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Quiz ASQ3 
Reviewed Solutions to Curtis’s 

Orbital Mechanics for 
Engineering Students, 4th Ed. 

 

 

Lucas Monteiro Nogueira 
 

Problem Distribution 
Chapter Problems Covered* 

2 
2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 

2.22, 2.24, 2.29 

3 
3.5, 3.6, 3.7, 3.9, 3.10, 3.14, 3.15, 

3.16, 3.19, 3.20 

4 
4.3, 4.5, 4.6, 4.7, 4.14, 4.15, 4.16, 

4.18, 4.19 

5 
5.4, 5.5, 5.6, 5.7, 5.12, 5.13, 5.14, 

5.15, 5.16, 5.17, 5.18, 5.22, 5.23, 5.24 

6 
6.1, 6.8, 6.11, 6.13, 6.14, 6.19, 6.21, 

6.23, 6.33, 6.34, 6.35 
13 13.1, 13.2, 13.3, 13.4, 13.6 

 

Problems 
◼ Chapter 2 – The Two-Body Problem 
Problem 2.15 (3rd edition: 2.16) 

The specific angular momentum of a satellite in circular earth orbit is 
60,000 km2/s. Calculate the period. 

Problem 2.16 (3rd edition: 2.17) 
A spacecraft is in a circular orbit of Mars at an altitude of 200 km. Calculate 

its speed and its period. 

Problem 2.17 (3rd edition: 2.18) 
Calculate the area A swept out during the time t = T/4 since periapsis, 

where T is the period of the elliptical orbit. 

Problem 2.18 (3rd edition: 2.19) 
Determine the true anomaly 𝜃𝜃 of the point(s) on an elliptical orbit at which 

the speed equals the speed of a circular orbit with the same radius, i.e., 𝑣𝑣ellipse = 
𝑣𝑣circle. 

 
Problem 2.19 (3rd edition: 2.20) 

Calculate the flight path angle at the locations found in Problem 2.18. 
 

 

*The corresponding problem 
numbers for the 3rd edition 
of the book are also included 
below. 

Download MATLAB files used 
in the textbook here.  

https://www.elsevier.com/books-and-journals/book-companion/9780128240250
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Problem 2.20 (3rd edition: 2.21) 
An unmanned satellite orbits the earth with a perigee radius of 10,000 km 

and an apogee radius of 100,000 km. Calculate 
(a) the eccentricity of the orbit; 
(b) the semimajor axis of the orbit (km); 
(c) the period of the orbit (h); 
(d) the specific energy of the orbit (km2/s2); 
(e) the true anomaly (degrees) at which the altitude is 10,000 km; 
(f) 𝑣𝑣𝑟𝑟 and 𝑣𝑣⊥ (km/s) at the points found in part (e); 
(g) the speed at perigee and apogee (km/s). 
 

Problem 2.21 (3rd edition: 2.22) 
A spacecraft is in a 400 km by 600 km low earth orbit. How long (in 

minutes) does it take to coast from perigee to apogee?  
 

Problem 2.22 (3rd edition: 2.23) 
The altitude of a satellite in an elliptical orbit around the earth is 2000 km 

at apogee and 500 km at perigee. Determine (a) the eccentricity of the orbit; (b) 
the orbital speeds at perigee and apogee; (c) the period of the orbit. 

 

Problem 2.24 (3rd edition: 2.25) 
A satellite is launched into earth orbit at an altitude of 1000 km with a 

speed of 10 km/s and a flight path angle of 15o. Calculate the true anomaly of the 
launch point and the period of the orbit. 

 

Problem 2.29 (3rd edition: 2.30) 
For an earth orbiter, the altitude is 1000 km at a true anomaly of 40o and 

2000 km at a true anomaly of 150o. Calculate 
(a) the eccentricity; 
(b) the perigee altitude (km); 
(c) the semimajor axis (km). 
 

◼ Chapter 3 – Orbital Position as a Function of Time 
Problem 3.5 (3rd edition: 3.5) 

Calculate the time required to fly from P to B, in terms of the eccentricity e 
and the period T. B lies on the minor axis. 

 
Problem 3.6 (3rd edition: 3.6) 

If the eccentricity of the elliptical orbit is 0.3, calculate, in terms of the 
period T, the time required to fly from P to B. 

 

 
Problem 3.7 (3rd edition: 3.7) 

If the eccentricity of the elliptical orbit is 0.5, calculate, in terms of the 
period T, the time required to fly from P to B. 
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Problem 3.9 (3rd edition: 3.9) 
An earth-orbiting satellite has a perigee radius of 7000 km and an apogee 

radius of 10,000 km.  
(a) What true anomaly Δ𝜃𝜃 is swept out between t = 0.5 h and t = 1.5 h after 
perigee passage? 
(b) What area is swept out by the position vector during that time interval? 
 

Problem 3.10 (3rd edition: 3.10) 
An earth-orbiting satellite has a period of 14 hours and a perigee radius of 

10,000 km. At time t = 10 hours after perigee passage, determine: 
(a) The radial position. 
(b) The speed.  
(c) The radial component of the velocity. 
 

Problem 3.14 (3rd edition: 3.14) 
Calculate the time required for a spacecraft launched into a parabolic 

trajectory at a perigee altitude of 200 km to leave the earth’s sphere of influence 
(see Table A.2). 

