QUIZ MS203

Casting and Flow Stress

Lucas Montogue

PROBLEMS - CASTING

Problem 1

In the casting of steel under certain mold conditions, the mold constant in Chvorinov's rule is known to be $4.0 \mathrm{~min} / \mathrm{cm}^{2}$, based on previous experience. The casting is a flat plate with length $=30 \mathrm{~cm}$, width $=10 \mathrm{~cm}$ and thickness $=20 \mathrm{~mm}$. Determine how long it will take for the casting to solidify.
A) $t_{s}=1.33 \mathrm{~min}$.
B) $t_{S}=2.49 \mathrm{~min}$.
C) $t_{S}=3.61 \mathrm{~min}$.
D) $t_{S}=4.80 \mathrm{~min}$.

Problem 2

A rectangular casting having the dimensions $3 \mathrm{~cm} \times 5 \mathrm{~cm} \times 10 \mathrm{~cm}$ solidifies completely in 12 minutes. Compute the mold constant.
A) $B=10.1 \mathrm{~min} / \mathrm{cm}^{2}$
B) $B=14.5 \mathrm{~min} / \mathrm{cm}^{2}$
C) $B=19.3 \mathrm{~min} / \mathrm{cm}^{2}$
D) $B=22.2 \mathrm{~min} / \mathrm{cm}^{2}$

Problem 3 (Groover, 2013)

Total solidification times of three casting geometries are to be compared: (1) a sphere with diameter 10 cm ; (2) a cylinder with diameter and length both 10 cm ; and (3) a cube with side 10 cm . The same casting alloy is used in all three cases. Which geometry would completely solidify faster?

2

3

A) The sphere.
B) The cylinder.
C) The cube.
D) None of the above.

Problem 4 (Groover, 2013)

A riser in the shape of a sphere is to be designed for a sand casting mold. The casting is a rectangular plate with length $=200 \mathrm{~mm}$, width $=100 \mathrm{~mm}$, and thickness $=18 \mathrm{~mm}$. If the total solidification time of the casting itself is known to be 3.5 min , determine the diameter of the riser so that it will take 25% longer for the riser to solidify.
A) $D=34.4 \mathrm{~mm}$
B) $D=47.5 \mathrm{~mm}$
C) $D=59.6 \mathrm{~mm}$
D) $D=67.4 \mathrm{~mm}$

A steel casting has a cylindrical geometry with 4.0 in . diameter and weighs 20 lb . The casting takes 6.0 min to completely solidify. Another cylindrical-shaped casting with the same diameter-to-length ratio weighs 12 lb . This casting is made of the same steel, and the same conditions of mold and pouring were used. The density of steel $=490 \mathrm{lb} / \mathrm{ft}^{3}$. True or false?
1.() The mold constant for either casting is greater than $10 \mathrm{~min} / \mathrm{in}^{2}{ }^{2}$
2.() The lighter casting has diameter greater than 3.5 in. and length greater than 5 in.
3.() The solidification time for the lighter casting is greater than 5 minutes.

PROBLEMS - FLOW STRESS

Problem 6

The strength coefficient $=550 \mathrm{MPa}$ and strain-hardening exponent $=0.22$ for a certain metal. During a forming operation, the final true strain that the metal experiences $=0.85$. Determine the flow stress at this strain and the average flow stress that the metal experienced during the operation.
A) $\sigma_{f}=531 \mathrm{MPa}$ and $\bar{\sigma}_{f}=341 \mathrm{MPa}$
B) $\sigma_{f}=531 \mathrm{MPa}$ and $\bar{\sigma}_{f}=435 \mathrm{MPa}$
C) $\sigma_{f}=572 \mathrm{MPa}$ and $\bar{\sigma}_{f}=341 \mathrm{MPa}$
D) $\sigma_{f}=572 \mathrm{MPa}$ and $\bar{\sigma}_{f}=435 \mathrm{MPa}$

