Montogue

Quiz ASQ3
08 Reviewed Solutions to Curtis’s
vechan G Orbital Mechanics for
siiele @ Lngineering Students, 4th Ed.

Lucas Monteiro Nogueira

PROBLEM DISTRIBUTION

Chapter Problems Covered* *The corresponding problem
) 2.15,2.16,2.17,2.18, 2.19, 2.20, 2.21, numbers for the 3rd edition
2.22,2.24,2.29 of the book are also included
3 3.5,3.6,3.7,3.9,3.10, 3.14, 3.15, below.
3.16, 3.19, 3.20
4 4.3,45,4.6,4.7,4.14,4.15, 416, Download MATLARB files used
4.18,4.19 in the textbook here.
5 54,55,5.6,57,6512,513,5.14,
5.15,5.16,5.17,5.18,5.22,5.23,5.24
6 6.1,6.8,6.11,6.13, 6.14, 6.19, 6.21,
6.23, 6.33, 6.34, 6.35
13 13.1,13.2,13.3,13.4,13.6
PROBLEMS

B Chapter 2 — The Two-Body Problem

Problem 2.15 (3rd edition: 2.16)
The specific angular momentum of a satellite in circular earth orbit is
60,000 km?/s. Calculate the period.

Problem 2.16 (3rd edition: 2.17)
A spacecraft is in a circular orbit of Mars at an altitude of 200 km. Calculate
its speed and its period.

Problem 2.17 (3rd edition: 2.18)
Calculate the area A swept out during the time t = T/4 since periapsis,
where T is the period of the elliptical orbit.

Problem 2.18 (3rd edition: 2.19)
Determine the true anomaly 6 of the point(s) on an elliptical orbit at which
the speed equals the speed of a circular orbit with the same radius, i.e., Vepiipse =

Vcircle-

Vellipse

'Iyl

circle

Problem 2.19 (3rd edition: 2.20)
Calculate the flight path angle at the locations found in Problem 2.18.
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Problem 2.20 (3rd edition: 2.21)
An unmanned satellite orbits the earth with a perigee radius of 10,000 km
and an apogee radius of 100,000 km. Calculate
(a) the eccentricity of the orbit;
(b) the semimajor axis of the orbit (km);
(c) the period of the orbit (h);
(d) the specific energy of the orbit (km?/s?);
(e) the true anomaly (degrees) at which the altitude is 10,000 km;
(f) v, and v, (km/s) at the points found in part (e);
(g) the speed at perigee and apogee (km/s).

Problem 2.21 (3rd edition: 2.22)
A spacecraft is in a 400 km by 600 km low earth orbit. How long (in
minutes) does it take to coast from perigee to apogee?

Problem 2.22 (3rd edition: 2.23)

The altitude of a satellite in an elliptical orbit around the earth is 2000 km
at apogee and 500 km at perigee. Determine (a) the eccentricity of the orbit; (b)
the orbital speeds at perigee and apogee; (c) the period of the orbit.

Problem 2.24 (3rd edition: 2.25)

A satellite is launched into earth orbit at an altitude of 1000 km with a
speed of 10 km/s and a flight path angle of 15°. Calculate the true anomaly of the
launch point and the period of the orbit.

Problem 2.29 (3rd edition: 2.30)
For an earth orbiter, the altitude is 1000 km at a true anomaly of 40° and
2000 km at a true anomaly of 150°. Calculate
(a) the eccentricity;
(b) the perigee altitude (km);
(c) the semimajor axis (km).

W Chapter 3 — Orbital Position as a Function of Time

Problem 3.5 (3rd edition: 3.5)
Calculate the time required to fly from P to B, in terms of the eccentricity e
and the period T. B lies on the minor axis.

B

N

D
Problem 3.6 (3rd edition: 3.6)
If the eccentricity of the elliptical orbit is 0.3, calculate, in terms of the
period T, the time required to fly from P to B.

B
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Problem 3.7 (3rd edition: 3.7)
If the eccentricity of the elliptical orbit is 0.5, calculate, in terms of the
period T, the time required to fly from P to B.
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Problem 3.9 (3rd edition: 3.9)

An earth-orbiting satellite has a perigee radius of 7000 km and an apogee
radius of 10,000 km.
(a) What true anomaly A8 is swept out between t=0.5 hand t = 1.5 h after
perigee passage?
(b) What area is swept out by the position vector during that time interval?

Problem 3.10 (3rd edition: 3.10)
An earth-orbiting satellite has a period of 14 hours and a perigee radius of
10,000 km. At time t = 10 hours after perigee passage, determine:
(a) The radial position.
(b) The speed.
(c) The radial component of the velocity.

Problem 3.14 (3rd edition: 3.14)

Calculate the time required for a spacecraft launched into a parabolic
trajectory at a perigee altitude of 200 km to leave the earth’s sphere of influence
(see Table A.2).

Problem 3.15 (3rd edition: 3.15)

A spacecraft on a parabolic trajectory around the earth has a perigee radius
of 6600 km.
(a) How long does it take to coast from 6 = —90 degrees to 8 = +90 degrees?
(b) How far is the spacecraft from the center of the earth 36 hours after passing
through perigee?

Problem 3.16 (3rd edition: 3.16)

A spacecraft on a hyperbolic trajectory around the earth has a perigee
radius of 6600 km and a perigee speed of 1.2vg4c.
(a) How long does it take to coast from 6 = —90 degrees to 8 = +90 degrees?
(b) How far is the spacecraft from the center of the earth 24 hours after passing
through perigee?

Problem 3.19 (3rd edition: 3.19)

At a given instant the radial position of an earth-orbiting satellite is 7200
km, its radial speed is 1 km/s. If the semimajor axis is 10,000 km, use Algorithm 3.3
to find the universal anomaly 60 minutes later. Check your result using Equation
3.58.

Problem 3.20 (3rd edition: 3.20)
At a given instant a space object has the following position and velocity
vectors relative to an earth-centered inertial frame of reference:

r, =20,000i —105,000j—-19,000k km
v, =0.9000i —3.4000j—-1.5000k km/s
Use algorithm 3.4 to find rand v 2 h later.

W Chapter 4 — Orbits in Three Dimensions

Problem 4.3 (3rd edition: 4.3)
Find the orbital elements of a geocentric satellite whose inertial position
and velocity vectors in a geocentric equatorial frame are

r =2500I+16,000J + 4000K km
v=-31-J+5K km/s
Problem 4.5 (3rd edition: 4.5)

At time to (relative to perigee passage) the position r and velocity v of a
satellite in the geocentric equatorial frame are

r = 65001 —7500J —2500K km
v=41+3J -3K km/s

Find the orbital elements.
Problem 4.6 (3rd edition: 4.6)

With respect to the geocentric equatorial frame, the position vector of a
spacecraft is r = —6000I - 1000J - 5000K (km) and the orbit’s eccentricity vector

ise=—0.41 — 0.5J — 0.6K. Calculate the true anomaly @ if the satellite is
approaching perigee.
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Problem 4.7 (3rd edition: 4.7)

Given that, relative to the geocentric equatorial frame, r = —66001 - 1300J
- 5200K (km), the eccentricity vector is e = —0.41 - 0.5J - 0.6K, and the satellite is
flying toward perigee, calculate the inclination of the orbit.

Problem 4.14 (3rd edition: 4.14)
At time to the position r and velocity v of a satellite in the geocentric
equatorial frame are

r =-5000I —8000J —2100K km
v=-41+3.5J-3K km/s

Find r and v at time to = +50 min.

Problem 4.15 (3rd edition: 4.15)

At time ¢, (relative to perigee passage), a spacecraft has the following
orbital parameters: e = 1.5; perigee altitude =300 km. i =35° Q=130% and w =
115°. Calculate r and v at perigee relative to
(a) The perifocal reference frame.

(b) The geocentric equatorial frame.

Problem 4.16 (3rd edition: 4.16)
For the spacecraft of Problem 4.15 calculate r and v at two hours past
perigee relative to
(a) The perifocal reference frame.
(b) The geocentric equatorial frame.

Problem 4.18 (3rd edition: 4.18)

For a spacecraft, the following orbital parameters are given: e = 1.2;
perigee altitude = 200 km; i = 50°; Q = 75°; and w = 80°. Calculate r and v at
perigee relative to
(a) The perifocal reference frame.

(b) The geocentric equatorial frame.

Problem 4.19 (3rd edition: 4.19)
For the spacecraft of Problem 4.18 calculate r and v 2 h past perigee
relative to
(a) The perifocal reference frame.
(b) The geocentric equatorial frame.

B Chapter 5 — Preliminary Orbit Determination

Problem 5.4 (3rd edition: 5.4)
At a given instant, the geocentric equatorial position vector of an earth
satellite is
r; = 36001+ 4600J +3600K (km)

Thirty minutes later the position is
r, =—5500I + 6240J —5200K (km)
Find the specific energy of the orbit.

Problem 5.5 (3rd edition: 5.5)
Compute the perigee altitude and the inclination of the orbit in the
previous problem.

Problem 5.6 (3rd edition: 5.6)
At a given instant, the geocentric equatorial position vector of an earth
satellite is

r, = 56441 -2830J —4170K km
Some 20 min later, the position is
r, =-22401 +7320J + 4980K km

Calculate v1 and va.

Problem 5.7 (3rd edition: 5.7)
Compute the orbital elements and perigee altitude for the previous
problem.
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Problem 5.12 (3rd edition: 5.12)
A sea level tracking station whose local sidereal time is 40° and latitude is
35° makes the following observations of a space object:
Azimuth: 36.0°
Azimuth rate: 0.590°/s
Elevation: 36.6°
Elevation rate: —0.263°/s
Range: 988 km
Range rate: 4.86 km/s
What is the state vector of the object?

Problem 5.13 (3rd edition: 5.13)
Calculate the orbital elements of the satellite in the previous problem.

Problem 5.14 (3rd edition: 5.14)
A tracking station at latitude —20° and elevation 500 m makes the
following observations of a satellite at the given times.

Time | Local sidereal . o Elevation

(min) time () Azimuth (°) angle (°) Range (km)
0 60.0 165.931 9.53549 1214.89
2 60.5014 145.967 45.7711 421.441
4 61.0027 2.40962 21.8825 732.079

Use the Gibbs method to calculate the state vector of the satellite at the central
observation time.

Problem 5.15 (3rd edition: 5.15)
Calculate the orbital elements of the satellite in the previous problem.

Problem 5.16 (3rd edition: 5.16)
A sea level tracking station at latitude +29° makes the following
observations of a satellite at the given times.

Time Local sidereal | Topographic right Topocentric

(min) time (°) ascension (°) declination (°)
0.0 0 0 51.5110
1.0 0.250684 65.9279 27.9911
2.0 0.501369 79.8500 14.6609

Use the Gauss method without iterative improvement to estimate the state
vector of the satellite at the middle observation time.

Problem 5.17 (3rd edition: 5.17): Refine the estimate in the previous problem
using iterative improvement.

Problem 5.18 (3rd edition: 5.18): Calculate the orbital elements from the state
vector obtained in the previous problem.

Problem 5.22 (3rd edition: 5.22)
The position vector R of a tracking station and the direction cosine vector
p of a satellite relative to the tracking station at three times are as follows:

for t; =0 min
R, =-1825.961 +3583.66J +4933.54K (km)
p, =-0.301687I +0.200673J +0.932049K
fort, =1 min
R, =-1841.631+3575.63J +4933.54K (km)
p, =—0.793090I-0.210324J + 0.571640K
for t; =2 min
R, =-1857.251+3567.54J +4933.54K (km)
p; =—0.8730851-0.362969J + 0.325539K

Use the Gauss method without iterative improvement to estimate the state
vector of the satellite at the central observation time.

Note: In some printings of the book, the vector component highlighted in
red appears as —1816.30 instead of —1841.63.
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Problem 5.23 (3rd edition: 5.23): Refine the estimate in the previous problem
using iterative improvement.

Problem 5.24 (3rd edition: 5.24): Calculate the orbital elements from the state
vector obtained in the previous problem.

B Chapter 6 — Orbital Maneuvers

Problem 6.1 (3rd edition: 6.1)

A large spacecraft has a mass of 125,000 kg. Its orbital maneuvering
engines produce a thrust of 50 kN. The spacecraft is in a 400 km circular earth
orbit. A delta-v maneuver transfers the spacecraft to a coplanar 300 km by 400 km
elliptical orbit. Neglecting propellant loss and using elementary physics (linear
impulse equals change in linear momentum, distance equals speed times time),
estimate
(a) the time required for the Av burn and
(b) the distance travelled by the spacecraft during the burn.

(c) Calculate the ratio of your answer for (b) to the circumference of the initial
circular orbit.
(d) What percent of the initial mass was expelled as combustion products?

Problem 6.8 (3rd edition: 6.8)
A spacecraft is in a 300-km circular earth orbit. Calculate
(a) The total delta-v required for a Hohmann transfer to a 3000-km coplanar
circular earth orbit.
(b) The transfer orbit time.

& "\\
Avy i Avq |
I ]
3000 km /

Problem 6.11 (3rd edition: 6.11)
Calculate the total delta-v required for a Hohmann transfer from the
smaller circular orbit to the larger one.
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Problem 6.13 (3rd edition: 6.13)

Two geocentric elliptical orbits have
common apse lines and their perigees are on
the same side of the earth. The first orbit has
a perigee radius of r, = 7000 km and e=0.3,
whereas for the second orbit r, = 32,000 km
and e =0.5.

(a) Find the minimum total delta-v and the
time of flight for a transfer from the perigee
of the inner orbit to the apogee of the outer
orbit.

(b) Do part (a) for a transfer from the apogee

of the inner orbit to the perigee of the outer ~_ e
orbit. TT—7000 km—>{ |

>

32,000 km

Problem 6.14 (3rd edition: 6.14)
The space shuttle was launched on a 15-day mission. There were four
orbits after injection, all of them at 39° inclination.

— Orbit 1: 302 km by 296 km

— Orbit 2 (day 11): 291 km by 259 km
— Orbit 3: (day 12): 259 km circular

— Orbit 4: (day 13): 255 km by 194 km

Calculate the total delta-v, which should be as small as possible, assuming
Hohmann transfers.

Problem 6.19 (3rd edition: 6.19)

The space station and spacecraft A and B are all in the same circular earth
orbit of 350 km altitude. Spacecraft A is 600 km behind the space station and
spacecraft B is 600 km ahead of the space station. At the same instant, both
spacecraft apply a Av, so as to arrive at the space station in one revolution of
their phasing orbits.

600 km'—’}“GOO km
Y “/
_—Space ~__

station

Spacecraft B o (Spacecraft A

g

Circular orbit

(a) Calculate the time required for each spacecraft to reach the space station.
(b) Calculate the total delta-v requirement for each spacecraft.

