capable of changing the percentage of cardiac pumping power, 
relative to overall metabolism, by more than two orders of magnitude. 

► Problem 2 

P.2A c Solution 

Pt as a function of R will be minimized by that value of R for which 
𝑑𝑑𝑃𝑃𝑡𝑡 𝑑𝑑𝑑𝑑⁄ = 0. Thus, differentiating the cost function, we have 

2 5

2 5

4 2 0

2 4

tdP aQ R bR
dR

bR aQ R

−

−

= − + =

∴ =

 

2 6

6 2

2 4

4
2

b aQ R

aR Q
b

−∴ =

∴ =
 

6 22aR Q
b

 ∴ =  
 
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1
16
3

1
16
3

2

2

16

aR Q
b

R Q
k
µ

π

 ∴ =  
 

 ∴ =  
 

 

Hence, we have 𝑅𝑅 ∝ 𝑄𝑄
1
3, that is, the optimal radius of a blood vessel is 

proportional to Q to the 1/3 power. Substituting this result in the cost function, 
the minimum power is determined to be 

( )
4 21 1

1 16 62 23 3
2 2min

8 16 16 3
2tP Q Q k Q kLR

k k
µ µ µ ππ
π π π

−
   
      = + =         
   

 

 To prove that this is indeed a minimum, we must have 𝑑𝑑2𝑃𝑃𝑡𝑡 𝑑𝑑𝑅𝑅2⁄ > 0. 
Accordingly, differentiating Pt a second time gives 

2
2 6

2 2 20td P b aQ R
dR

−= +  

 The result is greater than zero; therefore, the result obtained above is 
indeed a minimum.  

P.2B c Solution 

Note that the result we have obtained for the optimum radius R can be 
manipulated to yield 

1
16
3

2

1
23

2

1
2 2

3

16

16

16

R Q
k

R Q
k

kQ R

µ
π

µ
π

π
µ

 =  
 

 ∴ =  
 

 
∴ =  

 

 

 Accordingly, the flow rates in the main vessel and the daughter vessels 
are given by 

1 1 1
2 2 22 2 2

3 3 3
0 0 1 1 2 2; ;

16 16 16
k k kQ R Q R Q Rπ π π
µ µ µ

     
= = =     
     

 

 Substituting these results in the continuity equation, we obtain 

0 1 2

1
2 2

16

Q Q Q

kπ
µ

= +

 
∴  
 

1
2 2

3
0 16

kR π
µ

 
=  
 

1
2 2

3
1 16

kR π
µ

 
+  
 

3
2

3 3 3
0 1 2

R

R R R∴ = +

 

 This result is known as Murray’s Law. 

P.2C c Solution 

Taking the pressure drop as defined by Poiseuille’s law and performing 
some manipulations, it follows that 
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

2
2 2 2

*
4 6 2 6

*

8 16 16*
2 2

*
2

2 *
*

V

k

R L
LQ LQ R Qp
R QR Q R

Vp k
Q

Q pk
V

π
µ µ µ
π π π

=

∆ = = = ×

∴∆ = ×

∆
∴ =



 

 To identify the units of k, we write 

3cm
[ ][ ][ ]

[ *]
Q pk

V
∆

= =
2

3

dyn
s cm

cm

×
2

dyn
s cm

=
×

 

 Substituting Q = 100 cm3/s, Δ𝑝𝑝* = 120 mmHg = 160,000 dyn/cm2, and V* = 
4500 cm3, we obtain 

22 * 2 100 160,000 7111 dynes/cm /s
* 4500

Q pk
V
∆ × ×

= = =  

 Note that this can be converted to 0.015 cal/day/cm3, which is 
comparable to the metabolic rate of approximately 0.025 cal/day/g. The 
agreement in orders of magnitude is certainly hard to dismiss. 

 We proceed to obtain the units of constant K, which is given by 

1
2

4
kK π
µ

 
=  

 
 

 In view of [k ] = dyn/cm²/s and [𝜇𝜇] = dyn-s/cm², the units of K are 
determined to be 

[ ] [ ]
[ ]

1
2

dyn
k

K
µ

 
= =  
 

2cm s
dyn

×

2

s

cm

×

1
2

1
2 1

2

1 s
s

−

 
 

   = =     
 
 

 

 Substituting k = 7111 dyn/cm²/s and 𝜇𝜇 = 0.03 P gives 

1
2 17111 382 s

4 0.03
K π − = × = 

 
 

P.2D c Solution 

We already have the expression that results from a displacement of B in 
the direction of AB, which is repeated here for convenience, 

2 2 2
0 1 2cos cosR R Rθ φ= +  

 Next, let us move B to B’ in the direction of CB, as shown in Figure 5. In 
this case, we can identify the displacements 