Problem 7

A metal has a flow curve with strength coefficient $=850 \mathrm{MPa}$ and strainhardening exponent $=0.30$. A tensile specimen of the metal with gage length $=$ 100 mm is stretched to a length $=157 \mathrm{~mm}$. Determine the flow stress at the new length and the average flow stress that the metal has been subjected to during the deformation.
A) $\sigma_{f}=669 \mathrm{MPa}$ and $\bar{\sigma}_{f}=515 \mathrm{MPa}$
B) $\sigma_{f}=669 \mathrm{MPa}$ and $\bar{\sigma}_{f}=581 \mathrm{MPa}$
C) $\sigma_{f}=731 \mathrm{MPa}$ and $\bar{\sigma}_{f}=515 \mathrm{MPa}$
D) $\sigma_{f}=731 \mathrm{MPa}$ and $\bar{\sigma}_{f}=581 \mathrm{MPa}$

Problem 8 (Cresse, 1999)

The strength coefficient $=35,000 \mathrm{lb} / \mathrm{in}^{2}$ and strain-hardening exponent $=$ 0.40 for a metal used in the forming operation in which the workpart is reduced in cross-sectional area by stretching. If the average flow stress on the part is 20,000 $\mathrm{lb} /$ in. ${ }^{2}$, determine the amount of reduction in cross-sectional area experienced by the part. In the following answers, A_{o} and A_{f} denote initial and final cross-sectional area, respectively.
A) $A_{f}=0.331 A_{o}$
B) $A_{f}=0.442 A_{o}$
C) $A_{f}=0.565 A_{o}$
D) $A_{f}=0.689 A_{o}$

Problem 9 (Groover, 2013)

Determine the value of the strain-hardening exponent for a metal that will cause the average flow stress to be $3 / 4$ of the final flow stress after deformation.
A) $n=0.143$
B) $n=0.215$
C) $n=0.333$
D) $n=0.416$

Problem 10 (Groover, 2003)

In a tensile test, two pairs of values of stress and strain were measured for the specimen metal after it had yielded: (1) true stress $=217 \mathrm{MPa}$ and true strain $=$ 0.35 , and (2) true stress $=259 \mathrm{MPa}$ and true strain $=0.68$. Based on these data points, determine the strength coefficient and the strain-hardening exponent.
A) $K=201 \mathrm{MPa}$ and $n=0.135$
B) $K=201 \mathrm{MPa}$ and $n=0.271$
C) $K=290 \mathrm{MPa}$ and $n=0.135$
D) $K=290 \mathrm{MPa}$ and $n=0.271$

SOLUTIONS

P. 1 ■ Solution

The volume of the casting is $V=30 \times 10 \times 2=600 \mathrm{~cm}^{3}$ and the surface area is $A=2(30 \times 10+30 \times 2+10 \times 2)=760 \mathrm{~cm}^{2}$. Appealing to Chvorinov's rule, we obtain

$$
t_{S}=B\left(\frac{V}{A}\right)^{2}=4.0 \times\left(\frac{600}{760}\right)^{2}=2.49 \mathrm{~min}
$$

The casting should require about 2 and a half minutes to solidify.

- The correct answer is \mathbf{B}.

P. 2 - Solution

The surface area of the casting is $A=2(3 \times 5+5 \times 10+3 \times 10)=190 \mathrm{~cm}^{2}$ and the volume is $V=3 \times 5 \times 10=150 \mathrm{~cm}^{3}$. The solidification time is 12 min . The mold constant can be established by substituting these data in Chvorinov's rule, namely

$$
\begin{gathered}
t_{S}=B\left(\frac{V}{A}\right)^{2} \rightarrow 12=B \times\left(\frac{150}{190}\right)^{2} \\
\therefore 12=B \times 0.623 \\
\therefore B=19.3 \mathrm{~min} / \mathrm{cm}^{2}
\end{gathered}
$$

- The correct answer is \mathbf{C}.