Problem 6.21 (3rd edition: 6.21)

Two spacecraft are in the same elliptical earth orbit with perigee radius
8000 km and apogee radius 13,000 km. Spacecraft 1 is at perigee and spacecraft 2
is 30° ahead. Calculate the total delta-v required for spacecraft 1 to intercept and
rendezvous with spacecraft 2 when spacecraft 2 has traveled 60°.

D intercept

“\.C Spacecraft 2, initially

| \|p Spacecraft 1, initially

-< 13,000 km >t 8000 km-—>
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Problem 6.23 (3rd edition: 6.23)

Spacecraft B and C, which are in the same elliptical earth orbit 1, are
located in the true anomalies shown. At this instant, spacecraft B executes a
phasing maneuver so as to rendezvous with spacecraft C after one revolution of
its phasing orbit 2. Calculate the total delta-v required. Note that the apse line of
orbit 2 is at 45° to that of orbit 1.

Apse line
“of orbit 2

' Apse line
. of orbit 1

Phasing |
orbit

.
\\

N
/ S |

18,900 km <8100 km—>

Problem 6.33 (3rd edition: 6.33)

Spacecraft A and B are in concentric, coplanar circular orbits 1 and 2,
respectively. At the instant shown, spacecraft A executes an impulsive delta-v
maneuver to embark on orbit 3 to intercept and rendezvous with spacecraft Bin a
time equal to the period of orbit 1. Calculate the total delta-v required.

Problem 6.34 (3rd edition: 6.34)
Spacecraft A is in orbit 1, a 10,000
km radius equatorial earth orbit. Spacecraft
Bis in elliptical polar orbit 2, having
eccentricity 0.5 and perigee radius 16,000
km. At the instant shown, both spacecraft
are in the equatorial plane and B is at its
perigee. At that instant, spacecraft A
executes an impulsive delta-v maneuver to
intercept B one hour later at point C.
Calculate the delta-v required for A to
switch to the intercept trajectory 3.
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Problem 6.35 (3rd edition: 6.35)

Spacecraft B and C are in the same elliptical orbit 1, characterized by a
perigee radius of 7000 km and an apogee radius of 10,000 km. The spacecraft are
in the position shown when B executes an impulsive transfer to orbit 2 to catch
and rendezvous with C when C arrives at apogee A. Find the total delta-v
requirement.

<—10,000 km

B Chapter 13 — Rocket Vehicle Dynamics (Chapter 11 in 3rd edition)

Problem 13.1 (3rd edition: 11.1) [Answer does not match textbook]
A two stage, solid-propellant sounding rocket has the following properties.

First stage: my = 249.5 kg, mg = 170.1 kg, m, = 10.61 kg/s, I, =235s
Second stage: my = 113.4 kg, my = 58.97 kg, m, = 4.053 kg/s, I, =235 s

The delay time between burnout of first stage and ignition of second stage is 3 s.
As a preliminary estimate, neglect drag and the variation of earth’s gravity with
altitude to calculate the maximum height reached by the second stage after
burnout.

Problem 13.2 (3rd edition: 11.2)
A two-stage launch vehicle has the following properties:

First stage: Two solid propellant rockets. Each one has a total mass of 525,000 kg,
450,000 kg of which is propellant. Is, =290 s.

Second stage: Two liquid rockets with /s, = 450 s. Dry mass = 30,000 kg, propellant
mass = 600,000 kg.

Calculate the payload mass to a 300 km orbit if launched due east from KSC. Let
the total gravity and drag loss be 2 km/s.

Problem 13.3 (3rd edition: 11.3)

Suppose a spacecraft in permanent orbit around the earth is to be used for
delivering payloads from low earth orbit (LEO) to geostationary equatorial orbit
(GEO). Before each flight from LEO, the spacecraft is refueled with propellant,
which it uses up in its round trip to GEO. The outbound leg requires four times as
much propellant as the inbound return leg. The delta-v for transfer from LEO to
GEQ is 4.22 km/s. The specific impulse of the propulsion system is FE[E. I the
payload mass is 3500 kg, calculate the empty mass of the vehicle.

Note: The number highlighted in red appears as 450 s in some printings of
the 4th edition.

Problem 13.4 (3rd edition: 11.4)

Consider a rocket comprising similar stages (i.e., each stage has the same
specific impulse, structural ratio, and payload ratio). The common specific impulse
is 310 s. The total mass of the vehicle is 150,000 kg, the total structural mass
(empty mass) is 20,000 kg, and the payload mass is 10,000 kg. Calculate
(a) The mass ratio n and the total Av for the three-stage rocket.

(b) m, 1, m,,, and m, 5
(c) mg 1, mg,, and mg 5
(d) mg,1, mg2, and mg 5
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Problem 13.6 (3rd edition: 11.6)

A small two-stage vehicle is to propel a 10-kg payload to a speed of 6.2
km/s. The properties of the stages are as follows. For the first stage, /s, = 300 s and
€ =0.2. For the second stage, Is, = 235 s and € = 0.3. Estimate the optimum mass
of the vehicle.

SOLUTIONS

B P2.15 (Precision: Minimum)
We first compute the radial distance of the orbit:
2 2
po 60,0007 o030 km
1 398,600

Then, the period follows:

72732 2T 903092 =[8540 5

Ju /398,600

or 2 h 22 min.
B P2.16 (Precision: Minimum)
For Mars, u = 42,828 km?3/s? and r = 3396 km. The speed of the spacecraft is

then
V= \/Z = —42’828 =13.45 km/s
7 V3396+2OO

The period is, in turn,

T=22 32 27 (3396+200) =[6550 5

Ju 42,828

or 1 h 49 min.
B P2.17 (Precision: Minimum)

The ratio of area swept to the corresponding period must remain constant.
Accordingly,

Ad_mab _ 4
At T T/4
S.mab=4A4

A= ”Tab —[0.785ab

m P2.18
For the ellipse, per Problem 2.9,
2
vguipse = Z—z(ez +2ecos @ + 1)

For the circle, at the point of intersection with the ellipse,

2

2 H H H
Veircle :7: h2 ) :?(I-FQCOSH)

u (1+ecosb)

Equating the two previous expressions,

vgnipse =vZ e = %(62 +2ecosf + 1) = %(l +ecosd)”

et +2ecos@+1=1+ecosb

e’ +ecosh=0

S.e+cosd=0

|0 =cos™ (—e)

m P2.19
The flight path angle y is given by

10
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esind
tany = ————
1+ecosd

In the case at hand, 6 = cos™'(—e), giving

exsin [arccos (—e):| _exsin [arccos (—e)]
2

t = =
anz 1+ ecos[arccos(—e)] l—e

But sin[arccos(—e)] = V1 — e?, so that

e><\/1—e2 e

tany = =
’ 1-¢ \/1—62

;/:tan1£ ¢ ]
NIy

B P2.20 (Precision: Minimum)
Part (a): The eccentricity of the orbit is given by
_ Tapogee ™ Tperigee 100,000-10,000 _

= =10.818
100,000+10,000

+ 7

I, apogee perigee

Since this eccentricity value is between 0 and 1, the orbit is elliptical.
Part (b): The semimajor axis of the orbit is

_ Tapogee + Tperigee _ 100,000 +10,000 _

55,000km
2 2

Part (c): The period of the orbit is

2r 3/2 2r 3/2

T=—7—a"" =——=x55,000"" =128,400s
Ju /398,600
|T=35.7h

Part (d): The specific energy of the orbit is

&= _H —M =|-3.62km?/s?

2a 2x55,000

Part (e): The true anomaly 8 can be found from the orbit equation (2.72)

on page 81:
1-¢°
=q—
l1+ecosé
Substituting r=6378 + 10,000 = 16,378 and other variables brings to
2
16,378 = 55,000 x 1-0.818
1+0.818xcosé
16,378 = 18,200
1+0.818xcosé
18,200

5.1+0.818cos@ =
16,378

S 14+0.818cos@=1.11
5.0.818cos@=0.11
S.cos@=0.134

-0 =arccos(0.134) =

Part (f): We first compute the specific angular momentum via equation
(2.50):

LR S
’”p—zm—) —\/,U( +€)’”perigee

s h= /398,600 (1+0.818)x10,000 = 85,130km?/s

Then, the azimuthal component of velocity is calculated to be

11
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h 85,130

VJ_ - == =
r  6378+10,000

5.20 km/s

while the radial component is given by equation (2.49):

Vv, = 2 esing = Mx 0.818xsin(82.3°) =3.80 kmy/s
h 85,130
Part (g): Finding the speeds at the perigee and apogee is straightforward:
h 85,130
Vperigee = — = 10.000 =18.51 km/s
perigee >
Vapogee = h = 85,130 =10.851 km/s

Fapogee 100,000

B P2.21 (Precision: Minimum)

The radius of the perigee is rperigee = 6378 + 400 = 6778 km, while that of
the apogee is ropogee = 6378 + 800 = 7178 km. The semimajor axis of the orbit is
determined as

_ rperigee + rapogee _ 6778+ 7178

a= =6978km
2

The orbital period is then

27
T=—a
Ju

3/2 % 6978%% = 58005

B 27
/398,600
.. T =96.7min

The time required to coast from perigee to apogee should equal T/2 = 48.35
minutes.
B P2.22 (Precision: Minimum)

Part (a): The radius of the apogee is ropogee = 6378 + 2000 = 8378 km, while
the radius of the perigee is rperigee = 6378 + 500 = 6878 km. The eccentricity of the
orbit is determined as

Tapogee ~ Tperigee 8378 -6878
e= = ~[0.0983
+ 8378+ 6878

r apogee i perigee

Part (b): We first compute the specific angular momentum via equation

(2.50):
h=J1(1+ €) Fyigee = /398,600 (1+0.0983) x 6878
- h=54,900km?/s
so that
Voerigee = h 34900 s
perigee 6878
Vapogee = h 34900 s
Tapogee 8378

Part (c): The period of a typical elliptical orbit is given by equation (2.82):

3 3
TZZ_”{ h j 27 [ 54,900 j:66405

2012 ) 398,6007 | \/1—0.09832

u
17T =111min

B P2.24 (Precision: Minimum)
We first establish the radial and azimuthal components of velocity:

v, =vsiny =10xsin15°=2.59km/s
v, =vcosy =10xcos15°=9.66km/s
The specific angular momentum is then
h=rv, = (6378+1000)x9.66 =71,300 km? /s
Next, we insert the available data into (2.71) and (2.72) to obtain

12

© 2022 Montogue Quiz



2 2
:h_ 1 7378 = 71,300 « 1
U 1+ecosd 398,600 1+ecosf

s.ecosd=0.729 (I)

r

In a similar manner, we substitute the available data into the equation for radial
velocity (eq. (2.49)):

398,600

v, =%esin9—)2.59: esind

soesinf =0.463 (1)
Dividing (I1) by () gives the true anomaly 6:
esind 0.463
ecosd B 0.729
-0 = arctan (0.635) =

—tand =0.635

Now, substituting 8 = 32.4° into (I) and solving for eccentricity,

ecosd =0.729 > e= ﬂ =0.863

cos(32.4°)

Finally, we determine the period using equation (2.82):

3 3
2 h 2 71,300
.27 _ ’ ~111,200s
yz( 1—e2J 398,600° {x/1—0.8632j

~|T'=30.9h

B P2.29 (Precision: Minimum)
Parts (a) and (b): Inserting the available data into egs. (2.71)/(2.72), we
have, for each data point,

o1 h’ 1
r=—————(6378+1000) = (D
u 1+ecosf, 398,600 (1+ecos40°)

2 2
r = 1 — (6378 +2000) = i 1 (1D
u 1+ecosb, 398,600 (1+ecos150°)

Dividing (I1) by (I) and solving for e, we obtain

1
(6378+1000) _ JO0 ) ae
(6378+2000) 71396550 1

1+ecos150°

. (6378+1000) 1+ecos150°
" (6378+2000) 1+ ecos40°

Entering this linear equation into Mathematica to save time, we obtain e =0.0775,
as shown.
6378 + 1000 1+exCos[150 °] ]
e

In[167]:= Solve[ == ,
6378 + 2000. 1+exCos[40°]

*+ Solve: Solve was unable to solve the system with inexact coefficients.
The answer was obtained by solving a corresponding exact
cizing the result

Out[167]=
{{e>0.8774747} )

Now, substituting e into either of equations (I) or (Il) yields the specific angular
momentum h:

h? 1
398,600 (1+0.0775x cos40°)
- h=55,820 km?/s

(6378 +1000) =

The perigee radial distance is determined next:

13
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_h 1558200 1

oo = = =7250 km
perigee ) 1+e 398,600 1+0.0775

Subtracting the earthly radius:

—6378=7250-6378 =|872km

Zperigee =1 perigee

Part (c): The semimajor axis can be found via equation (2.73):

a= rperigee _ 7250

l—e 1-00775

7860 km

m P3.5
On the minor axis, the eccentric anomaly is /2, so that

) T ([
M,=FE,—esinE, =——esin| —
2= Ey ? - esin[
T
.'.MB:E—G (I)

Now, the time required to reach a given angle is related to the mean anomaly Mg
as

T 2
tp,=—M, >M, =—t
B= 5 B BT p B

so that, substituting in (I),
T 2

M,=——e=—-t¢

B~ T B

1 e 1,

4 2z TP

1 e
Ntp =| ——— |T
5 (4 27zj
B P3.6 (Precision: Average)

We first determine the eccentric anomaly associated with point B:

tan& = 1_—e‘[an (Q—Bj = /1_0'3 x tan (7[_/2) =0.734
2 I+e 2 1+0.3 2

.. Ey =2arctan(0.734) =1.266 rad

Next, we compute the mean anomaly Ms:
My =Egz—esinEg =1.266—0.3xsin(1.266) = 0.980 rad

The time required to fly from P to B is then

tg = My T = 0.980 xT =10.156T
27 27

B P3.7 (Precision: Average)
We combine equations (see Section 2.7)

o1
f=—
i 1+ecosé
and
o
rperigee =7
ul+e
to obtain
. rperigee (1+€)
1+ecosd@

Substituting r = 2rperigee and solving for anomaly 6, we obtain

Toatteee (1+0.5)
2 =
M 1+0.5cos@
1.5

B 1+0.5cos@

14
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Solving this equation with Mathematica to save time, we obtain cos 6 =

—0.5, so that 8 = 120°.
1.5

In[285]:= Solve[z = —_—
1+0.5xCosée

5 Cose]

Out[285]=

{{Cosc > -0.5}}

We proceed to compute eccentric anomaly Es,

tan Lp | 1_—etan 9 :,/l_o'sxtan 120 =1.0
2 I+e 2 1+0.5 2
.‘.EB:2arctan(1.0):2x%:%rad

and then the mean anomaly Ms:

My =E,—esinE, :%—O.stin(%j =1.071rad
Finally, the time required to fly from P to B is

tg = My T = 1071 xT =(0.170T
27 27

B P3.9 (Precision: Average)
Part (a): The semimajor axis of the orbit is

1 1

a= 5(;»apogee + R EX(IO’ 000 +7000) = 8500 km

i perigee )

The corresponding period is

x8500%2 = 77995

T = 2_7ra3/2 __ 2z
Ju /398,600

and the eccentricity is

_ Tapogee ~ Tperigee 10,000 —7000 —0

= =0.176
10,000 + 7000

I apogee +7 perigee

Consider first conditions at t; = 0.5 h = 1800 s. The mean anomaly M, is

_ 2rxt; 27 x1800

M
r 7799

=1.450rad

while the eccentric anomaly can be found as
- E; —0.176sin E; =1.450 rad
This transcendental equation can be solved for E; in MATLAB by creating an

anonymous function and then applying fsolve:

>> orbit = @(E1) (E1 - ©.176*sin(E1) - 1.45)
X0 = 1.0
fsolve(orbit, x0)

This returns E; = 1.626 rad. The corresponding anomaly 6, follows as
tan o = ,/H—etan B = ,/1+0'176 tan 1.626 =1.262
2 l-e 2 1-0.176 2

©. 6, =2arctan(1.262) =1.801 rad
6, =103.2°

Calculations for t; = 1.5 h = 5400 s are analogous:

_ 2mt,  27xx5400
T 7799

M, =4.350 rad

© 2022 Montogue Quiz
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- Ey,—0.176sin E, =4.350

:.E,=4.197 rad

tan(&j: /1+etan(&) /1+0176tn(4'197j:—2.049
2 1-e 2 1-0.176 2

.. 0, =2arctan (—2.049) = —2.234 rad

5.0, =-128.0°=232.0°

It remains to compute the anomaly A8 swept by the orbit:

A =0,-6,=232.0°-103.2°=|128.8°

Part (b): This part is started by computing the specific angular momentum h,

h= [ Ueigee (1+€) = /398,600 7000 x (1+0.176) = 57,280 km? /s

AA :%hAt :%x57,280><3600 —1.031x10°% km?2

A4 =103.1x10° km?

