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 Quiz EL502 
Context-Free Grammars  
and Pushdown Automata 

 

 

Lucas Monteiro Nogueira 
 

 
Note: In the following problems, S is the start symbol of any 
given context-free grammar, unless stated otherwise. 

A PROBLEMS 

B Problem 1 

Regarding the theory of grammars and pushdown automata, true or 
false? 
1.(   ) Context-free languages are closed under union, concatenation, 
intersection, and Kleene closure. 
2.(   ) One important operation in languages is the cycle operation cyc. 
Roughly speaking, cyc sends every string to the set of all its cyclic shifts, or 
conjugates. Importantly, the class of regular languages is closed under the 
cyc operation. Furthermore, it can be shown that if L is regular, then so is 
cyc(L).   
3.(   ) Finite state automata are to regular languages as nondeterministic 
pushdown automata are to context-free languages. 
4.(   ) The following diagram correctly illustrates the set inclusions described 
by the Chomsky hierarchy of languages. 

 

5.(   ) The context-free grammar G with the following rules is unambiguous. 
S → aA 

A → BA | a 
B → bS | cS  

6.(   ) If G is a context-free grammar in Chomsky normal form, then for any 
string 𝑤𝑤 ∈ L(G) of length n ≥ 1, exactly 2n + 1 steps are required for any 
derivation of 𝑤𝑤.  
7.(   ) The grammar below is a simple or s-grammar. 

S → aS | bSS | aSS | c 
 

8.(   ) Every grammar in Greibach normal form is also a simple or s-grammar. 

B Problem 2 

Construct the string 0100110 from the following grammar by using 
Problem 2.1: Leftmost derivation  
Problem 2.2: Rightmost derivation  
 

S → 0S | 1PP 
P → 0 | 1P | 0Q 

Q → 1 | 0QQ 
 

Problem 2.3: Draw a parse tree for the leftmost derivation of the string in 
question.  
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B Problem 3 

Construct the string abbbb from the following grammar by using 
Problem 3.1: Leftmost derivation 
Problem 3.2: Rightmost derivation 

S → aAB 
A → bBb 
B → A | 𝜀𝜀 

B Problem 4 

Using the following grammar, draw the parse tree that corresponds to 
the leftmost derivation of string 11001010. 

 

S → 1N | 0M 
M → 1 | 1S | 0MM 
N → 0 | 0S | 1NN 

B Problem 5 

Consider the grammar 

S → aS | aSbS | 𝜀𝜀 

Problem 5.1: This grammar is ambiguous. Show in particular that the string 
aab has two parse trees for leftmost derivation. 
Problem 5.2: Find an unambiguous grammar for the language generated by 
the grammar above.  

B Problem 6 (Hopcroft et al., 2001)  

Let 𝑇𝑇 = {0, 1, (,), +, ⋆, ∅, 𝜀𝜀}. We may think of 𝑇𝑇 as the set of symbols used 
by regular expressions over alphabet {0,1}. Your task is to design a context-
free grammar with set of terminals 𝑇𝑇 that generates exactly the regular 
expressions with alphabet {0,1}. Is the grammar you designed in the previous 
part unambiguous? If not, redesign it to be unambiguous.  

B Problem 7 

Problem 7.1: Consider the context-free grammar G1 = ({S}, {0,1}, {S → 𝜀𝜀, S → 0S1}, 
S). What is the language generated by this grammar? 
Problem 7.2: Consider the context-free grammar G2 = ({S, A, B}, {a,b}, R, S), 
where R consists of the following rules, 

 

S → ABA 
A → a | bb 
B → bS | 𝜀𝜀 

 

What is the language generated by this grammar? 

B Problem 8 
Give context-free grammars that generate the following languages. 

In all parts, the alphabet is Σ = {0,1}. 
Problem 8.1: The empty set 
Problem 8.2: {𝑤𝑤 | 𝑤𝑤 starts and ends with the same symbol} 
Problem 8.3: {𝑤𝑤 | the length of 𝑤𝑤 is odd} 
Problem 8.4: {𝑤𝑤 | 𝑤𝑤 = 𝑤𝑤𝑅𝑅, that is, 𝑤𝑤 is a palindrome} 

B Problem 9 

Give informal descriptions of pushdown automata used to implement 
the four languages developed in Problem 8.  

B Problem 10 

Provide grammars that can be used to generate the following 
languages.  