( )0 1 2cos ; ; cosL L Lδ δ θ δ δ δ δ θ φ= − = = +  

so that 𝛿𝛿P becomes 

( )2 2 2
0 1 2

3 cos cos
2

kP R R Rπδ δ θ θ φ = − + + +   

and the optimal condition is 

( )2 2 2
0 1 2cos cos 0R R Rθ θ φ− + + + =  
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 Finally, let B move a short distance 𝛿𝛿 in the direction of DB, as outlined in 
Figure 6. The optimal condition, in this case, is found to be 

( )2 2 2
0 1 2cos cos 0R R Rφ θ φ− + + + =  

 Let us glean the 3 equations that we have obtained, 

( )
( )

2 2 2
1 2

2 2 2
0 1 2

2 2 2
0 1 2

cos cos
cos cos 0

cos cos 0

oR R R
R R R

R R R

θ φ

θ θ φ

φ θ φ

 = +

− + + + =
− + + + =

 

 We want to solve these equations for the trigonometric terms cos𝜃𝜃, 
cos𝜙𝜙, and cos(𝜃𝜃 + 𝜙𝜙). This can be done in Mathematica via the command Solve; 
we use symbols 𝜃𝜃, 𝜙𝜙 and 𝜃𝜃𝜃𝜃 to identify the trigonometric functions cos𝜃𝜃, cos𝜙𝜙, 
and cos(𝜃𝜃 + 𝜙𝜙), respectively. In addition, we omit the square power when typing 
the radii terms. The adequate syntax should look as follows. 

 

 Notice that each trigonometric term is expressed in terms of the 3 radii 
involved in our problem. Using Murray’s Law, we can express these functions in 
terms of 2 radii only; that is, we can write 

( ) ( )

3 3 2
0 1 2

3 3 3
2 0 1

4 4
3 4 3 33 3
2 2 0 1

R R R

R R R

R R R R

= +

= −

= = −

 

 For instance, substituting in the expression for cos𝜃𝜃, we obtain 

( )
4

4 4 3 3 3
0 1 0 1

2 2
0 1

cos
2

R R R R
R R

θ
+ − −

=  

 Thus, we have expressed cos𝜃𝜃 as a function of radii R0 and R1 only. 
Similarly, cos𝜙𝜙 can become a function of radii R0 and R2 only, 

( ) ( )

( )

3 3 3
0 1 2

3 3 3
1 0 2

4 4
3 4 3 33 3
1 1 0 2

4
4 4 3 3 34 4 4

2 0 22 1
2 2 2 2

2 2

cos
2 2

oo

o o

R R R

R R R

R R R R

R R R RR R R
R R R R

φ

= +

∴ = −

∴ = = −

+ − −+ −
∴ = =

 

 Moreover, cos(𝜃𝜃 + 𝜙𝜙) can be expressed as a function of R1 and R2 only, as 
shown. 

( )
( )

4
3 3 4 43
1 2 1 2

2 2
1 2

cos
2

R R R R
R R

θ φ
+ − −

+ =  

 In summary, we have 

( )

( )

( ) ( )

4
4 4 3 3 3
0 1 0 1

2 2
0 1

4
4 4 3 3 3
0 2 0 2

2 2
2
4

3 3 4 43
1 2 1 2

2 2
1 2

cos
2

cos
2

cos
2

o

R R R R
R R

R R R R
R R

R R R R
R R

θ

φ

θ φ

+ − −
=

+ − −
=

+ − −
+ =
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P.2E c Solution 

Let the radii of the daughter vessels be the same; mathematically, R1 = R2. 
We know that cos𝜃𝜃 is given by 

( )
4

4 4 3 3 3
0 1 0 1

2 2
0 1

cos
2

R R R R
R R

θ
+ − −

=  

 In addition, substituting R2 = R1 in the expression for cos𝜙𝜙 gives 

( )
4

4 4 3 3 3
0 1 0 1

2 2
0 1

cos
2

R R R R
R R

φ
+ − −

=  

 We observe that the expressions for cos𝜃𝜃 and cos𝜙𝜙 have become 
identical. Thus, 

cos cosθ φ=  

and consequently, 

θ φ=  

 This shows that if the radii of the daughter branches are equal, the 
bifurcating angles are equal. Now, consider the hypothesis that 𝑅𝑅2 ≫ 𝑅𝑅1, that is, 
the radius of one of the daughter branches is much larger than the radius of the 
other. The equation for cos(𝜃𝜃 + 𝜙𝜙) can be adjusted as follows, 