P. 3 - Solution

For the sphere, the volume is $V_{1}=4 \pi R^{3} / 3=4 \pi \times 5^{3} / 3=524 \mathrm{~cm}^{3}$ and the surface area is $A_{1}=4 \pi R^{2}=4 \pi \times 5^{2}=314 \mathrm{~cm}^{2}$. The time required for solidification is calculated to be

$$
\begin{gathered}
t_{S, 1}=B\left(\frac{V_{1}}{A_{1}}\right)^{n} \rightarrow t_{S, 1}=B \times\left(\frac{524}{314}\right)^{2} \\
\therefore t_{S, 1}=2.78 B
\end{gathered}
$$

For the cylinder, the volume is $V_{2}=\pi R^{2} L=\pi \times 5^{2} \times 10=785 \mathrm{~cm}^{3}$ and the surface area is $A_{2}=2 \pi R^{2}+2 \pi R L=2 \times \pi \times 5^{2}+2 \pi \times 5 \times 10=471 \mathrm{~cm}^{2}$. The time required for solidification is then

$$
\begin{gathered}
t_{S, 2}=B\left(\frac{V_{2}}{A_{2}}\right)^{n} \rightarrow t_{S, 2}=B \times\left(\frac{785}{471}\right)^{2} \\
\therefore t_{S, 2}=2.78 B
\end{gathered}
$$

For the cube, the volume is $V_{3}=L^{3}=10^{3}=1000 \mathrm{~cm}^{3}$ and the surface area is $A_{3}=6 L^{2}=6 \times 10^{2}=600 \mathrm{~cm}^{2}$. The time required for solidification follows as

$$
\begin{gathered}
t_{S, 3}=B\left(\frac{V_{3}}{A_{3}}\right)^{n} \rightarrow t_{S, 3}=B \times\left(\frac{1000}{600}\right)^{2} \\
\therefore t_{S, 3}=2.78 B
\end{gathered}
$$

Given that B is the same for all cases, we conclude that the solidification time will be approximately the same for all three geometries.

- The correct answer is \mathbf{D}.

P. 4 - Solution

The casting volume is $V=200 \times 100 \times 18=360,000 \mathrm{~mm}^{3}$ and the surface area is $A=2(200 \times 100+200 \times 18+100 \times 18)=50,800 \mathrm{~mm}^{2}$. Given the solidification time $t_{S}=3.5 \mathrm{~min}$ for the casting, we can easily determine the mold constant,

$$
\begin{aligned}
t_{S}=B\left(\frac{V}{A}\right)^{2} \rightarrow B=t_{S} \times\left(\frac{A}{V}\right)^{2} \\
\therefore B=3.5 \times\left(\frac{50,800}{360,000}\right)^{2}=0.0697 \mathrm{~min} / \mathrm{mm}^{2}
\end{aligned}
$$

Now, the riser volume is $V=\pi D^{3} / 6=0.524 D^{3}$ and the surface area $A=$ $\pi D^{2}=3.14 D^{2}$, so that $V / A=0.524 D^{3} / 3.14 D^{2}=0.167 D$. Appealing to Chvorinov's rule again, we have

$$
\begin{aligned}
t_{S}=B\left(\frac{V}{A}\right)^{2} & \rightarrow 1.25 \times 3.5=0.0697 \times(0.167 D)^{2} \\
& \therefore 4.38=0.00194 D^{2} \\
& \therefore D=47.5 \mathrm{~mm}
\end{aligned}
$$

The correct answer is \mathbf{B}.