B P3.10 (Precision: Average)
Part (a): The first step is to determine the apogee radius, which in turn
requires the semimajor axis a:

2 2 2z 3/2
T = —14%x3600 =———=a
\/; 398,600
Soa=29,490 km
Therefore,
1 1
a= E(rperigee + rapogee) - 29’ 490 = 2 (10 000+ rapogee)

=48,980 km

B rapogee
The eccentricity of the orbit easily follows:

_ Tapogee ™ "perigee _ 48,980-10,000
+7 48,980 +10,000

. apogee ' perigee

=0.661

The mean anomaly is then

M = 27[——27[><2—4488 rad
T 14

while the eccentric anomaly is
E—ExesmE=M — E—-0.661sin E =4.488

Solving for E with MATLAB's fsolve gives E = 3.992 rad.

>> orbit = @(E1) (E1 - ©.661*sin(E1) - 4.488)
X0 = 1.0

fsolve(orbit, x0)

ans =

3.9915

Next, we compute true anomaly 6:

0 l+e E /1+0 661 3.992
tan| — |=,/—tan| — ——xtan| —— | =—4.888
2 l-e 2 1-0.661 2

N 2arctan(—4.888) =-2.738 rad =-156.9°
-.0=203.1°

16
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Finally, the radial position is

a(l—ez) 29,490><(1—0.6612)
r= - ~[42.360 km
1+ecosf 1+0.661><cos(203.1°)

Part (b): The velocity can be determined with the energy equation:

viopp Vi 398,600 398,600

2 24 2 42,360  2x29,490

2
v

5—=9410=-6.758
2

cv=4J2(~6.758 +9.410) =[2.303 km/s

Part (c): To find the radial component of velocity, we first require the specific
angular momentum h:

h= \/,ua(l—ez) _ \/398,600><29,490><(1—0.6612) — 81,360 km?/s

Then,

U

) 398,600
Vv, = Zesm@ =

x0.661xsin (203.1°) =[1.271 knvs

r

>

B P3.14 (Precision: Average)

Referring to Table A.2, we see that the radius of influence of the earth is
925,000 km. Substituting this and other pertaining data into the orbit equation,
we can solve for the true anomaly 6:

7 ericee (1 F € 6378 +200)x(1+1
V=&()—)925,000:( )X( )
1+ecosd@ 1+1xcos@
..cos@ =—-0.986
5.0=170.4°

The mean anomaly is given by Barker’s equation:

1 (ej 1 {9) 1 (170.4°j 1 3[170.40)
M =—tan| — |+—tan’| — |=—tan +—tan
L) 2 6 2 2 2 6 2

"M, =2874

We also need the specific angular momentum h:

h2
Toerigee = Z —>h= \/ 2/urperigee

~ h=1/2x398,600% 6578 = 72,420 km?/s

Finally, the time required for the spacecraft to leave earth’s SOl is

3 3
B, 12,420

= x287.4 = 687,000 s =|7.951 days
w7 398,6007 Y

(The large difference relatively to the answer provided in the text, which is 7.77 d,
is due to my somewhat reckless roundoff of true anomaly 8; entering 8 = 170.33°
instead of 8 = 170.4° into Barker’s formula would yield M, = 280.87, which can be
used to find t = 7.7698 d, a slightly better approximation.)

B P3.15 (Precision: Average)
Part (a): We first determine the specific angular momentum h,

h= [ Ueigee (1+ €) = /398,600 x 6600 (1+1) = 72,540 km? /s

and then the mean anomaly for 6 = 90°,

17
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1 o 1 3( 60 1 1 3
M , o =—tan| — |+—tan’ | — |=—xtan(45°)+—xtan” (45°
p,9—90 2 (2j 6 (2j 2 ( ) 6 ( )
. Mp’0:900 = 0.667

The corresponding time tg_qqo is given by equation (3.31) in the text,

W 72,540°

tooo= =TT 0667 =1602 s
=907 2 PO 398 600>

The time required to coast from coast is twice this value, or tg—_ggot 900 = 2 X
1602 = 3204 s =53.4 min.
Part (b): The mean anomaly 36 hours after passing through the perigee is

Pt 398,600% x(36x3600)

M
P 72,540°

=53.94

so that, solving Barker’s equation for tan(6/2), we get

tan(gj - {3Mp +J(3m,) +1T/3 —{3Mp +J(3m,) +1}

% 2 /3 2
.'.tan[5j=[3x53.94+\/(3x53.94) +1} —[3x53.94+\/(3><53.94) +1}

C.tan (gj =6.720
2

0 =2arctan (6.720) =163.1°

~1/3

~13

or

The corresponding radial position r is
r_ﬁ 1 _72,540" 1
p 1+cos@ 398,600 1+cos(163.1°)

=[305,680 km

B P3.16 (Precision: Average)
Part (a): The velocity at perigee is

Voeri eezl'2 2,” =1.2><”M:]3.19 km/s
pere rperigee 6600

The specific angular momentum is
h =6600x13.19 =87,050 km*/s
The eccentricity of the trajectory can be found from the orbit equation:
n o1 87,050 1

=L 5 6600 = x
i l+e 398,600 1+e

..e=1.880

Now, the eccentric anomaly F is related to the true anomaly 8 by equation (3.44q):

tanh L e—_ltan 4 = 1'Sg_lxtan %0 =0.553
2) Ve+1 \2) V1.88+1 2
.. F =2tanh™' (0.553)=1.245

The mean anomaly at 8 = 90° then becomes
Mh’goo - esinh(};‘goo ) - F900 - 1.88 X Sll’lh(l.245) = 1.245 = 1.749

=1 perigee Vperi gee

i perigee

so that, solving equation (3.34) for time,
398,600° 5 32
~1.749 =9.718x 107
1749
9.718x107*

2 32
M, g0 =%(€2—1)/ t — 1.749 =

" loge =1800s

18
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The time required for the spacecraft to coast from —90 degrees to +90 degrees is
twice this value, namely

[ope 10000 = 2x1800=3600 s =[1.0 h

Part (b): We begin by computing the mean anomaly 24 hours after the
craft has passed through perigee:

32 398,6007
1) t= Tom i3
87,050

To find the eccentric anomaly F, we must solve Kepler’s equation for a hyperbola
(eq. (3.40)):

x(1.88° —1)3/ "% (24x3600) = 83.96

M, =esinhF—F — 83.96=1.88sinh ' — F

This transcendental equation can be solved for F using MATLAB'’s fzero command:

>> £ = @(F) 83.96 - 1.88*sinh(F) + F;
X0 = 1;
fzero(f,x0)
ans =
4.5450

That is, F=4.545. We proceed to determine the true anomaly 6:

tan(gj _ et tanh(ﬁ) _ JLssxl, tanh(ﬁj =1.771
2 e—1 2 1.88—-1 2
.0 =2arctan(1.771) =121.1°
Finally, we establish the radial position r:
_h 1 87,0507 1
p 1+ecosd 398,600 1+1.88xcos(121.1°)

r

=1657,400 km

B P3.19 (Precision: Average)
MATLAB function kepler_U can be used to implement Algorithm 3.3:

clear
global mu
mu = 398600;
ro = 7200;
vro = 1;

a = 10000;
dt = 3600;

x = kepler U(dt, ro, vro, 1/a);

fprintf('\n Initial radial coordinate = %g', ro)
fprintf('\n Initial radial velocity = %g', vro)
fprintf('\n Elapsed time = %g', dt)

fprintf('\n Semimajor axis = %g\n', a)
fprintf('\n Universal anomaly = %g\n', X)

The output is:

Initial radial coordinate 7200

Initial radial velocity =1
Elapsed time = 3600
Semimajor axis = 10000

Universal anomaly = 229.341

As shown, the universal anomaly is y = 229.341 km'"2, Let us confirm this result
using equation 3.58. The first step is to solve the energy equation for v:

~v=[2x398,600x L _ ! =8.418 m/s
7200 2x10,000

Then, the azimuthal component of velocity follows from the Pythagorean
theorem:

v, = V2 =17 =/8.418% —1.0> =8.358 knv/s

The specific angular momentum is

19
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h=rv, =7200x8.358 = 60,180 km?/s

To compute the true anomaly, we make use of two equations. The first is the
equation for radial velocity v,

v =1.0 - %esiné’:l.O
Mesin@ =1.0 (1)
60,180
The second is the orbit equation:
2 2
r= h——l — 7200 = 60,180 X ! (IT)
U 1+ecosd 398,600 1+ecosé

Equations (1) and (Il) can be solved simultaneously using MATLAB's fsolve function;
in the following code snippet, x(17) is eccentricity and x(2) is true anomaly.

function f = orbitProb(x)

f(1) = 398600/60180*x(1)*sin(x(2)) - 1;

f(2) = 7200 - 60180°2/398600%1/(1 + x(1)*cos(x(2)));
>> fun = @orbitProb;

>> fun = @orbitProb;
x0 = [0.1, 0]
x = fsolve(fun,x0)
X =
0.3023 0.5229
Hence, e =0.302 and 8 = 0.523 rad = 29.97°. Then, we compute the time at the
initial true anomaly as follows:

tan(ﬂj: I_—etan(ﬂ): /ﬂxtan(&23 =0.196
2 I+e 2 1+0.302 2

.. E; =2arctan (0.196) = 0.387 rad

M, =E, —esinE; =0.387—-0.302 xsin(0.387) = 0.273 rad

M 0.273){ 21

t, = 1 T:
: /398,600

27 27
=9952

t,=4324s
Then, we proceed to determine E one hour later:

t, =1, +3600 = 4032 s

%10, ooo”}

M, =2y = 27 4032 =2.546 rad
T 9952
E, —esin(E,)=M, — E,—0.302sin(E,)=2.546
- E, =2.680 rad

At last, the universal anomaly is given by equation (3.58):

1 =a(E, —E;)=1/10,000 x(2.680-0.387) = [229.3 km"?

B P3.20 (Precision: Average)

Algorithm 3.4 can be executed with the code rv_from_rOv0.m; all we have
to dois insert as inputs the initial position vector ro, the initial velocity vector vo,
and thetimet=2h=2 x 3600=7200s.

global mu

mu = 398600;

RO = [20000, -105000, -19000];
Ve = [0.9, -3.4, -1.5];

t = 2*3600;
[R, V] = rv_from_reve(Ro, Vo, t);
fprintf('\n Initial position vector (km):")

fprintf('\n re = (%g, %g, %g)\n', RO(1), RO(2), RO(3))
fprintf('\n Initial velocity vector (km/s):')

20
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fprintf('\n vo = (%g, %g, %g)\n', Vo(1l), Vve(2), vo(3))
fprintf('\n\n Elapsed time = %g s\n', t)

fprintf('\n Final position vector (km):")

fprintf('\n r = (%g, %g, %g)\n', R(1), R(2), R(3))
fprintf('\n Final velocity vector (km/s):")
fprintf('\n v = (%g, %g, %g)"', V(1), V(2), V(3))

The output is:
Elapsed time = 7200 s

Final position vector (km):
r = (26337.8, -128752, -29655.9)

Final velocity vector (km/s):
v = (0.862796, -3.2116, -1.46129)

Hence, after two hours, the final position and velocity vectors are, respectively:

r =26,337.8i—-128,752j—-26,655.9k| km

v=0.862796i-3.2116j—1.46129k | km/s

B P4.3 (Precision: Average)
The norms of the inertial position and velocity vectors are, respectively,

r = | = /25007 +16,000% + 4000% =16,681 km

vV =y(=3) +(=1) +5% =5.916 kns
The radial component of velocity is such that

rv 2500x(—3)+16,000x(—1)+4000><5

v, r 16,681 =-0.210 km/s
The angular momentum vector is given by the cross product
| J K
h=rxv=[2500 16,000 4000f=_84,000I-24,500J +45,500K (krn2 /s)
-3 -1 5

which has norm h = ||h|| = 98,620 km?/s. The second orbital element we require is

the inclination i:
i=cos ! h—z =cos™! 45,500 =162.52°
h 98,620

The node line vector N is, in turn,

N =K xh = 24,5001 + 84,000J (km?/s)

and the corresponding magnitude is N = ||N|| = 87,500 km?2. Then, the right
ascension of the ascending node Q becomes

Q=cos! & =cos! 24,500 =1(73.74°
N 87,500

The eccentricity vector e is given by equation (4.10):

=5l

e=— - x|[ 59162 - 220500 r—16,681x(-0.210)v
398,600 16,681

b

1

e=————x[11.21r +3503v]
398,600

e= ;x[l1.21(25001+16,000J+4000K)+3503(—31—J+5K)}
398,600

-.e=0.04391+0.441J +0.156K

The corresponding magnitude is e = ||e|| = 0.468. The penultimate orbital element
we need is the argument of perigee, namely

21
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(N e _1( 24,5001 +84,000J 0.04391+0.441J +0.156K
@W=Cos | —-— [=cCoS .
87,500 0.468

~w=cos ' (0.931)=

Finally, the true anomaly is given by the equation listed in topic 13 of algorithm
4.2:

e

—1/ €
@=cos | —-
e

N =

0.468 16,681
.0 =cos ' (0.997)

Now, note that e - r = —3500, which means that 6 € (180°, 360°). Thus, the true
anomaly can only be (see eq. (4.313a))

0 =360°—cos ™' (0.997) =360°-4.439°={355.6°

The six orbital elements are summarized below.