Problem 10.1: The complement of the language {anbn | n ≥ 0} 
Problem 10.2: {𝑥𝑥1#𝑥𝑥2# … #𝑥𝑥𝑘𝑘 | k ≥ 1, each 𝑥𝑥𝑖𝑖 ∈ {a,b}*, and for some i and j, 𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑗𝑗𝑅𝑅} 

B Problem 11 

Problem 11.1: Give a context-free grammar that generates the language 

A = {𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗𝑐𝑐𝑘𝑘 | 𝑖𝑖 = 𝑗𝑗 or 𝑗𝑗 = 𝑘𝑘 where 𝑖𝑖, 𝑗𝑗, 𝑘𝑘 ≥ 0} 

Is your grammar ambiguous? Why or why not? 
Problem 11.2: Give an informal description of a pushdown automaton that 
recognizes the language  A specified in the previous part. 
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B Problem 12 

Consider the regular grammar  

G = ({S,A}, {0,1}, {S → 0A, A → 1A | 0 | 1S}, S) 

Construct a pushdown automaton for the language generated by 
grammar G. 

B Problem 13 

Construct a context-free grammar that generates the regular 
language accepted by the discrete finite automaton illustrated below. 

 

B Problem 14 (Kumar, 2010) 

Problem 14.1:Consider the pushdown automaton M = (Q, Σ, Γ, 𝛿𝛿, s, F) = ({q, p}, 
{a, b, c}, {a, b}, 𝛿𝛿, q, {p})  (note that we are not using the 7-tuple notation, as we 
have omitted the initial stack symbol Z0), whose transition function is 
described by the following rules. Describe the language L(M). 

 

 

Problem 14.2: Propose transition rules for a pushdown automaton that 
accepts all strings over {a,b} that contain an equal number of a’s and b’s; the 
corresponding language is of course 

L = {s ∈ (a,b)* | 𝑛𝑛𝑎𝑎(s) = 𝑛𝑛𝑏𝑏(s)} by null store. 

Problem 14.3: Propose transition rules for a pushdown automaton that 
accepts all strings over {a,b} that describes the language 

L = {x ∈ (a,b)* | number of a’s is greater than number of b’s} 

Problem 14.4: Design a pushdown automaton for the language 

L = {s ∈ (a,b)* | 𝑛𝑛𝑎𝑎(s) ≠ 𝑛𝑛𝑏𝑏(s)} 

That is, language L describes strings s in {a, b} such that the number of 
a’s is not equal to the number of b’s. 
Problem 14.5: Design a pushdown automaton for language L = {𝑎𝑎𝑛𝑛𝑏𝑏3𝑛𝑛 | n ≥ 0}. 
Problem 14.6: Design a pushdown automaton for language L = {𝑎𝑎𝑖𝑖𝑏𝑏𝑗𝑗𝑐𝑐𝑘𝑘| 𝑖𝑖 ≠ 𝑗𝑗 
or 𝑗𝑗 ≠ 𝑘𝑘}. 

B Problem 15 (Kumar, 2010) 
Reduce context-free grammar G to Chomsky normal form. 

S → aAC 
A → aB | bAB  

B → b 
C → c 

A SOLUTIONS 

P.1 c Solution 
1. False. Context-free languages are closed under union, 

concatenation, and Kleene closure, but not under intersection or 
complement. Hopcroft’s textbook provides a quick example of nonclosure 
under intersection. The language L below is not context-free. 

L = {0n1n2n | n ≥ 1} 

In contrast, the two following languages are in fact context-free, 

L1 = {0n1n2i | n ≥ 1, i ≥ 1} 

𝛿𝛿(q, a, 𝜀𝜀) = {(q,a)} 𝛿𝛿(p, a, a) = {(p, 𝜀𝜀)} 
𝛿𝛿(q, b, 𝜀𝜀) = {(q,b)} 𝛿𝛿(p, b, b) = {(p, 𝜀𝜀)}  
𝛿𝛿(q, c, 𝜀𝜀) = {(p,𝜀𝜀)}  

𝛿𝛿(q, a, 𝜀𝜀) = {(q,a)} 𝛿𝛿(p, a, a) = {(p, 𝜀𝜀)} 
𝛿𝛿(q, b, 𝜀𝜀) = {(q,b)} 𝛿𝛿(p, b, b) = {(p, 𝜀𝜀)}  
𝛿𝛿(q, c, 𝜀𝜀) = {(p,𝜀𝜀)}  
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L2 = {0i1n2n | n ≥ 1, i ≥ 1} 

A grammar for L1 is described below. 