P. 5 - Solution

1.True. The density of steel is $\rho=490 / 12^{3}=0.284 \mathrm{lb} / \mathrm{in} .^{3}$ The volume of the casting follows as

$$
\begin{gathered}
\rho=\frac{m}{V} \rightarrow V=\frac{m}{\rho} \\
\therefore V=\frac{20}{0.284}=70.4 \mathrm{in}^{3}
\end{gathered}
$$

Equipped with V, we can determine the length L of the casting,

$$
\begin{aligned}
& V=\frac{\pi D^{2} L}{4} \rightarrow L=\frac{4 V}{\pi D^{2}} \\
& \therefore L=\frac{4 \times 70.4}{\pi \times 4.0^{2}}=5.60 \mathrm{in}
\end{aligned}
$$

The surface area is determined next,

$$
A=\frac{2 \pi D^{2}}{4}+\pi D L=\frac{2 \pi \times 4.0^{2}}{4}+\pi \times 4.0 \times 5.60=95.5 \mathrm{in}^{2}
$$

We now have all the information necessary to determine the mold constant B,

$$
\begin{gathered}
t_{S}=B\left(\frac{V}{A}\right)^{2} \rightarrow B=t_{S} \times\left(\frac{A}{V}\right)^{2} \\
\therefore B=6.0 \times\left(\frac{95.5}{70.4}\right)^{2}=11.0 \mathrm{~min} / \mathrm{in.}^{2}
\end{gathered}
$$

2.False. We first require the volume of the lighter casting. Since weight is proportional to volume, we can write

$$
\begin{aligned}
& \frac{V_{1}}{W_{1}}=\frac{V_{2}}{W_{2}} \rightarrow V_{2}=W_{2} \times \frac{V_{1}}{W_{1}} \\
& \therefore V_{2}=12 \times \frac{70.4}{20}=42.2 \mathrm{in.}^{3}
\end{aligned}
$$

We were told that the lighter casting has the same diameter-to-length ratio as the heavier one, namely

$$
\frac{D_{1}}{L_{1}}=\frac{4.0}{5.60}=0.714
$$

This means that the relation $D_{2}=0.714 L_{2}$, or, equivalently, $L_{2}=1.40 D_{2}$ holds for the lighter casting. Thus,

$$
\begin{gathered}
V_{2}=\frac{\pi D_{2}^{2} L_{2}}{4} \rightarrow V_{2}=\frac{\pi D_{2}^{2} \times 1.40 D_{2}}{4} \\
\therefore V_{2}=0.35 \pi D_{2}^{3} \\
\therefore D_{2}=\left(\frac{V_{2}}{0.35 \pi}\right)^{\frac{1}{3}} \\
\therefore D_{2}=\left(\frac{42.2}{0.35 \pi}\right)^{\frac{1}{3}}=3.37 \mathrm{in} .
\end{gathered}
$$

Finally,

$$
L_{2}=1.40 D_{2}=1.40 \times 3.37=4.72 \mathrm{in} .
$$

3.False. From Part 2, we know that the volume of the lighter casting is $V_{2}=$ 42.2 in. ${ }^{3}$ The surface area is calculated as

$$
A_{2}=\frac{2 \pi D_{2}^{2}}{4}+\pi D_{2} L_{2}=\frac{2 \pi \times 3.37^{2}}{4}+\pi \times 3.37 \times 4.72=67.8 \mathrm{in}^{2}
$$

Lastly, the solidification time is determined to be

$$
t_{S, 2}=B\left(\frac{V_{2}}{A_{2}}\right)^{2}=11.0 \times\left(\frac{42.2}{67.8}\right)^{2}=4.26 \mathrm{~min}
$$

P. 6 - Solution

The flow stress is simply

$$
\sigma_{f}=K \varepsilon^{n}=550 \times 0.85^{0.22}=531 \mathrm{MPa}
$$

The average flow stress is, in turn,

$$
\bar{\sigma}_{f}=\frac{K \varepsilon^{n}}{n+1}=\frac{550 \times 0.85^{0.22}}{1.22}=435 \mathrm{MPa}
$$

- The correct answer is \mathbf{B}.