Orbital Element Value

Specific angular momentum, h 98,620 km?/s
Inclination, i 62.52°
Right ascension of ascending node, Q 73.74°
Eccentricity, e 0.468
Argument of perigee, w 21.43°
True anomaly, 6 355.6°

B P4.5 (Precision: Average)

The calculations are identical to those of Problem 4.3. We can speed things
up by using MATLAB code coe_from_sv as provided in Appendix D.18. The inputs
are vectors r and v and the gravitational parameter u.

r = [6500, -7500, -2500];
v = [4J 3, '3])
mu = 398600;

elements = coe_from_sv(r,v,mu);

fprintf('The specific angular momentum is %g\n', elements(1))
fprintf('The eccentricity is %g\n', elements(2))

fprintf('The R.A. of the ascending node is %g\n', elements(3))
fprintf('The inclination is %g\n', elements(4))

fprintf('The argument of perigee is %g\n', elements(5))
fprintf('The true anomaly is %g\n', elements(6))

Here's the output:

The specific angular momentum is 58655.8
The eccentricity is 0.222606

The R.A. of the ascending node is 1.87747
The inclination is 0.566272

The argument of perigee is 1.2629

The true anomaly is 2.35141

The orbital parameters are summarized below.

Orbital Element Value
Specific angular momentum, h 58,656 km?/s
Inclination, i 0.566 rad
! (32.43°)
. . . 1.877 rad
Right ascension of ascending node, Q (107.5°)
Eccentricity, e 0.223
Argument of perigee, w 1.263 rad
9 perigee, (72.36°)
2.351 rad
True anomaly, 6 (134.79)

B P4.6 (Precision: Average)
The magnitudes of the position and eccentricity vectors we were given are,
respectively,

r =] = | (~6000)* +(~1000)? + 50007 = 7874 km

e =] =v0.4> +0.5> +0.6> =0.877
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As stated, the satellite is approaching perigee; thus, the true anomaly may be
computed from the second of egs. (4.13q):

0 = 360°—cos~! (S'Ej — 360°—cos”! (—0.41 ~0.5J —0.6K —6000I —1000J —SOOOKJ
0.877 7874

e r

5.0 =360°—cos” (0.854) =360°-31.35°=[328.65°

B PA4.7 (Precision: Average)
We first compute the unit normal w to the orbital plane:

rxe

W =
<]

where
| J K

rxe=|—6600 —1300 -5200{=-1820I-1880J +2780K km
-04 05 0.6

and the corresponding norm is

[ x| = V18207 +1880* + 2780 = 3818 km

so that
W= —1820I —1880J + 2780K

3818

=-0.4771-0.492J +0.728K

It remains to compute the inclination i:
i=cos™'w, =cos™ (0.728) =|43.28°

B P4.14 (Precision: Average)
The solution procedure is analogous to the one adopted in Example 3.7,
page 175. We begin by computing the magnitudes

7o = /5000 +8000% + 21002 = 9665 km
vy =V4* +3.57 +3% =6.103 km/s

We also need the radial component of velocity,
_Vorg —5000><(—4)—8000><(3.5)—2100><(—3)
o 9665

=-0.176 km/s

vr,O

and the reciprocal a of the semimajor axis,

L2 w2 6103
r, m 9665 398,600

=1.135x10™* km™!

We can speed things up by calculating the universal anomaly with kepler_U:

global mu

mu = 398600;

dt = 50*%60;

ro = 9665;

vro = -0.176;

a = 1.135e-4;

x = kepler_U(dt, ro, vro, a)
X =

212.3778

As shown, kepler_U returns y =~ 212.4 km'2. Next, Lagrange coefficients f and g
can be determined with code f_and_g.m (Appendix D.15 in the text):

X = 212.4;
t = 50%60;
ro = 9665;

a = 1.135e-4;
[fLag, glLag] = f_and_g(x, t, ro, a)

fLag =
-0.4933

glLag =
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1.0445e+03

As shown, f_and_g returns f ~ —0.493 and g ~ 1045 s™. Substituting into
equation (3.67) brings to

r = fr,+ gvy = —0.493x (50001 — 8000 — 2100K )
+1045 x (—41+3.5J —3K) =[=17151 + 7601 —2100K | km

Finally, to find the updated velocity vector v, we need derivatives f and g, which
are given by equations (3.69¢) and (3.69d), respectively. The calculation of these
coefficients can be automated with the accompanying function fDot_and_gDot:

X = 212.4;
t = 50%60;
ro = 9665;

r = norm([-1715,7601,-2100]);
a = 1.135e-4;
[fDotLag, gDotLag] = fDot_and_gDot(x, r, ro, a)
fDotLag =
-5.8499e-04
gDhotlLag =

-0.7884

As shown, the results are f ~ —5.850x10~*s" and g = —0.788. Substituting into
equation (3.68) yields

r=fry+ &vy =—(5.850x10™")x(~50001 - 8000J — 2100K )

~0.788 x (—41 +3.5J - 3K ) = [6.0771 +1.922J +3.593K | km/s

In the second method, we first compute the classical orbital elements using the
coe_from_sv code:

R [-5000, -8000, -2100];

V = [-4, 3.5, -3];

mu = 398600;

elmnts = coe_from_sv(R,V,mu);

fprintf('The spec. ang. momentum is %g\n', elmnts(1l))

fprintf('The eccentricity is %g\n', elmnts(2))

fprintf('The right ascension of ascending node is %g\n', elmnts(3))
fprintf('The inclination of the orbit is %g\n', elmnts(4))
fprintf('The argument of the perigee is %g\n', elmnts(5))
fprintf('The true anomaly is %g\n', elmnts(6))

The spec. ang. momentum is 58963

The eccentricity is 0.100957

The right ascension of ascending node is 1.3633
The inclination of the orbit is 2.56718

The argument of the perigee is 0.150736

The true anomaly is 3.40226

The true anomaly 6 = 3.402 rad = 194.9°, and the period T is calculated as

T_2_7r h 2z y 58,963 _3030 g
i 1—e? ) 398,600° (1-0.1012
We proceed to determine the time since perigee passage at true anomaly 6 =
194.9°:

2 I+e 2 V1+0.101 2

-, Ey =2arctan (—6.901) = —2.854 rad

M, =E,—esinE, =-2.854-0.101xsin(-2.854) = —2.825 rad

ty = Mo p 22825 6230 — 37016
2 2
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The negative sign means time until perigee passage. We press on to update the
true anomaly of the spacecraft at t = to + 50x60 = —701 s:

701
Mozt 222 TN 535 pad
T 8232

M =FE—-esinE — —0.535=E-0.101sin E
- E=-0.591 rad (Numerical solution)

(9} l+e (Ej /1+O.101 (—0.591j
tan| — |=,[—tan| — |=,|——— x tan =-0.337
2 l-e 2 1-0.101 2

.0 =2arctan(-0.337) = -37.25°

Then, position vector {r}; and velocity vector {v}3 in perifocal coordinates are
given by equations (4.45) and (4.46), respectively:

cosd cos(—37.25°)

2 2
{r}; LA S sin @ _38.963 ! sin (—37.25°)
X ul+ecos 0 398,600 1+O.101><cos(—37.25°)

cos(—37.25°)
8073| sin(—37.25°)
0
6426
~{r}, =| 4887 | km
0
—siné —sin(-37.25°)
{V}X, —Hl etcoso :398’6OO>< 0.101+cos(—37.25°)
h 58,963
0 0
4.092
v} = 6.064 | kms
0

Next, we calculate the matrix [Q];zx of the transformation from perifocal to
geocentric equatorial coordinates:

cArt e

—sinQcosisin®+cosQcos® cosf2cosisin®+sin{2cosw sinisin @
[Q])’@: —sinQcosicosw—cosQ2sin® cos2cosicosm—sinQsin®  sinicosw

sin Qsini —cosQsini cosi

0327 0781  0.532
~[Q]s =| 0941 -0318 -0.112
0.0816 0.537  —0.840

We now have enough information to carry out the transformation from perifocal
to geocentric equatorial components:

0327 0781  0.532 [ 6426
{r}c=[Qly{r}. =| 0.941 0318 -0.112 || -4887
0.0816 0.537 -0.840] 0

>> QxX = [0.327, ©.781, 0.532; 0.941, -0.318, -0.112; 0.0816, 0.537,
-0.840];

>> rx = [6426, -4887, 0]';

>> mtimes (QxX, rx)

ans =
1.0e+03 *

-1.7154
7.6009
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-2.1000

That is,

Ir =—17151+7601J — 2100K | km

Likewise for the velocity vector:
0.327 0.781 0.532 || 4.092
{V}X = [Q]ﬁ {V}E = 0.941 -0.318 -0.112 | 6.064

0.0816 0.537 —0.840 0

>> vx = [4.092, 6.064, 0]';
>> mtimes (QxX,vx)

ans =

6.0741
1.9222
3.5903

That is,

lv=6.0741 +1.922J +3.590K | km/s

B P4.15 (Precision: Average)
Part (a): The specific angular momentum for this orbit is

h=J1(1+ €) Fyeigee = /398,600 (1+1.5)x (6378 +300) = 81,576 km” /s

The perifocal radial position is given by equation (4.45):

5 cos® ) cos(0)
h 1 ) 81,576 1 .
{r}fz_l— sin@ | = X sin (0)
1 1+ecos® 0 398,600 1+1.5cos(0)
1
- {r}. =6678| 0
0

~{r}. =6678p km

The perifocal velocity is given by equation (4.46):

—sind —sin(0)
{V},zﬁ e+cosd :398’600x 1.5+ cos(0)
Y oh 81,576
0 0
0
v} =4.886x| 2.5
0

v}, =12.22q km/s

Part (b): To compute the geocentric equatorial components, we first write
down the transformation matrix

—sinQcosisinw+ cosQcosw cosf2cosisin®+sinQcosw  sinisin @
[Q])’@: —sinQcosicosw—cosQ2sin® cos2cosicosw—sinQsin®  sinicosw

sin Qsini —cosQsini Ccosi

~0.297 0.848 0.439
~[Q]s =| —0.801 -0.472 0.369
0.520 -0.242 0.819

Then, we perform the pertaining matrix multiplication using MATLAB:

>> QxX = [-0.297, ©.848, 0.439; -0.801, -0.472, 0.369; 0.520, -0.242,
0.819];

>> rx = [6678, 0, 0]"';

>> mtimes(QxX, rx)

ans =
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1.0e+03 *

-1.9834
-5.3491
3.4726

Thus,

{r}¢ =[Q] {r}. =[-19831 —5349J +3473K| km

Proceeding similarly with the velocity vector:

>> vx = [0, 12.22, 0]';
mtimes (QxX, vx)

ans =

10.3626
-5.7678
-2.9572

Thus,

(v} =[Q]; {v}, =110.361 - 5.768] — 2.957K | km/s
B P4.16 (Precision: Average)
Part (a): The true anomaly at time t =2 x 3600 = 7200 s is calculated as

u (& _1)3/2 . 398,600

M. = -
R 81,576°

(1.52 - 1)3/ 2 7200 = 2.945

esinhF—F =M, — 1.5xsinhFF—-F =2.945

- F=1.886 (Numerical solution)

anl &)= [ ann( ]2 L annl 1886 ) 2 647
2 )"\ e 2 ) V151 2

0= 2arctan(1.647) =117.5°

The distance vector in perifocal coordinates is given by equation (4.45):

5 cos@ ) cos(117.5°)
h 1 . 81,576 1 ) o
{r},:—— sin@ | = X s1n(117.5 )
¥ 1 l+ecosd 0 398,600 1+1.5xcos(117.5°)
—-0.462
{l’}f =54,315| 0.887 |=]-25,093p +48,177q| km
0

The velocity vector in perifocal coordinates is given by equation (4.46):

—siné 398 600 —sin(117.5°)
{V},:ﬁ e+cosf |=—== x| 1.5+ cos(117.5°)
Y h 81,576
0
—0.887
'.'{V}E =4.886x| 1.038 |=|-4.334p +5.072q| km/s
0

Part (b): The same transformation matrix used in Problem 4.15 also applies
here:

~0.297 0.848 0.439
[Q]. =| —0.801 -0.472 0.369
0.520 —0.242 0.819

The matrix multiplications we require can be automated with MATLAB; firstly, for
the position vector in geocentric coordinates:

27

© 2022 Montogue Quiz



>> QxX = [-0.297, ©.848, 0.439; -0.801, -0.472, 0.369; 0.520, -0.242,
0.819];
rx = [-25093, 48177, 0]';

mtimes (QxX,rx)

ans =
1.0e+04 *
4.8307
-0.2640
-2.4707

Thus,

{r}; =[Q]; {r}. =[48,3071-2640J —24,707K| km

Similarly, the velocity in geocentric coordinates is such that
>> vx = [-4.334, 5.072, 0]';
mtimes (QxX,vx)

ans =
5.5883
1.0776
-3.4811

That is,

iz

B P4.18 (Precision: Average)

Part (a): The calculations are identical to the ones in Problem 4.15. Note
that the specific angular momentum is missing; calculating it is effortless:

[Q]; {v}, =15.5881+1.078J —3.481K | km/s

h=\J1 (14 €) Fyogigee =[398,600x (1+1.2)x 6578 = 75,950 km” /s

Then, the perifocal state vector can be found from equations (4.45) and
(4.46):

5 cosd 5 cos0
h 1 . 75,950 1 i
{r},:—— sin@ | = X x| sin0
Y ul+ecosf 0 398,600 1+1.2xcos0
1
.'.{r}f=6578>< 0 |={6578p km
0
—sin@ 208,600 —sin0
{V},zﬁ e+cosf :9’—>< 1.2+ cos0
*h 75,950
0
S vl =5.25%(1.2 | =|6.3q km/s
0

Part (b): Again, the calculations are identical to part (b) of Problem 4.15.
We can speed things up by using the MATLAB code sv_from_coe.m in Appendix
D.22. This function takes two inputs: The first is a vector containing six orbital
elements; the second is the gravitational parameter p.

mu = 398600; %Gravitational parameter

ecc = 1.2; %Eccentricity

rperigee = 6578; %Radial distance of perigee

inc = 50*pi/180; %Inclination

RA = 75*pi/180; %Right ascension of ascending node

w = 80*pi/180; %Argument of perigee

TA = 0; %True anomaly

h = sgrt(mu*(1l+ecc)*rperigee); %Specific angular momentum
elements = [h, ecc, RA, inc, w, 0];