S → AB 
A → 0A1 | 01 

B → 2B | 2 

In this grammar, A generates all strings of the form 0n1n, and B 
generates all strings of 2’s. A grammar for L2 is 

S → AB 
A → 0A | 0 

B → 1B2 | 12 

This grammar works similarly, but with A generating any string of 0’s, 
and B generating matching strings of 1’s and 2’s.  
 However, L = L1 ∩ L2. To see why, observe that L1 requires that there be 
the same number of 0’s and 1’s, while L2 requires the numbers of 1’s and 2’s 
to be equal. A string in both languages must have equal numbers of all three 
symbols and thus be in L. If the CFLs were closed under intersection, then we 
could prove the false statement that L is context-free. We conclude by 
contradiction that the CFLs are not closed under intersection.  
  2. True. Letting L be a regular language and cyc(L) the cycled language 
such that  

cyc(L) ≔ {x1x2 : x2x1 ∈ L} 
it follows that cyc(L) is also regular.  

3. True. Nothing to add here. 
4. False. For the illustration to be correct, “context-sensitive” and 

“context-free” should switch places.  
5. True. Since there is only one S-rule, we may write the lookahead set 

LA1(S) = LA1(S → aA). Next, it is easy to see that the two lookahead sets for B 
are LA1(B → bS) = {b} and LA1(B → cS) = {c}, which are disjoint. Finally, the two 
lookahead sets of A are LA1(A → BA) = {b,c} and LA1(A → a) = {a}, which are 
likewise disjoint. Accordingly, G is a strong LL(1) grammar and can be said to 
be unambiguous. 

6. False. For every n ≥ 1, a derivation of string 𝑤𝑤 requires 2n – 1 steps.   
7. False. A context-free grammar G = (V, T, S, P) is said to be a simple 

grammar if all its productions are of the form A → ax, where A ∈ V, a ∈ T, x ∈ 
V*, and any pair (A,a) occurs at most once in P. The grammar at hand is not an 
s-grammar because the pair (S, a) occurs in two productions, namely S → aS 
and S → aSS. 

8. False. A context-free grammar G = (V ,T, S, P) is said to be in Greibach 
normal form if all productions have the form A → ax, where A ∈ V, a ∈ T, x ∈ 
V*. Unlike in the definition of s-grammar, however, there is no restriction on 
the number of occurrences of pairs (A, a). It follows that every s-grammar 
also obeys the Greibach normal form, but not every grammar in Greibach 
normal form is a s-grammar.   

P.2 c Solution 
Problem 2.1: The leftmost derivation is developed below. Symbols 

substituted over the course of the derivation are highlighted with an 
underscore.  

S → 0S → 01PP → 010QP → 0100QQP → 01001QP → 010011P → 0100110 

Problem 2.2: The rightmost derivation is shown in continuation. 

S → 0S → 01PP → 01P0 → 010Q0 → 0100QQ0 → 0100Q10 → 0100110 

Problem 2.3: The parse tree for the leftmost derivation is shown on 
the next page. 



5 
© 2022 Montogue Quiz 

 

P.3 c Solution 
Problem 3.1: The leftmost derivation is shown below. Substituted 

symbols are highlighted with an underscore. 

S → aAB → abBbB → abAbB → abbBbbB → abbbbB → abbbb 

Problem 3.2: The rightmost derivation is shown in continuation. 

S → aAB → aA → abBb → abAb  → abbBbb → abbbb 

P.4 c Solution 
The derivation we need is shown below. 

S → 1N → 11NN → 110SN → 1100MN → 11001N → 110010S → 1100101N → 
11001010 

The parse tree is sketched next. 

 

P.5 c Solution 
Problem 5.1: Using a leftmost derivation, we write 

S → aS → aaSbS → aabS → aab 

However, a leftmost derivation can also be obtained by writing 

S → aSbS → aaSbS → aabS → aab 

The parse trees are shown below. 
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Problem 5.2: The idea is to introduce another nonterminal T that 
cannot generate an unbalanced a. That strategy corresponds to the usual 
rule in programming languages that an “else” is associated with the closest 
previous, unmatched “then.” Here, we force a b to match the previous 
unmatched a. Proceeding accordingly, we obtain the grammar 