( ) ( ) ( ) ( )
4 4

3 3 4 4 3 3 4 43 3
1 2 1 2 1 2 1 2

2 2 2 2
1 2 1 2

cos
2 2

R R R R R R R R
R R R R

θ φ
+ − − + − +

+ = =  

However, given the approximation we are using, the terms on the right-
hand side are such that 𝑅𝑅13 + 𝑅𝑅23 ≈ 𝑅𝑅23 and 𝑅𝑅14 + 𝑅𝑅24 ≈ 𝑅𝑅24, which reduces the 
expression above to 

( )

( ) ( )
( )3 4

2 2

4
3 3 4 43

41 2 1 2
3 43 4 4
2 2 2 2

2 2 2 2 2 2
1 2 1 2 1 2

cos 0
2 2 2

R R

R R R R
R R R R

R R R R R R
θ φ ≈ ≈

+ − +
− −

+ = = = =
 

 

 Then, from elementary trigonometry, 

( )arccos 0
2
πθ φ θ φ+ = → + =  

 Similarly, consider the equation obtained for cos𝜃𝜃,  

( )
4

4 4 3 3 3
0 1 0 1

2 2
0 1

cos
2

R R R R
R R

θ
+ − −

=  

Here, noting that 𝑅𝑅04 + 𝑅𝑅14 ≈ 𝑅𝑅04 and 𝑅𝑅03 − 𝑅𝑅13 ≈ 𝑅𝑅03, the right-hand side 
becomes 

( )
4

4 3 3
0 0

2 2
0 0

cos 0 arccos 0
2 2

R R
R R

πθ θ
−

= = → = =  

or 90o. Finally, noting that 𝜃𝜃 + 𝜙𝜙 = 𝜋𝜋 2⁄ , we have 

2 2 2
0

π π πθ φ φ

φ

+ = → + =

∴ =

 

which is to say that, when the radius of one of the daughter vessels is much 
greater than that of the other, the bifurcation approaches a T-shape. 
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P.2F c Solution 

As before, suppose that R1 = R2. We substitute this result in the 
expression for cos(𝜃𝜃 + 𝜙𝜙) to give 

( ) ( )
44 4 4

3 3 4 4 13 3 4 4 43 31 1 1 1 1 1 1 1
2 2 4 4

1 1 1 1

(2 ) 2 2 2cos
2 2 2

R
R R R R R R R R

R R R R
θ φ

+ − − − −
+ = = = =

4
3

4
1

2 2

2 R

 
− 

 

( )
4

13
32cos 1 2 1 0.2599

2
θ φ∴ + = − = − =

 

 However, we established in the previous problem that 𝜃𝜃 = 𝜙𝜙 when R1 = R2. 
Thus, the result above becomes 

ocos 2 0.2599 37.5θ θ= → =  

and, consequently, 𝜙𝜙 = 37.5o as well.  

Note that, when 𝑅𝑅1 = 𝑅𝑅2, we have 𝑅𝑅1 𝑅𝑅0⁄ = 2−1 3⁄ = 0.794, and cos𝜃𝜃 = 
0.794, thus 𝜃𝜃 = 37.5o. Let Ro denote the radius of the aorta, and assume equal 
bifurcation in all generations. Then the radius of the first generation is 0.794𝑅𝑅0, 
the radius of the second generation is 0.7942𝑅𝑅0, and, in general terms, that of the 
n-th generation is 

( ) 00.794 n
nR R=  

 Substituting Rn = 5×10-4 cm and R0 = 1.5 cm in the foregoing expression, 
the number of generations n will be given by 

( )45 10 0.794 1.5n−× = ×  

 This equation can be easily solved with logarithms, yielding n = 34.7 ≈ 35. 
That is, 35 generations of equal bifurcations are needed to reduce the blood 
vessel from the aorta to the smallest capillary. The number of bifurcations is 
somewhat larger than that predicted by Young’s model (n = 29). Since each 
generation multiplies the number of vessels by 2, the total number of blood 
vessels is 235 ≈ 34.4×109, or over thirty-four billion conduits. However, the 
symmetry we assumed cannot be taken too seriously, because arteries seldom 
bifurcate symmetrically (there is only one symmetric bifurcation in humans, and 
none in the dog).   

► Problem 3 

P.3A c Solution 

Many blood vessels are embedded within a particular soft tissue. 
Examples include the arteries within muscular organs such as the diaphragm, 
heart, uterus, and skeletal muscle. It is easy to imagine that, as the surrounding 
tissue deforms, the cross-section of the embedded vessel can likewise change. 
For example, blood vessels in the heart are compressed by the contracting muscle 
– indeed, vessels in the left heart are substantially compressed during systole, 
which is why the left heart is perfused during diastole. In short, there is a need to 
consider flows in noncircular geometries in certain sites of the human circulatory 
system.  