[r,v] = sv_from_coe(elements, mu)

Here’s the output:
r =
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1.0e+03 *
-3.7265 2.1811 4.9625

T -4.1878 -10.6496 1.5359
That is,

{r})? =-37271+2181J +4963K | km
and

[V} =—4.1881+10.65J +1.536K| knvs

B P4.19 (Precision: Average)
Part (a): The first step is to update the true anomaly 8 for 2 hours past
perigee:

2 3/2 2 3/2
M, :ﬂ_(e2 _1) / tzwx(lf —1) 2 7200 = 0.762
75,950°

esinh(F)~F =M, — 1.2sinh(F)-F =0.762

. F=1.317 (Numerical solution)

tan 9 :‘/e—ﬂtanh F — tan 4 = 1'2+1tanh 1317 =1.915
2 e—1 2 2 1.2-1 2

.0 =2arctan(1.915) =124.9°

As before, the perifocal state vectors can be found from equations (4.45) and
(4.46):

) cosd ) cos(124.9°)
oo | 75,950 I . .
{r}_=————|sind |= x x| sin(124.9°)
T utrecosd| 7| T398,600 1+1.2xcos(1249°) .
-0.572
~{r}. =46,173x| 0.820 |=[~26,411p+37,862q] km
0
—sind —sin(124.9°)
{V},:ﬁ e+cosf@ :Mx 1.2+cos(124.9°)
Y oh 75,950
0
-0.820
v}, =5.248x] 0.628 |=|-4.303p +3.260q| km/s
0

Part (b): We can employ the same MATLAB routine as in Problem 4.18,
remembering to update the true anomaly to 6 = 124.9°:

mu = 398600; %Gravitational parameter

ecc = 1.2; %Eccentricity

rperigee = 6578; %Radial distance of perigee

inc = 50*pi/180; %Inclination

RA = 75*pi/180; %Right ascension of ascending node

w = 80*pi/180; %Argument of perigee

TA = 124.8*pi/180; %% True anomaly after 2 h = 124.9 deg
h = sgrt(mu*(1+ecc)*rperigee); %Specific angular momentum
elements = [h, ecc, RA, inc, w, TAJ;

[r,v] = sv_from_coe(elements, mu)

Here's the output:
r =
1.0e+04 *

0.1170 -4.3470 -1.4755

1.2435 -4.4751 -2.8118
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That is,

{ } =11701-43,470J —14,755K| km

and

{ } =1.2441-4.475J - 2.812K| km/s

B P5.4 (Precision: Average)
The magnitudes of the given position vectors are

]| = /36007 + 46007 + 3600 = 6861 km

[, ]| = /35007 + 62407 +5200> = 9810 km

Assume a prograde trajectory. The z-component of vector r1 X r2 =4.776x108 km,
which is positive and hence indicates that A8 can be determined with the first of
eqgs. (5.26):

AG = cos | T2 | = cos™! 3600 x (~5500) + 4600 x 6240 + 3600 x (~5200)
6861x9810

- A =cos ™' (~0.156) =98.97°

nn

We also need parameter A:

A=sin(A6) 1”—’"2(A0) = 5in(98.97°) x \/1 6861;‘99889130) — 7537 km
—COS —COS .

To compute function F(z), we refer to equation (5.40):

3/2
I n+r+ &)_1 z)+ A4 [r+r+ %— t
F(Z)_ C(Z)[l 2 4 C(Z)} S() A\/l 2 Am \/;A

The following MATLAB script can be used to solve the equation F(z) = 0:

mu = 398600;

deltat = 1800;

rl = 6861;

r2 = 9810;

A = 7537;

y = @(z) ((rl1 + r2 + A¥(z*stumpS(z)-

1)/sgrt(stumpC(z)))/stumpC(z))"1.5*stumpS(z) ...
+ A*sgrt(rl + r2 + A*(z*stumpS(z)-1)/sqrt(stumpC(z))) -

sqrt(mu)*deltat;

20 = 1;

fzero(y,z9)

ans =
2.0151

The solution is z=2.015; since z > 0, the orbit is an ellipse. We proceed to evaluate
the Stumpf functions at z:

>> [stumpS(2.015), stumpC(2.015)]
ans =
0.1507 0.4215

Therefore, $(2.015) =0.151 and C(2.015) = 0.422. We proceed to compute
Lagrange parameters f and g, which first requires

S(z)-1 . 151—
y:rI+r2+A£:6861+9810+7537x2OISXO151 L8599
JC(z) J0.422
so that
i 686l

g= A\/Z 7537|5222
7,
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and, using equation (5.28):

v, = é(r2 —fr)= 107 x[ (~55001 + 6240J — 5200K ) —(—0.253) x (36001 + 4600J +3600K ) |
Sovp =—4.1461 + 6.688J —3.875K km/s

The magnitude of v is 8.771 km/s. It remains to compute the specific energy ¢:

_vi p_8771° 398,600
2 5 2 6861

~19.63 (km/s )’

B P5.5 (Precision: Average)
Since we have velocity and position vectors, we may compute the specific
angular momentum vectorially:
i j k
h=rxv,=|3600 4600 3600 |=-41,902i-976j+ 43,148k (kmz/s)
-4.146 6.688 —3.875

- [n] = /41,9027 + 976* + 43,148 = 60,154 (km®/s)

We also need the orbital eccentricity,

2 2
e= 142t vp 21 1+—60’1542x(8.7712——2X398’600):0.325
u 7 398,600 6861

so that

) R 1 60,1547 1

=— = X = 6851 km
P ul+e 398,600 1+0.325

Deducting the earthly radius,

z,=r,—6378=1473 km

In turn, the inclination i is

i=cos™! (};—ZJ ~cos”! (43’148j =144.17°

60,154

B P5.6 (Precision: Average)

We can easily solve this Lambert’s problem with code lambert.m, which is
provided in Appendix D.25. This code takes four inputs. The first two inputs are
position vectors rq and ry; the third is the time of flight from ry to ry; the fourth is a
string to which we assign value ‘pro’ if the orbit is prograde or ‘retro’ if the orbit is
retrograde. The outputs are velocity vectors vi and va. Implementing the code in
the problem at hand is straightforward:

global mu

mu = 398600;

rl = [5644, -2830, -4170];
r2 = [-2240, 7320, -4980];
dt = 20*%60;

string = 'pro’;

[vi, v2] = lambert(rl, r2, dt, string);

fprintf('Solution:\n")
fprintf('\n vl (km/s)
fprintf('\n v2 (km/s)

[%g, %g, %gl', vi(1), vi(2), vi(3))
[%g, %g, %gl\n', v2(1), v2(2), v2(3))

Here’s the output:

vl (km/s) = [-4.13223, 9.01237, -4.3781]
v2 (km/s) = [-7.28524, 6.31978, 2.5272]
That is,

v, =—7.2851+6.320J + 2.527K| km/s

v, =—4.1321+9.012J —4.378K| km/s
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B P5.7 (Precision: Average)
The orbital elements can be determined by using coe_from_sv.m with ry
and v as inputs. That is:

global mu
mu = 398600;
rl = [5644, -2830, -4170];

vl = [-4.132, 9.012, -4.378];
elements = coe_from_sv(rl, vi, mu);

fprintf('Spec. Ang. Momentum (km”~2/s): %g\n', elements(l))
fprintf('Eccentricity: %g\n', elements(2))

fprintf('R.A. of Ascending Node (deg): %g\n', elements(3)*180/pi)
fprintf('inclination (deg): %g\n', elements(4)*180/pi)
fprintf('Argument of Perigee(deg): %g\n', elements(5)*180/pi)
fprintf('True Anomaly (deg): %g\n', elements(6)*180/pi)
fprintf('Semimajor axis (km): %g\n', elements(7))

Here’s the output:

Spec. Ang. Momentum (km”*2/s): 76093.6
Eccentricity: 1.20037

R.A. of Ascending Node (deg): 130.007
inclination (deg): 59.0184

Argument of Perigee(deg): 259.981
True Anomaly (deg): 320.021

Semimajor axis (km): -32948

The six orbital elements are summarized below.

Orbital Element Value

Specific angular momentum, h 76,094 km?/s
Inclination, i 59.02°
Right ascension of ascending node, Q 130.0°
Eccentricity, e 1.200
Argument of perigee, w 260.0°
True anomaly, 6 320.0°

Finally, we were also asked to compute the perigee altitude:
. :ﬁ 1 :76,0942x 1
PEIESE i 1+e 398,600 1+1.20

—6378 =|225 km

= 6603 km

Zperigee = rperigee

B P5.12 (Precision: Average)
The MATLAB code rv_from_observe.m can be used to compute the state
vector of a space object from the given data. The pertaining code follows:

Variables
deg - Conversion factor used to convert from degrees to radians
mu - Gravitational parameter

Re - Equatorial radius of the earth (km)

f - Earth's flattening factor

WE - Angular velocity of the Earth (rad/s)

omega - earth's angular velocity vector (rad/s) in the geocentric
equatorial frame

rho - slant range of object (km)

rhodot - range rate (km/s)

A - azimuth (deg) of object relative to observation site

Adot - Time rate of change of azimuth (deg/s)

a - Elevation angle (deg) of object relative to observation site
adot - Time rate of change of elevation angle (deg/s)

theta - Local sidereal time (deg) of tracking site
phi - Geodetic latitude (deg) of site
H - Elevation of site (km)

r - Geocentric equatorial position vector of object (km)
v - Geocentric equatorial velocity vector of object (km/s)

rp - Perigee radius (km)

coe - Orbital elements [h e RA inc w TA a]
h - Spec. angular momentum (km"2/2)
e - Eccentricity

3R 3R 3R 3R 3R 3R 3R 3R 3% 3R 3R 3R 3R 3R 3R 3R 3% 3% R 3% 3% 2R R 3% 3 R ¥ X
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% RA - Right ascension of the ascending node
(rad)

% inc - Inclination of the orbit (rad)
% w - Argument of perigee (rad)

% TA - True anomaly (rad)

% a - Semimajor axis (km)

global f Re wE mu
deg = pi/180;

f = 0.0033528;

Re 6378;

wE = 7.2921e-5;
mu = 398600;

rho = 988;
rhodot = 4.86;
A = 36;

Adot = 0.59;

a = 36.6;

adot = -0.263;
theta = 40;
phi = 35;

H = 0;

[r,v] = rv_from_observe(rho, rhodot, A, Adot, a, adot, theta, phi,
H);

fprintf('\nState vector:\n")

fprintf('\n r (km) = [%g, %g, %gl', r(1), r(2), r(3))

fprintf('\n v (km/s) = [%g, %g, %g]\n', v(1), v(2), v(3))

Here’s the output:

State vector:

r (km) = [3794.66, 3792.71, 4501.31]
v (km/s) = [-7.72483, 7.72134, 0.0186586]
That is:

Ir =37951 +3793J + 4501K | km

lv=-7.7251+7.721J + 0.0187K | km/s

B P5.13 (Precision: Average)
Equipped with position vector r and velocity vector v, we can easily obtain
the orbital elements using code coe_from_sv.m in Appendix D.18:

deg = pi/180;
mu = 398600;

r
\'%

[3795, 3793, 4501];
[-7.725, 7.721, ©.0187];

elements = coe_from_sv(r,v,mu);

fprintf('\n The spec. angular momentum is (km”~2/s): %g', elements(1l))
fprintf('\n The eccentricity is: %g', elements(2))

fprintf('\n The right ascension is (deg): %g', elements(3)/deg)
fprintf('\n The inclination is (deg): %g', elements(4)/deg)
fprintf('\n The argument of perigee is (deg): %g', elements(5)/deg)
fprintf('\n The true anomaly is (deg): %g', elements(6)/deg)
fprintf('\n The semimajor axis is (km): %g\n', elements(7))

Here’s the output:

The spec. angular momentum is (km”~2/s): 76491.2
The eccentricity is: 1.09593

The right ascension is (deg): 315.132

The inclination is (deg): 39.9925

The argument of perigee is (deg): 89.8108

The true anomaly is (deg): 0.0767075

The semimajor axis is (km): -73007.7

The orbital elements are summarized below.
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Orbital Element Value
Specific angular momentum, h 76,491 km?/s
Inclination, i 39.99°
Right ascension of ascending node, Q 315.1°
Eccentricity, e 1.096
Argument of perigee, w 89.81°
True anomaly, 6 0.0767°

B P5.14 (Precision: Maximum)

The local sidereal time 6, azimuth A, angular elevation a and slant range p
are provided at three observation times. The rates are not provided, but we can
use function rv_from_observe.m, provided in Appendix D.28, to find the position
vectors at each of the times. The code is listed below; note that zeros are passed
to the rate variables.