S → aS | aTbS | 𝜀𝜀 
T → aTbT | 𝜀𝜀  

P.6 c Solution 
The grammar we desire can be straightforwardly represented as 

S → S+S | SS | S* | (S) | 0 | 1 | ∅ | 𝜀𝜀 

The idea is that these productions for S allow any expression to be, 
respectively, the sum (union) of two expressions, the concatenation of two 
expressions, the star of an expression, a parenthesized expression, or one of 
the four basis cases of expressions: 0, 1, ∅, and 𝜀𝜀. The grammar is not 
unambiguous. We need to have three nonterminals, corresponding to the 
three possible “strengths” of expressions: 
1. A factor cannot be broken by any operator. These are the basis expressions, 
parenthesized expressions, and the expressions followed by one or more ⋆’s. 
2. A term can be broken only by a ⋆. For example, consider 01, where the 0 and 
1 are concatenated, but if we follow it by a ⋆, it becomes 0(1*), and the 
concatenation has been “broken” by the ⋆. 
3. An expression can be broken by concatenation or ⋆, but not by +. An 
example is the expression 0+1. Note that if we concatenate, say, 1 or follow 
by a ⋆, we parse the expression 0+(11) or 0+(1⋆), and in either case the union 
has been broken. 

Denoting factor by F, term by T, and expression by E, we propose the 
unambiguous grammar 

F → F* | (E) | 0 | 1 | ∅ | 𝜀𝜀 
T → TF | F 

E → E+T | T 

P.7 c Solution 
Problem 7.1: There is only one nonterminal symbol in G1 and the only 

rule that retains that symbol is S → 0S1. Thus, the derivations of G1 have 
general form 

0 1 00 11 ... 0 1 0 1n n n nS S S S⇒ ⇒ ⇒ ⇒ ⇒  

Thus, the language we aim for is described as 

( ) { }1 0 1 | 0n nL G n= ≥  

Problem 7.2: Since the nonterminal symbol A can only produce 
terminal symbols, we may delay its substitution to the end. It follows that 
derivations of G2 have general form such that 

( ) ( ) ( )2 3 1 1... n nn n

S ABA AbSA AbABAA AbAbSAA

A bA BA A bA BA A bA A+ +

⇒ ⇒ ⇒ ⇒

⇒ ⇒ ⇒ ⇒
 

Now, if we replace each A by either a or bb, we get a sentence of the 
form 

( )( ) ( ) 1n na bb ba bbb a bb ++ + +  
 

Thus, language L(G2) consists of all these strings with n ≥ 0.  

P.8 c Solution 
Problem 8.1: Doesn’t get any easier than this, does it? 

S → S  

Problem 8.2: The grammar we desire can be represented by the 
productions 

S → 0R0 | 1R | 𝜀𝜀 
R → 0R | 1R | 𝜀𝜀 

Problem 8.3: The grammar we aim for can be represented by the 
productions 
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S → 0 | 1 | 00S | 01S | 10S | 11S 

Problem 8.4: The grammar we were asked to determine is 

S → 0S0 | 1S1 | 0 | 1 | 𝜀𝜀 

P.9 c Solution 
Language of Problem 8.1: A PDA that never enters an accept state can 

be used to model a context-free grammar that generates a language given 
solely by the empty set.  

Language of Problem 8.2: This language is regular. The PDA reads the 
input and keeps track of the first and last symbol in its finite control. If they 
are the same, the machine accepts; otherwise, it rejects. 

Language of Problem 8.3: This language is regular. The PDA reads the 
input and keeps track of the length (modulo-2) using its finite control. If the 
length is 1 (mod 2), it accepts; otherwise, it rejects. 

Language of Problem 8.4: The PDA reads the input and pushes each 
symbol onto its stack. At some point it nondeterministically guesses when it 
has reached the middle. It also nondeterministically guesses whether the 
string has odd length or even length. If it guesses even, it pushes the current 
symbol it’s reading onto the stack. If it guesses the string has odd length, it 
goes to the next input symbol without changing the stack. Then it reads the 
rest of the input, and it compares each symbol it reads to the symbol on the 
top of the stack. If they are the same, it pops the stack, and continues 
reading. If they are different, it rejects. If the stack is empty when it finishes 
reading the input, it accepts. If the stack is empty before it reaches the end 
of the input, or nonempty when the input is finished, it rejects. 

P.10 c Solution 
Problem 10.1: The complement of the language {anbn | n ≥ 0} can be 

described by the following grammar. 
S → XbXaX | T | U 

T → aTb | Tb | b 
U → aUb | aU | a 

X → aX | bX | 𝜀𝜀 
Problem 10.2: The language in question can be described as follows. 