P. 7 - Solution

The true strain in the specimen is

$$
\varepsilon=\ln (157 / 100)=0.451
$$

The flow stress is then

$$
\sigma_{f}=K \varepsilon^{n}=850 \times 0.451^{0.30}=669 \mathrm{MPa}
$$

while the average flow stress is calculated as

$$
\bar{\sigma}_{f}=\frac{K \varepsilon^{n}}{n+1}=\frac{850 \times 0.451^{0.30}}{0.30+1}=515 \mathrm{MPa}
$$

- The correct answer is A.

P. 8 - Solution

With recourse to the equation for average flow stress, we write

$$
\begin{gathered}
\bar{\sigma}_{f}=\frac{K \varepsilon^{n}}{n+1} \rightarrow 20,000=\frac{35,000 \times \varepsilon^{0.40}}{0.40+1} \\
\therefore \varepsilon=0.572
\end{gathered}
$$

Since $\varepsilon=\ln \left(A_{o} / A_{f}\right)$, it follows that

$$
\begin{gathered}
\varepsilon=\ln \left(\frac{A_{o}}{A_{f}}\right) \rightarrow 0.572=\ln \left(\frac{A_{o}}{A_{f}}\right) \\
\therefore A_{o} / A_{f}=1.77 \\
\therefore A_{f}=0.565 A_{o}
\end{gathered}
$$

- The correct answer is \mathbf{C}.

P. 9 - Solution

In accordance with the problem statement, we must have $\bar{\sigma}_{f}=0.75 \sigma_{f}$. Therefore,

$$
\begin{gathered}
\bar{\sigma}_{f}=0.75 \sigma_{f} \rightarrow \frac{K \varepsilon^{n}}{n+1}=0.75 \times K \varepsilon^{n} \\
\therefore \frac{1}{n+1}=0.75 \\
\therefore 1=0.75 n+0.75 \\
\therefore n=\frac{0.25}{0.75}=0.333
\end{gathered}
$$

- The correct answer is \mathbf{C}.

P. 10 - Solution

Using logarithms, the flow stress equation can be adjusted as

$$
\begin{gathered}
\sigma_{f}=K \varepsilon^{n} \rightarrow \ln \sigma_{f}=\ln \left(K \varepsilon^{n}\right) \\
\therefore \ln \sigma_{f}=\ln K+\ln \varepsilon^{n} \\
\therefore \ln \sigma_{f}=\ln K+n \ln \varepsilon
\end{gathered}
$$

Substituting the first data point, we have

$$
\begin{aligned}
& \ln 217=\ln K+n \ln 0.35 \\
& \therefore 5.38=\ln K-1.05 n(\mathrm{I})
\end{aligned}
$$

Substituting the second data point, we have

$$
\begin{gathered}
\ln 259=\ln K+n \ln 0.68 \\
\therefore 5.56=\ln K-0.386 n \text { (II) }
\end{gathered}
$$

Subtracting equation (II) from (I) brings to

$$
\begin{gathered}
5.38-5.56=\ln K-1.05 n-(\ln K-0.386 n) \\
\therefore-0.18=-0.664 n \\
\\
\therefore n=0.271
\end{gathered}
$$

Inserting this result into equation (I) yields

$$
\begin{gathered}
5.38=\ln K-1.05 \times 0.271 \\
\therefore 5.38=\ln K-0.285 \\
\therefore \ln K=5.67 \\
\therefore K=e^{5.67}=290 \mathrm{MPa}
\end{gathered}
$$

- The correct answer is \mathbf{D}.

ANSWER SUMMARY

Problem 1	B
Problem 2	C
Problem 3	D
Problem 4	B
Problem 5	T/F
Problem 6	B
Problem 7	A
Problem 8	C
Problem 9	C
Problem 10	D

REFERENCES

- CREESE, R. (1999). Introduction to Manufacturing Processes and Materials. New York: Marcel Dekker.
- GROOVER, M. (2013). Fundamentals of Modern Manufacturing. 5th edition. Hoboken: John Wiley and Sons.

Got any questions related to this quiz? We can help!
Send a message to contact@montogue.com and we'll answer your question as soon as possible.