% Variables

% deg - Conversion factor used to convert from degrees to radians
%

Re - Equatorial radius of the earth (km)

f - Earth's flattening factor

t - Vector of three observation times (min)

rho - Vector of slant ranges (km) of the object at the three
observation

% times

% az - Vector of azimuths (deg) of the object relative to the
observation

% site at the 3 observation times

% el - Vector of elevation angles (deg) of the object relative to the
observation site at the 3 observation times

3R 3R 3« ¥ R

B

3 o

theta - Vector of local sidereal times (deg) of the tracking site

at

% the 3 observation times

% phi - Geodetic latitude (deg) of site

% H - Elevation of site (km)

%

% r - Geocentric equatorial position vector of object (km)

global f Re wE
deg = pi/180;
Re = 6378;

f = 0.0033528;

phi = -20;
H = 0.5;

t = [0, 2, 4];

theta = [60, 60.5014, 61.0027];

az = [165.931, 145.967, 2.40962];
el = [9.53549, 45.7711, 21.8825];
rho = [1214.89, 421.441, 732.079];

fprintf('\n\n Solution')
fprintf('\n\n Time")
fprintf('\n (min)  Geocentric position vector (km)\n")
for i = 1:3

[r,v] = rv_from_observe(rho(i), 0, az(i), 0, el(i),

0, theta(i), phi, H);

fprintf('\n %5.1f [%g, %g, %g]\n', t(i), r(1), r(2), r(3))

end

Here's the output:

Time
(min)  Geocentric position vector (km)

0.0 [2641.68, 5158.02, -3328.73]
2.0 [2908.04, 5474.36, -2500.03]
4.0 [3118.6, 5685.65, -1623.34]

Accordingly, the three position vectors are

r, =2641.71+5158.0J —3328.7K km
r, =2908.0I +5474.4J —2500.0K km
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r; =3118.61+5685.7J -1623.3K km

Now, we can apply Gibbs" method, implemented in file gibbs.m and listed in
Appendix D.24, to establish the velocity vector vz that corresponds to position
vector r2. The pertaining code follows:

global mu
mu = 398600;

%Position vectors

rl = [2642, 5158, -3329];
r2 [2908, 5474, -2500];
r3 = [3119, 5686, -1623];

%Applying algorithm 5.1
[v2, ierr] = gibbs(ri,r2,r3);

%Abort if the 3 pos, vectors are not coplanar:

if ierr == true
fprinf('\n These vectors are not coplanar. \n\n')
return

end

%0utput

fprintf(' Solution:")

fprintf('\n")

fprintf('\n v2 (km/s) = [%g, %g, %g]', v2(1), v2(2), v2(3))
fprintf('\n")

Here’s the output:

Solution:

v2 (km/s) = [1.994, 2.2064, 7.1306]

That is,
v, =1.9941 +2.2064J +7.1306K km/s

Finally, the state vector that describes the satellite at observation 2 is

r, =2908.0I +5474.4J —2500.0K| km

v, =1.9941 +2.2064J +7.1306K | km/s

B P5.15 (Precision: Maximum)

We've already obtained the pertaining position and velocity vectors in
Problem 5.14; all that’s left to do is insert these into function coe_from_sv.min
Appendix D.18:

r = [2908.0, 5474.4, -2500.0];

v = [1.994, 2.2064, 7.1306];

elements = coe_from_sv(r, v, 398600);

fprintf('\n Spec. angular momentum (km~2/m): %g', elements(l))
fprintf('\n Eccentricity: %g', elements(2))

fprintf('\n Right ascension (deg): %g', elements(3)*180/pi)
fprintf('\n Inclination (deg): %g', elements(4)*180/pi)

fprintf('\n Argument of the perigee (deg): %g', elements(5)*180/pi)
fprintf('\n True anomaly (deg): %g', elements(6)*180/pi)

Here’s the output:

Spec. angular momentum (km”2/2): 51639.8
Eccentricity: 0.0013425

Right ascension (deg): 60.0011
Inclination (deg): 94.9989

Argument of the perigee (deg): 290.811
True anomaly (deg): 47.1362

The orbital elements are summarized below.
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Orbital Element Value
Specific angular momentum, h 51,639.8 km?/s
Inclination, i 95.00°
Right ascension of ascending node, Q 60.00°
Eccentricity, e 0.001343
Argument of perigee, w 290.81°
True anomaly, 6 47.136°

m P5.16/17 (Precision: Maximum)

We first use equations (5.56) and (5.57) to convert the given data into
three tracking position vectors (R1, Rz, R3) and three direction cosine vectors (p4,
P2, p3). Afterwards, these vectors and the three observation times are inserted in
function gauss.m, which implements algorithms 5.5 (to compute an approximation
of the state vector (r,v)) and 5.6 (to iteratively improve the estimated state
vector).

global mu

mu = 398600;

Re = 6378; %Earthly radius

f = 1/298.26; %Earth's flattening

deg = pi/180; %Angle conversion factor

H = 0; %Elevation of observation site

phi = 29*pi/180; %Latitude of site

t = [0, 60, 120]; %Vector containing times

ra = [0, 65.9279, 79.85]*deg; %Vector of topocentric equatorial right
ascensions

dec = [51.511, 27.9911, 14.6609]*deg; %Vector of topocentric
declination values

theta = [0, 0.250684, 0.501369]*deg; %Vector of local sidereal times

%Equations 5.56 and 5.57

factl = Re/sqrt(1-(2*f - f*f)*sin(phi)~2);
fact2 = (Re*(1-f)"2/sqrt(1 - (2*f - f*f)*sin(phi)”~2) + H)*sin(phi);
for i = 1:3

R(i,1) = (factl + H)*cos(phi)*cos(theta(i));
R(i,2) (factl + H)*cos(phi)*sin(theta(i));
R(i,3) = fact2;
rho(i,1) = cos(dec(i))*cos(ra(i));
rho(i,2) = cos(dec(i))*sin(ra(i));
rho(i,3) = sin(dec(i));

end

%Algorithms 5.5 and 5.6:
[r, v, r_old, v _old] = gauss(rho(1,:), rho(2,:), rho(3,:),
R(1,:), R(2,:), R(3,:),
t(1), t(2), t(3));

fprintf('\n\n Solution: \n")

fprintf('\n Without iterative improvement (Problem 5.16) \n')
fprintf('\n r (km) = [%g, %g, %g]', r_old(1l), r_old(2), r_old(3))
fprintf('\n v (km/s) = [%g, %g, %g]', v_old(1l), v_old(2), v_old(3))
fprintf('\n\n With iterative improvement (Problem 5.17) \n')
fprintf('\n r (km) = [%g, %g, %gl', r(1), r(2), r(3))

fprintf('\n v (km/s) = [%g, %g, %gl', v(1), v(2), v(3))

Here’s the output:
Solution:
Without iterative improvement (Problem 5.16)

r (km)

= [5788.09, 484.257, 3341.52]
v (km/s) = [

-0.460072, 8.05816, -0.265618]
With iterative improvement (Problem 5.17)

r (km)

= [5788.42, 485.007, 3341.96]
v (km/s) =

[-0.460926, 8.0706, -0.266112]

As shown, the state vector without iterative improvement is constituted of

r =5788.091 + 484.257J +3341.52K km
v =-0.46007I +8.05816J —0.265618K km/s

In turn, the results with iterative improvement are
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r =5788.421 + 485.007J +3341.96K km
v =-0.4609261 +8.0706J —0.266112K km/s

B P5.18 (Precision: Maximum)

At this point in the course, the student should know that the orbital
elements can be easily established by entering the position and velocity vectors
into coe_from_sv.m, which is provided in Appendix D.18. Here’s the code:

r = [5788.42, 485.007, 3341.96];
v = [-0.460926, 8.0706, -0.266112];
elements = coe_from_sv(r, v, 398600);

fprintf('\n Spec. angular momentum (km~2/m): %g', elements(1l))
fprintf('\n Eccentricity: %g', elements(2))

fprintf('\n Right ascension (deg): %g', elements(3)*180/pi)
fprintf('\n Inclination (deg): %g', elements(4)*180/pi)

fprintf('\n Argument of the perigee (deg): %g', elements(5)*180/pi)
fprintf('\n True anomaly (deg): %g', elements(6)*180/pi)
fprintf('\n Semimajor axis (km): %g\n', elements(7))

Here’s the output:

Spec. angular momentum (km”2/m): 54201.2
Eccentricity: ©.100054

Right ascension (deg): 270

Inclination (deg): 30.0001

Argument of the perigee (deg): 89.9993
True anomaly (deg): 4.15098

Semimajor axis (km): 7444.75

The orbital elements are summarized below.

Orbital Element Value
Specific angular momentum, h 54,201.2 km?/s
Inclination, i 30.00°
Right ascension of ascending node, Q 270.00°
Eccentricity, e 0.100054
Argument of perigee, w 89.9993°
True anomaly, 6 4.15098°

B P5.22/23 (Precision: Maximum)

We have the position vector set (R4, Rz, R3), the direction cosine vectors
(p1.p2.p3), and the corresponding times; we can use gauss.m (Appendix D.29) to
obtain the state vector of the satellite. Here’s the code:

t = [0, 60, 120];

R = [-1825.96, 3583.66, 4933.54;
-1841.63, 3575.63, 4933.56;
-1857.25, 3567.54, 4933.54];

rho = [-0.301687, 0.200673, 0.932049;
-9.793090, -0.210324, 0.571640;
-0.873085, -0.362969, ©.325539];

[r, v, r_old, v _old] = gauss(rho(1,:), rho(2,:), rho(3,:),
R(1,:), R(2,:), R(3,:),
t(1), t(2), t(3));

fprintf('\n\n Solution: \n")

fprintf('\n Without iterative improvement (Problem 5.22) \n')
fprintf('\n r (km) = [%g, %g, %g]', r_old(1), r_old(2), r_old(3))
fprintf('\n v (km/s) = [%g, %g, %»g]', v_old(1), v_old(2), v_old(3))
fprintf('\n\n With iterative improvement (Problem 5.23) \n')
fprintf('\n r (km) = [%g, %g, %gl', r(1), r(2), r(3))

fprintf('\n v (km/s) = [%g, %g, %g]', v(1), v(2), v(3))

Here’s the output:

Without iterative improvement (Problem 5.22)

r (km)

= [-2351.29, 3440.47, 5300.91]
v (km/s) = [

-6.62007, -3.88644, -0.414434]
With iterative improvement (Problem 5.23)

r (km) = [-2352.14, 3440.24, 5301.52]
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v (km/s) = [-6.63063, -3.89267, -0.415125]

As shown in the code, the state vector without iterative improvement is
constituted of

r =-2351.291+3440.47J +5300.91K km
v =—6.620071 —3.88644J —0.414434K km/s

In turn, the results with iterative improvement are

r =-2352.141 + 3440.24J + 5301.52K km
v =-6.630631-3.89267J —0.415125K km/s

B P5.24 (Precision: Maximum)

As usual, the orbital elements can be obtained with code coe_from_sv.m in
Appendix D.18.

r = [-2352.14, 3440.24, 5301.52];
v = [-6.63063, -3.89267, -0.415125];
elements = coe_from_sv(r, v, 398600);

fprintf('\n Spec. angular momentum (km~2/m): %g', elements(l))
fprintf('\n Eccentricity: %g', elements(2))

fprintf('\n Right ascension (deg): %g', elements(3)*180/pi)
fprintf('\n Inclination (deg): %g', elements(4)*180/pi)

fprintf('\n Argument of the perigee (deg): %g', elements(5)*180/pi)
fprintf('\n True anomaly (deg): %g', elements(6)*180/pi)
fprintf('\n Semimajor axis (km): %g\n', elements(7))

Here’s the output:

Spec. angular momentum (km”2/m): 51924.7
Eccentricity: ©.00306513

Right ascension (deg): 27.9986
Inclination (deg): 52.0013

Argument of the perigee (deg): 92.6061
True anomaly (deg): 1.32085

Semimajor axis (km): 6764.16

The orbital elements are summarized below.

Orbital Element Value
Specific angular momentum, h 51,924.7 km?/s
Inclination, i 52.0013°
Right ascension of ascending node, Q 27.9986°
Eccentricity, e 0.00306513
Argument of perigee, w 92.6061°
True anomaly, 6 1.32085°

B P6.1 (Precision: Minimum)
Part (a): Considering first the circular orbit, we have a radius r; = 6378 +
400 = 6778 km and a speed

v = [H = [228000 _ g 6ee ks
K 6778

For the elliptical orbit, in turn, we have 1, = 6778 km and 73, = 6378 + 300 =
6678 km. The specific angular momentum then becomes

Valn 57308600 x| 2T78X6678 _ 51 2gakm?/s
v 4r 6778+ 6678

whence we find the speed

by =22 2L T8Y 5 640 ks
2 t,, 6778

The value of Av follows as

A=

v, | =[7.640 - 7.668| = 0.028kms
S Av=28m/s
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Now, from the impulse theorem, denoting T as thrust,

TxAt=mxAv —> At = mx Av
Af = 125,000% 28 _[0s
50,000

Part (b): Since speed is not constant, the easiest way to proceed is to take
an average value v,y such that

+(v +A
y :M:V +AY 7668+ 9028 _ 7 682 kms
avg 7 1 B 2

and then multiply it by the burn time At:

As = v, At =7.682x70 =[538km

Part (c): The ratio we aim for is

As 538
= =0.0126 = -1.260/
Orbit circumference 27 x 6778 >

Part (d): Applying the rocket equation with a specific impulse /s, = 290 sec
read from Table 6.1:

Am —Av/Ispgo ( 0.028 j
. € P 7290%0.00981 [0.979%]

B P6.8 (Precision: Average)

Part (a): Orbit 1 is a circle associated with speed v;, namely

v = \/Z = /—398’600 =7.726 km/s
r 6378+300

Orbit 2 is a transfer ellipse with eccentricity

o — [apogee2 ~perigee2 _ (6378+3000)—(6378+300)
i Fapogee2 T Therigeez (0378 +3000) + (6378 +300)

=0.1682

and specific angular momentum

2 2
Toerigee,2 = h_2 1 — 6678 = h X 1
’ M l+e 398,600 1+0.1682
< hy = 55,764 km? /s
so that
o 5T
’ 6678

55,764
vapogee,2 = W =5.946km/s

Orbit 3 is a circle with speed v; computed as

vy = JZ = 2309 6 sr0kms
r 6378 +3000

We can proceed to determine the Av’s,

AV| = Vierigee2 — V1 = 8.350 = 7.726 = 0.624 ks

Av, = vy — Vapogee,2 = 6.520—-5.946 = 0.574km/s
Lastly,

AV = Ay + Av, = 0.624 +0.574 = [1.198 km/s

Part (b): We first compute the period of the transfer ellipse:

a, = %(rpmgee,z HFypogee ) = % x(6678+9378) = 8028 km/s
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32 x8028%% = 71595

72 2
P Ju 398,600

The orbit transfer time is half of this value, or tperigee to apogee = 3580 s =59.67
min.
B P6.11 (Precision: Average)

Let r be the radius of the smaller orbit 1 and 3r be the radius of the bigger
orbit 3. The speed of the spacecraft in smaller orbit 1 is

f,U H
Val =" = _:\/:
ry r

For the transfer orbit 2, the angular momentum of the spacecraft is given by

by =2 | = o 3 005 [
ry+ry r+3r

The speed of the spacecraft for orbit 2 at point A is given by

while at point B,
VB’z = "=
7

The speed of the spacecraft in bigger orbit 3 at point B is given by

Vg = \/Z = 2= 0.577\/Z
g 3r r

The total change in speed required for the orbit transfer is

Av = |VA,2 - VA,1| + |VB,3 — vB,2| = [|1.225 —1|+[0.577 - 0.408|] \/Z
r

©|Av=0.394, |2
r
B P6.13 (Precision: Minimum)

We first calculate the apogee radius of orbit 1, here labeled as rs:

rg +71y " g +7000
-1y =13,000 km

€

Similarly for orbit 2:

o7 5 D —-32,000
Iy + 10 rp +32,000

-7 = 96,000 km

We proceed to compute the angular momenta:

by =2 |4~ [2%308,600x 120013000 _ 6 530 km2 /s
ro+ T 7000 +13,000

hy =2 | = 24308 600x 22 000x96,000 30 350 1m?ss
Fe+ 1 32,000+ 96,000

hy =2 | AP~ [2%398,600xL000x90.000 _ ) 156 km? s
o 7000 + 96,000
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hy =20 |EC = 308,600 x12:000x32.000 o5 o5 k2
P 13,000+ 32,000

and the pertaining velocities:

p =M 00230 ¢ 604 ks
P T
3 77000
1 13,000

py = Ta 85850 cod ks
47 T 13,000

v, = 138320 s
2 T 732,000
4 T 32,000
2 796,000
3 796,000

The periods of orbits 3 and 4 are, respectively,

2w (r+r Y 2z 7000 +96,000 )"
=% - x ~116,310's
Jul 2 /398,600 2
-~ T,=3231h
2w (rg+r Y 2n 13,000+32,000 )"
I, =—F& = X =33,590 s
Jul 2 /398,600 2

~.T,=933h

Part (a): The minimum total Av; required for a transfer from the perigee of
the inner orbit to the apogee of the outer orbit is given by

AViggar =[vD 2 =V a|+[vas = v, | =[1.441-0.751/+[10.303 - 8.604

[Av = 2.389 km/s

The corresponding time of flight is T3/2=32.31/2=16.16 h.
Part (b): The minimum total Av; required for a transfer from the apogee of
the inner orbit to the perigee of the outer orbit is given by

AViggar = Vg4 = V| + Ve o = Ve o | =[6.604 - 4.633+[4.323 - 2.683

*[Avi =3.611 knv/s

The corresponding time of flight is T4/2 =9.33/2 =4.67 h.