S → M#P#M | P#M | M#P | P 
P → aPa | bPb | a | b | 𝜀𝜀 | # | #M# 

M → aM | bM | #M | 𝜀𝜀 
Note that we need to allow for the case when 𝑖𝑖 = 𝑗𝑗, that is, some 𝑥𝑥𝑖𝑖 is a 

palindrome. Also, 𝜀𝜀 is in the language since it is a palindrome.  

P.11 c Solution 
Problem 11.1: A context-free grammar that generates A can be 

described as G = (V, Σ, R, S), where nonterminal symbol set V = {S, Eab, Ebc, C, A} 
and terminal symbol set Σ = {a, b, c}, giving 

S → EabC | AEbc 
Eab → aEabb | 𝜀𝜀 
Ebc → bEbcc | 𝜀𝜀 

C → Cc | 𝜀𝜀 
A → Aa | 𝜀𝜀 

Initially substituting EabC for S generates any string with an equal 
number of a’s and b’s followed by any number of c’s. Initially substituting Ebc 
for S generates any string with an equal number of b’s and c’s prepended by 
any number of a’s. The grammar is ambiguous. Consider the string 𝜀𝜀. On the 
one hand, it can be derived by choosing EabC with each of Eab and C yielding 𝜀𝜀. 
On the other hand, 𝜀𝜀 can be derived by choosing AEbc with each of A and Ebc 
yielding 𝜀𝜀. In general, any string aibjck with 𝑖𝑖 = 𝑗𝑗 = 𝑘𝑘 can be derived 
ambiguously with this grammar.  

Problem 11.2: The automaton is described as follows. 
1. Nondeterministically branch to either stage 2 or stage 6. 
2. Read and push a’s. 
3. Read b’s, while popping a’s. 
4. If b’s finish then stack is empty, skip c’s on input and accept. 
5. Skip a’s on input. 
6. Read and push b’s. 
7. Read c’s, while popping b’s. 
8. If c’s finish when stack is empty, accept. 
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P.12 c Solution 
The transition system to be determined can be described as 
 

M = ({qS, qA, qf}, {0,1}, 𝛿𝛿, qS, {qf}) 
 

where qS and qA correspond to S and A, respectively. qf is the final state, used 
for production A → 0. Using the grammar rules, we have the following 
transitions: 

 

Production S → 0A 

 

Production A → 1A 

 

Production A → 1S 

 

Production S → 0 

These transitions can be combined to yield the following automaton. 

 

P.13 c Solution 
The system at hand can be described by a grammar G = (V, Σ, R, S) with 

nonterminal symbol set V = {S, M, N, P}, terminal symbol set Σ = {0,1}, and 
production rules 

S → 0M | 1N  
M → 0M | 1P 
N → 0P | 1N 

P → 0P | 1P | 𝜀𝜀 

P.14 c Solution 
Problem 14.1: The language of automaton M works as follows. First, at 

initial state q, the automaton pushes the input symbols a and b to the stack 
until it reads a tape symbol c. After reading c, it moves to state p. In state p, 
M compares each symbol on the tape with the top symbol of the stack. If 
they are all equal, then the machine accepts the input. Let 𝑤𝑤 ∈ {a, b}* be the 
prefix of the input before the first occurrence of symbol c, and x be the suffix 
of the input after the first occurrence of c. We note that, as the PDA switches 
to state p, the string 𝑤𝑤 is stored in the stack in the reverse order (the first 
symbol of 𝑤𝑤 is at the bottom of the stack, and the last symbol is at the top). 
So, when it compares the suffix x with the stack symbols, it compares the 
first symbol of x with the last symbol of 𝑤𝑤, and so on. Therefore, it only 
accepts if x = 𝑤𝑤𝑅𝑅. That is,  

( ) { }{ }| , *RL M wcw w a b= ∈  

Problem 14.2: Put simply, the PDA works as follows: 
1. Push the first symbol of the input string, whatever it is. 
2. If the input symbol and top element of the pushdown system are the 
same, then push the input symbol to the PDS. 
3. If the input symbol and top element of the pushdown system are different 
(i.e., input is a and top element of PDS is b, or input is b and top element of 
the PDS is a) then pop the top element of the PDS. 

To design the PDA, observe the following from the transition function 
rules. The first input symbol of the language is pushed onto the empty stack 
(see transitions T1 and T2). As the second symbol of the input is read, the PDA 
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performs a push operation if the input symbol and pop element of the 
pushdown stack are the same (see transition rules T3 and T4), otherwise the 
PDA performs a pop operation (see rules T5 and T6). Accordingly, a single a 
pops a single b, and a single b pops a single a from the pushdown store. In 
this manner, a n number of a’s pops a n number of b’s and vice versa. It 
follows that if the language holds an equal number of a’s and b’s, the stack 
becomes empty after reading the complete input. This shows the 
acceptability of the required language by null store.  