P.3B c Solution 

The flow rate q is obtained by integrating the velocity profile along the y- 
and z-axes sequentially. In mathematical terms, 

( ) ( )
2 2 2 2 2 2 2 21 1

2 22 20 0 0 0
4 , 4 1

2
c b z c c b z c kb c y zq u y z dydz dydz

b cb cµ
− −  

= = + − +  
∫ ∫ ∫ ∫  

where factor 4 has been included so as to encompass all four quadrants. This 
integral can be evaluated by hand or using a CAS such as Mathematica. In this 
software, we apply the command Integrate twice along with Simplify, namely,  
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Simplify �4 ∗ Integrate �Integrate �
𝑘𝑘 ∗ 𝑏𝑏2 ∗ 𝑐𝑐2

2 ∗ 𝜇𝜇 ∗ (𝑏𝑏2 + 𝑐𝑐2)�
𝑦𝑦2

𝑏𝑏2
+
𝑧𝑧2

𝑐𝑐2
− 1� , �𝑦𝑦, 0, 𝑏𝑏

∗ �1− 𝑧𝑧2 𝑐𝑐2⁄ �� , {𝑧𝑧, 0, 𝑐𝑐}�� 

 The result is 

( )
3 3

2 24
k b cq

b c
π

µ
= −

+
 

which, upon introducing the quantity 𝛿𝛿, becomes 

4

8
kq π δ
µ

= −  

 The pumping power 𝐻𝐻 = Δ𝑝𝑝 × |𝑞𝑞|, where Δ𝑝𝑝 = 𝑘𝑘 × 𝐿𝐿. Accordingly, 

2 4 2
4

4

8
8 8
k k L L qH p q kL π π δ µδ
µ µ π δ

 
= ∆ × = × = = 

 
 

 Now, if the cross-section of the tube were a circle, we’d have 𝑏𝑏 = 𝑐𝑐 = 𝑎𝑎, 
where a is the radius of the circle, causing the flow rate to become 

4
3 3 3 3 6 4 44

2 2 2 2 2

2 2 2
8 8 8 2 8 8
k b c k a a k a k a p aq

b c a a a L
π π π π π
µ µ µ µ µ
     × ∆

= − = − = − = − =     + +     
 

which is identical to Poiseuille’s law for steady flow in a circular tube.  

P.3C c Solution 

In the first scenario, the pumping power driving the flow is kept 
unchanged, 

e cH H H= =  

 Since the elliptical section is less efficient than the circular section, the 
flow rate through the elliptical tube will be reduced. For direct comparison we 
consider the ratio 𝑞𝑞� of flow in the elliptic tube divided by the corresponding flow 
in the circular tube, 

4
4

4

8

8

e

c

k
qq
q ak a

π δ
µ δ
π
µ

 
−    = = =     − 
 

 

 Using the pertaining equations and simplifying yields 

( )

( ) ( )

3 3 3 34
4

2 2 2 2

24
4 2 2

3 3

33 32 2

3 2 22 2 22 2

2 2
8

1
8 2

2
8 2

1
4

e

c

k b c b c
q b c b cq
q a ak a b c

b c
b c bcb c

b cb cb c

π δ
µ δ
π
µ

 
−     + += = = = =      − +      

 += = =  + ++

 

or, alternatively, 

3

2

2
1

q λ
λ

 =  + 
 

where 𝜆𝜆 is the ratio of the major axis to the minor axis, 𝜆𝜆 = 𝑐𝑐 𝑏𝑏⁄ , which in this case 
is 𝜆𝜆 = 2. Substituting this quantity into the relation for q, we obtain 
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3

2

2 2 64
1 2 125

q × = = + 
 

 That is to say, if the pumping power is held constant, the flow rate for the 
elliptical cross-section will be a fraction of 64/125 = 0.512 times the flow rate of 
the circular cross-section. This result is a testament of the circular cross-
section’s inherently superior efficiency.  

 Suppose now that the flow rate is kept unchanged, so we may write 

e cq q q= =  

 In view of the circular tube’s greater efficiency, the pumping power 
required to drive flow in the elliptical tube will be higher than that required for 
the circular tube. For direct comparison we consider the ratio 𝐻𝐻� of the power 
required to drive flow in a tube of elliptic cross-section divided by the 
corresponding driving power of its circular counterpart, 

 

2

44

2

4

8

8

Lq
aH

Lq
a

µ
πδ

δµ
π

 
 

  = =     
 
 

 

 Substituting these variables and manipulating as we did previously, the 
result is 

32 2

2
b cH

bc
 +

=  
 

 

or, introducing the ratio of axes 𝜆𝜆, 

321
2

H λ
λ

 +
=  
 

 

 We have 𝜆𝜆 = 2; accordingly, 

321 2 125
2 2 64

H
 +

= = × 
 

 This demonstrates that, for the same flow rate in both tubes, the 
pumping power required to drive the flow in the elliptic tube is higher by a factor 
of 125/64 ≈ 1.95.  
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