B P6.14 (Precision: Minimum)
We first compute the pertaining radial distances:

=6378+302 = 6680 km

r apogee,1

=6378+296 = 6674 km

i perigee,1
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= 63784291 = 6669 km

. apogee,2

= 63784259 =6637 km

n perigee,2

1, =6378+259 =6637 km

Tapogeed = 6378 +255 = 6633 km
Trerigees = 6378 +194 = 6572 km

Then, we determine the momenta and the velocities:

r Poeri 6680x 6674
h — 2 apOgee,l perlgee,l :\/2)(398’ 600)(— — 51’590 kmz/s
TN \/ 6680+ 6674

rapogee,l + rperigee,l

ho 51,590

v 1= =7.723 km/s
ot apogee, 1 6680
Vperigee,1 = h = 51,590 =7.730 km/s
perigee,1 6674
by =2 |mosee2lberigee2 \/2>< 308,600 9009%6637 _ ¢ 50 e
rapogee,2 + rperigee,z 6669 + 6637
Vapogee,2 = ! = 51,500 =7.722 km/s
apogee,2 6669
Vperigee,z = h2 = 51’500 =7.760 km/s

663

i perigee,2

7
vy = [H = 220800 g 750 s
r \ 6637

7, ) A
h, =2u \/ apogeed perigeed \/2>< 308,600x 20330572 _ 51 300 km?/s

rapogee,4 + rperigee,4 6633 +6572
1
Vapogee,4 = & = 51,300 =7.734 km/s
rapogee,4 6633
Vperigee,4 = & = 21,300 =7.806 km/s
rperigee,4 6572

Now, for a transfer from the apogee of orbit 1 to the perigee of orbit 2, we must
have

r Voo
hyy = 2u |—oeslperigee? \/2 %398,600x 208030037 _ 5y 50 km? /s
a 6680 + 6637

r apogee, 1 + erigee,2

h12

AV12 = ~ Vapogee, 1 +

~ Vperigee,2

_ ‘51,520 _7‘723‘+‘51,520

—-7.760
. 6680 7

apogee, 1 perigee,2

- Avy, =0.0130 km/s

For transition from the perigee of orbit 2 to circular orbit 3, assumed tangent, the
delta-vis

For transition from circular orbit 3 to the perigee of orbit 4,

Y
hyy =20 | :\/2x398,600xw =51,310 km®/s

+ rperigee,4 6637 + 6572
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51,310
6572

I3

i perigee,4

A‘}34 = V3 ~ Vperigee,4

_‘51,310

~7.750|+
6637 ‘

- 7.806‘

5 Avy, =0.0205 km/s
Gleaning our results, we obtain the total delta-v:

AV = Avyy + Avys + Avy, = 0.013+0.010+0.0205 = 0.0435km/s

" Avtotal = 43.5 m/S

B P6.19 (Precision: Average)
Part (a): For the circular orbit of the space station,

r =6378+350=6728 km

r 6728

T :2_7[,,3/2: 27
< Ju /398,600

The time required for spacecraft A to reach the station is the time it takes for the
space station to fly around the original position of spacecraft A:

x 67282 = 54925 =91.53min

b, =T, 27r — 600 _ 5490 % 271 x6728 — 600 _
2xr 27 x6728

5414 s =190.23 min

The time required for spacecraft B to reach the space station is the time it takes
for the space station to fly around to the original position of spacecraft B:

1 =T, 2000 _ 5409, 2 X07284 600 _ 5o ¢ 105 R3min
2rr 27 %6728

Part (b): The period of spacecraft A’s phasing orbit is tss, as determined in
the previous part; the semimajor axis of that orbit follows as

2T 3P L sata=—2 g

to = a
SN PP J398,600
-, =6664 km

Spacecraft A is at the apogee of its phasing orbit. Resorting to the energy
equation, the corresponding speed is

V=, |1 2 1 = 398,6OOX(L—LJ:7.66Oknﬂs
roay 6728 6664

The delta-v required to drop into the phasing orbit is
Av, =v,—v-=7.660-7.697 =-0.037 km/s

Spacecraft A must therefore slow down in order to speed up (i.e., catch the space
station). After one circuit of its phasing orbit, this delta-v must be added in order
to rejoin the circular orbit. Thus,

AV o = 2|A 4| =2x|-0.037| =]0.074 km/s

The period of spacecraft B’s phasing orbit is tss, which determines the semimajor
axis of that orbit:

S 2T 55510 =8 o)

lpg =——a —
N i J398,600 ©
-.ap=6792km

Spacecraft Bis at the perigee of its phasing orbit. From the energy equation,
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v =,|H 2 1. 398,600><[L—;j:7.733km/s
roa, 6728 6792

The prograde delta-v required to enter the phasing orbit is
Avg =vg —v-=7.733-7.697 =0.036 km/s

Spacecraft B must therefore speed up in order to slow down (i.e., allow the space
station to catch up). After one circuit of its phasing orbit, this delta-v must be
subtracted in order to rejoin the circular orbit. Thus,

AV o = 2|[Av| =2x]|-0.036|=[0.072 km/s

B P6.21 (Precision: Average)
The solution is started by finding the period of spacecraft 1:

_ ry+7p _ 13,000+8000

aq 5

=10,500 km

_ry—rp _13,000-8000
ry+rp 13,000+8000

e

0.238

by = u(1+e)rp = [398,600x (1+0.238)x 8000 = 62,831 km?/s

=2 x10,500%2 =10,708 s

2
Ju 398,600

Next, we compute the time of flight from P to C:

Eq=2tan"' Ll tan(e—cj = tan”" ﬂxtan(wj =0.414 rad
l+e | 2 \1+0.238 2

My =Eq—esin(Eg)=0.414-0.238xsin(0.414) = 0.318

M T 0.318
27 27

e x10,708 = 542 s

As for the time of flight from P to D:

ED=2‘[an_1 I-¢ tan(H—Dj —tan~! ﬂxtan(go ) =1.33 rad
1+¢ 2 \1+0.238 2

Mp =Ep—esin(Ep)=1.33-0.238xsin(1.33) =1.10 rad

_Mp 110 16,708 21875 s
2 2

p
The time of flight from C to D is given by the difference

We can determine the trajectory from P to D using Lambert’s problem. Note first
that radial distance rp at point D is

) N _ 62,8317 1
D pl+ecosO, 398,600 1+0.238xcos90°

=9904 km

so that, in perifocal coordinates,
rp =8000p km ; rp =9905q km

Note further that, on orbit 1,

Vp1= hﬁ[—sinﬁpp +(e+cos Qp)q] _ 398,600

1 s x[ —sin0p +(0.238+cos0)q |
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398,600
62,831

o x(0p +1.238q)
and

398,600
62,831

Vpi= hﬁ[—sin Opp +(e+cos HD)q} = x [—sin 90°p +(0.238+ cos90°)q]
I

398,600

=————x(—-p+0.238
62,831 X( P q)

" VD,I

" Vpy = 6.344x(—p+0.238q) = —6.344p +1.510q km/s

In turn, the velocities on orbit 2 at P and D, which we denote as vp,2 and vp,
respectively, can be found using code lambert.m in Appendix D.25. Here's the
input code:

global mu
mu = 398600;
deg = pi/180;

rl = 8000;

r2 = 9905;

dt = 1333;

dtheta = 90;

R1 =[rl, 0, 0];

R2 = [r2*cos(dtheta*deg), r2*sin(dtheta*deg), 0];
string = 'pro’;

[V1,v2] = lambert(R1l, R2, dt, string);

fprintf('\n\n Solution: \n")
fprintf('\nVelocity vector V1 (km/s)
V1(3))

fprintf('\nVelocity vector V2 (km/s)
v2(3))

[%g, %g, %gl", V1(1), V1(2),

[%g, %g, %gl\n', V2(1), V2(2),

Here’s the output:

Solution:

Velocity vector V1 (km/s)
Velocity vector V2 (km/s)

[-2.51299, 9.56256, 0]
[-7.72342, 4.35213, 0]

Clearly, the velocities we require are

Vp, =—2513p+9.563q km/s

We can proceed to determine the Av's:

AVp=Vp,—Vp; =(-2.513p+9.563q) ~7.854q = —2.513p +1.709q kms

= AV =V2.513% +1.709% =3.039 ks

AVp =Vps—Vp =(=7.723p +4.352q) - (~6.344p +1.510q) = —1.379p + 2.842q ks

= |Avp = V1.3797 +2.842% =3.159 ks

Finally,

Avigial = |AVp |+ [ AV || =3.039+3.159 = |6.198 km/s

B P6.23 (Precision: Average)
We begin by computing the period of orbit 1:

V. 17,
ho=~2r |-l = 12%398,600x 8100x18,900 _ ¢ 135 km?/s
Pyt Tl 8100+ 18,900
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Tal =Tp1 18,900-8100

e = - = 0.40
Far+7,1  18,900+8100
r +7
o= _ 8100+18,900 _ 3 <0y
2
T, = 2% 3 2T 1350092 215,610 s

Ju 398,600

At point B on orbit 1:

N _ 67,232 1

= = 8840 km
p 1+ecosf 396,800 1+0.40xcos(45°)

h 67,232

v =—= =7.605 km/s
BB 8840

u o 398,600
v, g =—e¢sin(f)=

x 0.40 x sin(45°) =1.677 km/s
I 67,232

vas =\ (vim )+ (vm) = V7605 1,677 =7.788 ks

1%
VBl = tan~'| ——BL | = tan™! (—1'677j =12.44°
’ VJ_,BI 7605

The period of orbit 2 is the time tcs it takes to fly from C to B on orbit 1.

tan Ec = 1_—eltan % = 1-04 tan(150 ):2.443
2 1+¢ 2 1+0.4 2

. Ec =2tan"" (2.443)=2.365

M = E¢ —¢sin Eg =2.365—0.4xsin (2.365) = 2.085

M. 2.085
= Y—i =
27 27

tan(& = l_el tan g—Bj: 1-04 xtan(45 j:0271
2 1+¢ 2 1+0.4 2

. Eg=2tan"' (0.271) =0.529

x15,610=5180 s

Ic

My =Ep—esinEg =0.529-0.4xsin(0.529) = 0.327

tg = B T, = 0'327><15,6IO:812 S
27 27

tep =T, —(tc —15)=15,610—(5180-812) =11,242 5
nTy=11,242 s

Then, we find the semimajor axis of orbit 2:

2 2
3 3
az{Tz\/;J :[11,242%/398,600} 10847 km

2 27

Since a, = (rg +1,4,)/2, the apogee of orbit 2 is

Fyr =2a, —rg =2x10,847 —8840 = 12,854 km

The specific angular momentum of orbit 2 is
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Inr,
hy = 2u | 242 =\/2x398,600x 8840x12,854 _ 64 619 km2/s
g+ 7,0 8840 +12,854

Since B is the perigee of orbit 2,

vy, =Tz OO0 316 ks
’ Iy 8840
and
VB2 =0

The delta-v required to transfer from orbit 1 to orbit 2 at B is

[ 2
Av = \/VB,I +Vp o —2vp Vg, COS (7/3,2 - 7/3,1)

Av =[7.788% +7.310% ~2x 7.788x 7.310x cos(0—12.44°) = 1.703 km/s

The delta-v required to transfer from orbit 2 back to orbit 1 at the end of the
phasing maneuver is the same; therefore,

Av,gy = 2Av = 2x1.703 =[3.406 km/s

B P6.33 (Precision: Average)

Let C denote the arrival point on spacecraft A as it embarks on the orbit of

craft B. The time of flight from Ato Cis

x 800072 =7121 s

fonT = 2R 2%
AT Tt T [398,600

The true anomaly of C on orbit 2 is

3 3
t 2 2
Opr =243 _on| B i2 o p [ 8000 2 5 514 rad = 155.5°
’ T, R, 14,000

The perifocal position vectors of A and C are

r, =8000p km
ro =R, (cosOgp +sinfzq) =14,000x (cos155.5°p +sin155.5°q)

Sre =-12,740p + 5806q km

Now, we can use lambert.m to determine orbit 3; the inputs are position vectors ra

and rc and time tacz =7121 s. The input code is shown below:

global mu
mu = 398600;
R1 = 8000;
R2 = 14000;

ri R1*[1, o, @];

dtheta = 2*pi*(R1/R2)"(3/2);

r2 = R2*[cos(dtheta), sin(dtheta), 0];
dt = 2*pi/sqrt(mu)*R17(3/2);

string = 'pro’;

[vi, v2] = lambert(ril, r2, dt, string);

fprintf('\n\n Solution: \n")
fprintf('\nVelocity vector V1 (km/s)
vi(3))

fprintf('\nVelocity vector V2 (km/s)
v2(3))

[%g, %g, %gl', v1(1), v1(2)

[%g, %g, %gl\n', v2(1), v2(

Here’s the output:

Solution:

Velocity vector V1 (km/s)
Velocity vector V2 (km/s)

[2.06162, 7.73163, O]
[-0.610235, -4.577, -0]
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That is,
Vy3= 2.062p +7.732q

Vs =—0.610p—4.577q

Because orbits 1 and 2 are circular, equation (2.125) can be used to yield

398,600
V= q =7.059q km/s
Al \/ “\ 8000 q
U ) 398,600 )
Vin= |—(—sin@,p+cosf = [———x(—sin155.5°p +cos155.5°
c2 1/RZ( 5P 54) ,/14,000 ( p q)

S Ve =—2.213p —4.855q km/s
We can proceed to determine Ava and Ave:

AV, =v 53—V, =(2.062p+7.732q) - (7.059q) = 2.062p — 0.673q km/s
S Avy =[Avy |=2.169 knvs
AVe =V, — Ve =(-2.213p—-4.855¢) —(-0.610p —4.577q) = —1.603p —0.278q km/s
o Ave =|Ave| =1.627 km/s
Finally,

AV = Avy +Ave =2.169+1.627 =[3.796 km/s

B P6.34 (Precision: Average)
Firstly, we obtain velocity vector vg for craft B as it outlines elliptical orbit