A final note: The PDA addressed in this problem also accepts the 
language 𝐿𝐿′ = {anbn | n ≥ 0}, because it contains an equal number of a’s and b’s. 
Language 𝐿𝐿′ can be described by a set of transition rules similar to the one 
provided above (although T2, T4 and T5 ultimately become useless when 
describing 𝐿𝐿′). 

Problem 14.3: The approach to describe this automaton and finding 
the transition function rules is similar to the one adopted in Problem 14.2. 
The PDA reads the first input symbol and pushes it onto the stack. The PDA 
reads the whole input and carries out a push operation if the input symbol 
and the entry at the top of the stack are the same; otherwise, the PDA 
performs a pop operation. This way, the stack does not become empty after 
reading the full input. There is at least one a in the system stack, indicating 
that the number of a’s is greater than the number of b’s. 

The pushdown automaton stays in state q0 until it decides to quit, 
which it does by checking that the stack has at least on a on it. In state q0 the 
PDA is able either to quit or continue reading, so the constructed PDA is 
nondeterministic. The following rules are used to describe transition 
function 𝛿𝛿, 

T1: 𝛿𝛿(q0, a, Z0) = (q0, aZ9) If string starts with an a. 
T2: 𝛿𝛿(q0, b, Z0) = (q0, bZ9) If string starts with an b. 
T3: 𝛿𝛿(q0, a, a) = (q0, aa)  
T4: 𝛿𝛿(q0, b, b) = (q0, bb)  
T5: 𝛿𝛿(q0, a, b) = (q0, 𝜀𝜀)  
T6: 𝛿𝛿(q0, b, a) = (q0, 𝜀𝜀)  
T7: 𝛿𝛿(q0, 𝜀𝜀, a) = (q1, a) Case when na(x) > nb(x) 

 

The deterministic PDA equivalent to the system described above will 
retain states q0 and q1, but it will enter q1 whenever it reads an a and the 
stack is empty. This move does not change the status of the pushdown store. 
If it pushed an a, in order to reflect the fact that there is currently no surplus 
of a’s, there would be no way to determine, at the point in which a was about 
to be removed from the stack, that the PDA should leave state q1. The PDA 
will leave the state q1 only by reading b when the stack is empty – except for 
Z0, that is, by reading b when there is currently one excess a, and that move 
also leaves the stack unchanged. The deterministic PDA described by the 
following transition rules has q1 as final state and there is no move specified 
from q1 with stack symbol b or from q0 with stack symbol a, because neither 
of these transitions will ever occur.   

 

 

 

 

 
 

To show that the rules above indeed generate the language we were 
given, we take a string with more a’s than b’s – say, abbabaa – and apply the 
pertaining transition rules: 

( ) ( ) ( )0 0 1 0 1 0
61, , , , , ,TTq abbabaa Z q bbabaa Z q babaa Z→ →  

( ) ( ) ( )0 0 0 0 0 0
32 2, , , , , ,TT Tq abaa bZ q baa Z q aa bZ→ → →  

( ) ( )( )0 0 1 0 1
3 1, , , , string accepted by transition T Tq a Z q Z Tε→ →  

T1: 𝛿𝛿(q0, a, Z0) = (q1, Z9) 
T2: 𝛿𝛿(q0, b, Z0) = (q0, bZ9) 

T3: 𝛿𝛿(q0, a, b) = (q0, 𝜀𝜀) 
T4: 𝛿𝛿(q0, b, b) = (q0, bb) 

T5: 𝛿𝛿(q1, a, Z0) = (q1, aZ0) 
T6: 𝛿𝛿(q1, b, Z0) = (q0, Z0) 
T7: 𝛿𝛿(q1, a, a) = (q1, aa) 
T8: 𝛿𝛿(q1, b, a) = (q1, 𝜀𝜀) 
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Problem 14.4: The pushdown automaton that represents language L is 
somewhat similar to the ones considered in 14.3 and 14.2. Importantly, if the 
top element of the stack is an a, then the number of a’s in the input is 
greater than the number of b’s; similarly, if the top element of the stack is a 
b, then the number of b’s in the input is greater than the number of a’s. The 
transition function 𝛿𝛿 is described by the following rules, 

T1: 𝛿𝛿(q0, a, Z0) = (q0, aZ9)  
T2: 𝛿𝛿(q0, b, Z0) = (q, bZ9)  
T3: 𝛿𝛿(q0, a, a) = (q0, aa)  
T4: 𝛿𝛿(q0, b, b) = (q0, bb)  
T5: 𝛿𝛿(q0, a, b) = (q0, 𝜀𝜀)  
T6: 𝛿𝛿(q0, b, a) = (q0, 𝜀𝜀)  

T7: 𝛿𝛿(q0, 𝜀𝜀, a) = (qf, a) PDA reaches final state qf with 
more a’s than b’s 

T8: 𝛿𝛿(q0, 𝜀𝜀, b) = (qf, b) PDA reaches final state qf with 
more b’s than a’s 

 

Problem 14.5: The language at hand can be restated as L = {an(bbb)n | n 
≥ 0}. The basic principles for designing this PDA are (1) all a’s should be 
pushed onto the stack after scanning, and (2) when b’s are scanned, a group 
of three b’s pops one a. The required PDA is described by the tuple 

M = ({q0, q1, q2, q3, qf}, {a,b}, {a, Z0}, 𝛿𝛿, Z0, q0, {qf}) 

where transition function 𝛿𝛿 is described by the following rules. 
 

 

The PDA at hand is based on acceptability by final state. To consider 
acceptability by null (empty) store we need to replace transitions T1 and T8 
with 

T1: 𝛿𝛿(q0, 𝜀𝜀, Z0) = (q0, Z0) 

T8: 𝛿𝛿(q3, 𝜀𝜀, Z0) = (q3, Z0) 

respectively, yielding an automaton M = ({q0, q1, q2, q3}, {a,b}, {a, Z0}, 𝛿𝛿, q0, Z0, 
{∅}). 

Problem 14.6: The solution automaton can be divided into two parts. In one 
part, the PDA compares a’s and b’s and arrives at the final state by ensuring 
that either i > j or i < j. In the other part, the PDA compares b’s with c’s and 
reaches the final state while ensuring that either k > j or k < j. The transition 
rules for this PDA are shown below. 

 
 

T1: 𝛿𝛿(q0, 𝜀𝜀, Z0) = (qf, Z0) Terminating transition if 𝜀𝜀 ∈ L (a 
case for n = 0). 

T2: 𝛿𝛿(q0, a, Z0) = (q0, aZ0) First a is pushed onto stack. 
T3: 𝛿𝛿(q0, a, a) = (q0, aa) Additional a’s are pushed onto stack. 

T4: 𝛿𝛿(q0, b, a) = (q1, a) First b is scanned from a group of 
three b’s. 

T5: 𝛿𝛿(q1, b, a) = (q2, a) Second b is scanned from a group of 
three b’s. 

T6: 𝛿𝛿(q2, b, a) = (q3, 𝜀𝜀) Third b from group of three b’s is 
scanned; one a is popped. 

T7: 𝛿𝛿(q3, b, a) = (q1, a) First b is scanned from next group of 
bbb. 

T8: 𝛿𝛿(q3, 𝜀𝜀, Z0) = (qf, 𝜀𝜀) The input string is exhausted and 
accepted in the final state. 

T1: 𝛿𝛿(q0, a, Z0) = (q0, aZ0) The first a is pushed onto stack.  
T2: 𝛿𝛿(q0, a, a) = (q0, aa) The remaining a’s are pushed onto stack. 

T3: 𝛿𝛿(q0, b, a) = (q1, 𝜀𝜀), (q2, b) First b is scanned.  
T4: 𝛿𝛿(q1, b, a) = (q1, 𝜀𝜀) Second-to-last b is scanned.  

T5: 𝛿𝛿(q1, b, Z0) = (qf, Z0) i < j, PDA reaches final state qf.  
T6: 𝛿𝛿(q1, c, a) = (qf, a) i > j, PDA reaches final state qf. 