2:
rp = 16,000J (km)

hy =1 (1+e;) = |/398,600x16,000x (1+0.5) = 97,808 km?/s

hy o _ 97808
rs 16,000

Vp = K=6.113K km/s

Equipped with rg and vs, we can determine the corresponding rc and vc,2 at time
tsc = 1 hr using code rv_from_rOvO.m. Here’s the input:

global mu
mu = 398600;
ro [0, 16000, @]; %Initial position vector (km)

vo
t

[0, @, 6.113]; %Initial velocity vector (km/s)
3600; %Elapsed time (in this case, 1 hour)

[r, v] = rv_from_reve(re, ve, t); %Algorithm 3.4

fprintf('\n Final position vector: ")

fprintf('\n r = [%12.5e %12.5e, %12.5e] (km)\n', r(1), r(2), r(3))
fprintf('\n Final velocity vector: ")

fprintf('\n v = [%12.5e %12.5e,I %12.5e] (km/s)\n', v(1), v(2), v(3))

Here’s the output:

Final position vector:
= [ 0.00000e+00 7.82906e+03, 1.84968e+04] (km)

Final velocity vector:
= [ 0.00000e+00 -3.75299e+00, 3.62618e+00] (km/s)

The state vector is then
re = 78293 +18,497K (km)
Voo = —3.753J +3.626K (km/s)

We also have ra = 10,0001 km. Knowing ra, r¢, and the flight time Atac=1 h, we
may use lambert.m (Algorithm 5.2) to obtain va 3 and vc,3. Here's the input code:

global mu
mu = 398600;
rA = [loee0, 0, 0];

rC = [0, 7829, 18497];
tAC = 3600;
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string = 'pro’;
[vA, vC] = lambert(rA, rC, tAC, string);

fprintf('\n\n Solution of Lambert''s problem: \n')
fprintf('\n Velocity vector vA (km/s) =
[%12.5e, %12.5e, %12.5e]', ...
VA(1), VA(2), VA(3))
fprintf('\n Velocity vector vC (km/s) =
[%12.5e, %12.5e, %12.5e]\n', ...
vC(1), vC(2), vC(3))

Here’s the output:
Solution of Lambert's problem:

Velocity vector vA (km/s)
7.40932e+00]
Velocity vector vC (km/s)
2.84695e+00]

[ 9.48526e-01, 3.13605e+00,

[-4.00569e+00, 1.20499¢+00,

That is,
V3= 0.9491 +3.136J +7.409K km/s

Ves = —4.0061+1.2053 +2.847K ks

Note that va, for craft A in the circular orbit 1 is

v, = [y 3980005 ¢33 ks
: 10,000

It remains to determine Ava,
AVy =V 3=V, = (0.9491 +3.136J + 7.409K) -6.313J

SAvy =0.9491-3.1773 +7.409K km/s
Avy =|Av, | =[8.117 km/s

B P6.35 (Precision: Average)
We begin by computing parameters of orbit 1:

Fa1=Tp1 _10,000—7000
Far+ 7,y 10,000+ 7000

Iy =\ ur,; (1+¢€) = /398,600 7000 (1+0.176) = 57,282 km*/s

0.176

€=

Ta1 751 10,000+ 7000
2

2T 32 2% 2500¥2 27799 ¢

Ju 398,600

Next, we establish the time since perigee at C:

=8500 km

a1=

E»:

EC:Ztan_1 1_—eltané)—c —2tan! 1_0'176‘[21n120 =1.934 rad
1+¢ 2 \1+0.176 2

Me =Eq—esinEx =1.934—-0.176 xsin(1.934) =1.769 rad
_Mc T = 1.769
2r 2r

x 7799 = 2196 s

Ic

The time of flight from C to A on orbit 1 then becomes

tCA,l :%—tc :%99—2196:1704 S

The time of flight from B to A on orbit 2 is the same as t¢, 4, that s,
tBA,2 :tCA,l =1704 s

The state vector of point A on orbit 1 is
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r, =-10,000p km
g2 37282
ry 1 10,000

vV, = q=-5.728q km/s

The state vector of point B on orbit 1 is

hi 1 . 57,282 1 .
rp =— cos@yzp +sinfzq) =— X c0s90°p +sin 90°
P pl+e cos(eg)( 5P 54) 398,600 T70.176700390° P v
o1y =8232q km
398,600

Vg1 = hﬁ[—sin O5p + (e +cosOp)q ] = x| —sin90°p +(0.176 +c0s90°)q |

1 57,282
Vg =—6.959p+1.225q km/s

Equipped with ra, rg, and tsa 2, we can use lambert.m (Appendix D.25) to determine
orbit 2. Here's the input MATLAB code:

global mu

mu 398600;

rA = [-10000, 0, 0];
rB [0, 8232, 0];
tBA = 1704;

string = 'pro’;

[vB, vA] = lambert(rB, rA, tBA, string);

fprintf('\n\n Solution of Lambert''s Problem:\n")
fprintf('\n Velocity vector vA (km/s) =
[%12.5e, %12.5e, %12.5e]', ...
VA(1), VA(2), VA(3))
fprintf('\n Velocity vector vB (km/s) =
[%12.5e, %12.5e, %12.5e]\n', ...
vB(1), vB(2), VvB(3))

Here’s the output:
Solution of Lambert's Problem:

Velocity vector vA (km/s)
0.00000e+00 ]

[-2.35756e+00, -6.78022e+00,

Velocity vector vB (km/s)
0.00000e+00 |

[-8.23642e+00, -9.01357e-01,

That is,
V42 =-2.358p—6.780q km/s

Vg, =-8236p—0.901q km/s
The corresponding Av's and their magnitudes are calculated next.
AV =V 1 =V, =-5.728q— (—2.358p — 6.708q)

S Avy, =2.358p +0.980q

S Avy =|Av, | =2.554 km/s

AVp=Vp, —Vp) = (—8.236p —-0.90 lq) - (—6.959p +1 .225q)

S Ave =-1277p-2.126q

o Avg =|Avg|=2.480 km/s

Finally,

AV = Av, +Avy = 2.554+2.480 =[5.034 km/s

B P13.1 (Precision: Minimum)
The effective exhaust velocity is ¢ = Is,g = 235 X 9.81 = 2310 m/s. The
burnout velocity vy, is given by equation (f) in Example 13.1:

50

© 2022 Montogue Quiz



e

Vo = cln[}’:—j}—%(mo _mf)

249.5—170.1) =811 m/s

Yy = 2310><ln(249'5j 081

— x(
170.1 ) 10.61

Likewise, the burnout altitude is given by equation (e) in the same example,

2
C mf 1 mo_mf

h =—|m . In——+my—m, |——| ————

ho m[f o 0 fj 2( i jgo

e e

2
2310 249.5—170.1) 081

0 T 10.61

170.1

x[170.11ln !
249.5

+249.5—170.1)——(

2 10.61

o h,, =2830 m

To find the starting parameters for the second stage, we must account for the 3-
second staging delay:

v=v,, —gAt, =811-9.81x3 =782 m/s

h=hy, +v,, At —%gmf :2830+811><3—%><9.81><32 =5220 m

Accordingly, the starting parameters for the second stage are v, =782 m/s and h
= 5220 m. Since the specific impulse of the second stage is the same as that of the
first, the exhaust velocity continues to be ¢ = 2310 m/s. The burnout velocity is
now

Vo :782+2310xln(113'4)— I8 (113.4-58.97)=2160 m/s
58.97) 4.053

The burnout altitude is, in turn,

my —m c m 1 my—m
m, m, m m,

113.4—58.97)+ 2310 1n(58.97
4.053 4.053] \113.4

_1(113.4—58.97

oy = 5220+782><( jx58.97 +113.4—58.97}

x9.81=24,700 m
2 4.053

As the rocket coasts to apogee, we have as initial conditions vo = 2160 m/s and ho
= 24,700 m. The maximum time of flight, assuming the craft is subjected to a
constant gravity g ~ 9.81 m/s?, is

v,
0= Vo _gtmax - tmax =L
g
o =210 50
9.81

so that

max

B = Mo + Vol o —%gzz = 24,700+2160><220—%><9.81><2202 =262,500 m

~[h_. =262.5 km

This result diverges from the answer mentioned in the textbook, which is 322 km.

B P13.2 (Precision: Minimum)
The latitude at the KSC is about 28°. Thus,

V= gy R €08 § = 7.29x107 ) x 6378 x c0s 28°= 0.411 ks

and the corresponding delta-v is, given that the craft must achieve an altitude of
300 km,
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Av= | 228600 o 041129315 kms
6378+ 300

Substituting into equation (13.28) and accounting for both stages,

_ _[ g ln| 0L 7 o] 202 |_ 9315
Vbo = Vbo,l +vb0,2 - sp,lgO n—-— |+ sp,ZgO n -
My Mg

2% 525,000 + 30,000 + 600,000 + 71, J

5.290x9.81x1n
2x (525, 000 - 450,000) +30,000 + 600,000 + mp,

30,000 + 600,000 + 1,
30,000+ 1,

+450><9.81><1n[ J=9315

6
2845 In| LO8XI0 Hmpy | s | 8390004 mp | o346
780,000 + 1, 30,000+ my,

It remains to solve the transcendental equation above for the payload mass mp;.
One way to go is MATLAB's fsolve command:

rocket = @(mPL) 2845*10g((1.68e6 + mPL)/(7.8e5 + mPL)) + ...
4415*1og((6.3e5 + mPL)/(3e4 + mPL)) - 9315;

mo = 1000;

fsolve(rocket, mo)

The code above outputs mp; = 110,880 kg; this is the payload mass we were asked
to determine.
B P13.3 (Precision: Minimum)
Let mp oyt and mp i, denote the masses of propellant in the outbound and
inbound legs of the trajectory, respectively. From the problem statement,
mp,out

_ _ _ 5’/np,out
mp - mp,out + mp,in - mp,out + 4 - 4

Further, let m, and mp; denote the empty and payload masses, respectively. From
the rocket delta-v equation, we may write

m,+m,_ +m
Av=1I,g,In e ¢ W = 4220 nv/s
Mg+ M, =M, o +Mpp
My +—m, o +3500
. Av=450x9.81x1In : 4 = 4220

me + Zmp,out My out +mpp,

m,+1.25m +3500

S Av=4218xIn| —= poout = 4220 ()
m, +0.25m,, ., +3500

Considering now the return of the craft from GEO to LEO,

L Av=430x9.81xIn| — 4 [=4220

m
,out
m, + — PO

4 ( 4220 j
m 430x9.81

e
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m
,out
m, + o

: 6—4:2_72

m,

m
s.m, +pT’out =2.72m,

m
PT""“ =1.72m,

£y gy = 6.88m,

Substituting my, 5, into (I) and manipulating,

m, +1.25% 6.88m, +3500
m, +0.25x 6.88m, +3500

Av:4218xln( j:4220

ln[ m, +8.6m, +3500 j_ 4220 oo

m,+1.72m,+3500 ) 4218

9.6m, +3500
~In C = 1.0
2.72m, +3500

. 9.6m, +3500

B =2.72
2.72m, +3500

©.9.6m, +3500 = 2.72x(2.72m, +3500)

©.9.6m, +3500 = 7.40m, + 9520

©.2.2m, = 6020
m, =20 736 ke
22

B P13.4 (Precision: Minimum)

Part (a): The payload mass fraction p; is
mp; 10,000 0
my 150,000

The common payload ratio for a restricted three-stage rocket is given on page
724:

1 7 0.0667"°

- - =0.682
1-78 1-0.0667"°
The structural ratio € is, in turn,
g=—"E 20,000 0.143

my—mp,  150,000—10,000

The common mass ratio is given by equation (13.55), that is,

1 1 :

Mreesage =TS ) e 006677 x(1-0.143) 1 0.143

The total delta-v afforded by the three stages follows from equation (13.56):

Av=1,,g)Inn’ =31,,g)Inn=3x310x9.81xIn(2.04) = 6505 m/s

~|Av=6.51 km/s
Part (b): The stage propellant masses are given by egs. (13.58) on page
724:
1-7z83)(1-¢ 1-0.0667" ) x(1-0.143
Mp, =) )mPL i | ) 10,000 = 76,400 ke

Tpy 0.0667
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(1-71)(1-2) (1-0.0667" )x(1-0.143)

Mp, = 7[123/5 mp, = 0066777 x10,000=31,000 kg
(1-71)(1-2) (1-0.0667")x(1-0.143)
Mmps = 7[1%/5 mp, = 00667 x10,000=12,600 kg
Part (c): The empty stage masses are given by egs. (13.57):
(1-7)e (1-0.0667")x0.143
Mg, =——"—Mp; = x10,000=12,740 kg
’ T py 0.0667
(172 )e (1-0.0667")x0.143
mE,z :TWIPL = 006672/3 X10,000:5170 kg
(1-7 )& (1-0.0667")x0.143
Mmg s = T}/gmm = 0.0667" x10,000 = 2096 kg

Part (d): Gleaning results from previous parts, the total masses m, are
calculated to be

Moy =g 3 +mp s + 1y, =2096+12,600+10,000 = 24,700 kg

The small difference in the final result, which should’ve been 150,000 kg, is due to
roundoff.

B P13.6 (Precision: Minimum)
The first step is to determine the exhaust velocities for the two stages:

¢ =1,,,2) =300x9.81=2943 m/s = 2.943 km/s
¢y =1,,,8) =235x9.81=2305 m/s =2.305 km/s

The burnout velocity v, was given as 6.2 km/s; substituting into equation (13.84)

brings to
¢ ln(cm _1J+cz lnLCﬂ7 _1] =V,
Géen G800

©2.043In| 228X =1 5 S05q| 2303 =1 ()
2.943x0.2x7) 2305%0.3x7)

~2.0431n| 228171 5 305 [ 239771 ¢ s
0.5897 0.69277

This transcendental equation can be solved for the Lagrange multiplier n:

lagrange = @(eta) 2.943*log((2.943*eta - 1)/(0.589*eta)) + ...
2.305*1og((2.305%eta - 1)/(0.692*eta)) - 6.2;

etad = 1;

fsolve(lagrange, eta@)

This MATLAB snippet returns n = 1.731. We can proceed to calculate the optimum
mass ratios using equation (13.87):

_on-1_ 2943x1.731-1 _

Cocen 2.943x02x1.731

_cn-1_ 2305x1.731-1

e 2305x03x1.731

n

n,

The corresponding stage masses follow as
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n, -1 2.50—1

m, = Mpy = ——— " x10=60 k
> l-gm, TP 1-0.3%2.50 ©
n -1 4.02-1
my = My + 1y ) = —— % (60+10) =1079 k
! 1—€1nl( 2+ M) =00 a0z < (60 +10) s

Finally, the optimum mass M of the vehicle becomes

M =m,+m, =1079+60 =[1139 kg
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