T7: 𝛿𝛿(q2, b, b) = (q2, bb)  
T8: 𝛿𝛿(q2, c, b) = (q2, 𝜀𝜀)  
T9: 𝛿𝛿(q2, c, a) = (qf, a) j < k, PDA reaches final state qf. 
T10: 𝛿𝛿(q2, 𝜀𝜀, b) = (qf, b) j > k, PDA reaches final state qf. 
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P.15 c Solution 
To obtain the Chomsky normal form (CMF) of a context-free diagram, 

we proceed as follows. Suppose the CFG we begin with has general form G = 
(V, Σ, P, S). 
Step 1: Simplification. Simplify the grammar by performing null and unit 
production eliminations. These are not covered herein but can be found in 
Chapter 6 of Kumar (2010). In the simplest possible terms, a context-free 
grammar with no null productions has no relations of the form A → 𝜀𝜀, while a 
CFG with no unit productions has no relations of the form A → B, where A 
and B are nonterminals. Let the grammar obtained after simplification be G’ 
= (V’, Σ’, P’, S).  
Step 2: Elimination of terminals from right-hand side. Let grammar G’’ = (V’’, Σ’, 
P’’, S) be the grammar obtained in this step. P’’ and V’’ are constructed as 
follows. 
2.1 → All the production rules in P’ that have the form A → b or B → BD are 
included in P’’, and all the variables in V’ are included in V’’. 
2.2→ For productions of the form X → A1A2 … An with one or more terminals 
on the right-hand side, then for every terminal Ai associated with some value 
ai we create a new variable 𝐶𝐶𝑎𝑎𝑖𝑖 associated with a new rule 𝐶𝐶𝑎𝑎𝑖𝑖 → ai. Then, we 
add variable 𝐶𝐶𝑎𝑎𝑖𝑖 to V’’ and the new production rule to P’’. 

Every terminal on the right-hand side of the production X → A1A2 … An 
is replaced by the corresponding new variable produced in 2.2, and the 
variables on the right-hand side are retained. The resulting productions are 
added to set P’’, which gives the updated grammar G’’.  
Step 3. Restricting the number of variables on right-hand side. Every 
production in P’’ must contain either a single terminal (or 𝜀𝜀 in the case S → 𝜀𝜀) 
or two or more variables on the right-hand side. We define grammar G’’’ = 
(V’’’, Σ’, P’’’, S) as follows: 
3.1 → All production rules P’’ that obey the requirement above are included in 
P’’’; all variables in V’’ are included in V’’’. 
3.2 → If there are productions of the form A → A1A2 … An, where n ≥ 3, we 
introduce production rules A → A1C1, C1 → A2C2, C2 → A3C2, C3 → C3A4, … Cn–2 → 
An–2An and new variables C1, C2, C3, …, Cn–2. These productions are added to  P’’’ 
and the new variables Ci produced are added to V’’’.  

Once step 3 is completed, the resulting grammar G’’’ will be in 
Chomsky normal form.   

Notice that the grammar we were given has neither null productions 
nor unit productions, so we can skip step 1 altogether. At this point, we have 
grammar G’ = (V’, Σ’, P’, S), where 

{ }, , ,V S A B C′ =  

{ }, ,a b c′Σ =  

{ }, | , ,P S aAC A aB bAB B b C c′ = → → → →  

is the start symbol, and S S V ′∈  

We proceed to step 2, in which we have to eliminate terminals from 
the right-hand side of production rules. Rules B → b and C → c are already in 
desired form, but S → aBC and A → aB | bAB must be reworked. We introduce 
a new variable Ca → a and restate S → aBC as S → CaBC. Also, A → aB is 
updated as A → CaB. A second variable Cb → b is introduced, and rule A → bAB 
becomes A → CbAB. This concludes step 2. At this point, we have G’’ = (V’’, Σ’, 
P’’, S), where 

{ }, , , , ,a bV S A B C C C′′ =  

, , | , ,
,

a a ba bS C AC C a A C B C AB C b
P

B b C c
→ → → → 

′′ =  
→ → 

 

We move on to step 3, where we have to restrict the number of 
variables on the right-hand side of production rules in 𝑃𝑃𝑖𝑖. Note that 
productions Ca → a, A → CaB, Cb → b, B → b, and C → c are all in required form, 
but S → CaAC and A → CbAB are not. To deal with these cases, we rewrite the 
former as S → CaC1, where C1 is a new variable such that C1 → AC, and the 
latter as A → CbC2, where C2 → AB. Variables C1 and C2 are added to V’’’, and 
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the production rules listed in this paragraph are added to P’’’. At this point, 
we have grammar G’’’ = (V’’’, Σ’, P’’’, S), where  

{ }1 2, , , , , , ,a bV S A B C C C C C′′′ =  

1 2

1 2

, , | , ,
, , ,

a a ba bS C C C a A C B C C C b
P

B b C c C AC C AB
→ → → → 

′′′ =  
→ → → → 

 

 

Grammar G’’’ is in Chomsky normal form, as intended.  
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