 

Problem 3.15 (3rd edition: 3.15) 
A spacecraft on a parabolic trajectory around the earth has a perigee radius 

of 6600 km. 
(a) How long does it take to coast from 𝜃𝜃 = −90 degrees to 𝜃𝜃 = +90 degrees? 
(b) How far is the spacecraft from the center of the earth 36 hours after passing 
through perigee? 
 

Problem 3.16 (3rd edition: 3.16) 
A spacecraft on a hyperbolic trajectory around the earth has a perigee 

radius of 6600 km and a perigee speed of 1.2𝑣𝑣esc. 
(a) How long does it take to coast from 𝜃𝜃 = −90 degrees to 𝜃𝜃 = +90 degrees? 
(b) How far is the spacecraft from the center of the earth 24 hours after passing 
through perigee? 
 

Problem 3.19 (3rd edition: 3.19) 
At a given instant the radial position of an earth-orbiting satellite is 7200 

km, its radial speed is 1 km/s. If the semimajor axis is 10,000 km, use Algorithm 3.3 
to find the universal anomaly 60 minutes later. Check your result using Equation 
3.58. 

 

Problem 3.20 (3rd edition: 3.20) 
At a given instant a space object has the following position and velocity 

vectors relative to an earth-centered inertial frame of reference: 
 

0 20,000 105,000 19,000 km= − −r i j k  

0 0.9000 3.4000 1.5000 km/s= − −v i j k  
 

Use algorithm 3.4 to find r and v 2 h later. 
 

◼ Chapter 4 – Orbits in Three Dimensions 
Problem 4.3 (3rd edition: 4.3) 

Find the orbital elements of a geocentric satellite whose inertial position 
and velocity vectors in a geocentric equatorial frame are 

 

2500 16,000 4000 km= + +r I J K  

3 5 km/s= − − +v I J K  

Problem 4.5 (3rd edition: 4.5) 
At time t0 (relative to perigee passage) the position r and velocity v of a 

satellite in the geocentric equatorial frame are 
 

6500 7500 2500 km= − −r I J K  

4 3 3 km/s= + −v I J K  

Find the orbital elements. 
 

Problem 4.6 (3rd edition: 4.6) 
With respect to the geocentric equatorial frame, the position vector of a 

spacecraft is r = −6000I – 1000J – 5000K (km) and the orbit’s eccentricity vector 
is e = −0.4I − 0.5J − 0.6K. Calculate the true anomaly 𝜃𝜃 if the satellite is 
approaching perigee. 
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Problem 4.7 (3rd edition: 4.7) 
Given that, relative to the geocentric equatorial frame, r = −6600I – 1300J 

– 5200K (km), the eccentricity vector is e = −0.4I – 0.5J – 0.6K, and the satellite is 
flying toward perigee, calculate the inclination of the orbit. 

 

Problem 4.14 (3rd edition: 4.14) 
At time t0 the position r and velocity v of a satellite in the geocentric 

equatorial frame are 
 

5000 8000 2100 km= − − −r I J K  

4 3.5 3 km/s= − + −v I J K  

Find r and v at time t0 = +50 min.  
 

Problem 4.15 (3rd edition: 4.15) 
At time 𝑡𝑡0 (relative to perigee passage), a spacecraft has the following 

orbital parameters: e = 1.5; perigee altitude = 300 km. 𝑖𝑖 = 35o; Ω = 130o; and 𝜔𝜔 = 
115o. Calculate r and v at perigee relative to 
(a) The perifocal reference frame. 
(b) The geocentric equatorial frame.  
 

Problem 4.16 (3rd edition: 4.16) 
  For the spacecraft of Problem 4.15 calculate r and v at two hours past 
perigee relative to  
(a) The perifocal reference frame. 
(b) The geocentric equatorial frame.  
 

Problem 4.18 (3rd edition: 4.18) 
For a spacecraft, the following orbital parameters are given: e = 1.2; 

perigee altitude = 200 km; 𝑖𝑖 = 50o; Ω = 75o; and 𝜔𝜔 = 80o. Calculate r and v at 
perigee relative to 
(a) The perifocal reference frame. 
(b) The geocentric equatorial frame. 
 

Problem 4.19 (3rd edition: 4.19) 
 For the spacecraft of Problem 4.18 calculate r and v 2 h past perigee 

relative to  
(a) The perifocal reference frame.  
(b) The geocentric equatorial frame.  
 

◼ Chapter 5 – Preliminary Orbit Determination 
Problem 5.4 (3rd edition: 5.4) 

At a given instant, the geocentric equatorial position vector of an earth 
satellite is 

1 3600 4600 3600 (km)= + +r I J K  
 

Thirty minutes later the position is 
 

2 5500 6240 5200 (km)= − + −r I J K  
 

Find the specific energy of the orbit. 
 

Problem 5.5 (3rd edition: 5.5) 
Compute the perigee altitude and the inclination of the orbit in the 

previous problem. 
 

Problem 5.6 (3rd edition: 5.6) 
At a given instant, the geocentric equatorial position vector of an earth 

satellite is 

1 5644 2830 4170 km= − −r I J K  
 

Some 20 min later, the position is 
 

2 2240 7320 4980 km= − + +r I J K  

Calculate v1 and v2.  

Problem 5.7 (3rd edition: 5.7) 
Compute the orbital elements and perigee altitude for the previous 

problem. 
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Problem 5.12 (3rd edition: 5.12) 
A sea level tracking station whose local sidereal time is 40o and latitude is 

35o makes the following observations of a space object: 
Azimuth: 36.0o 
Azimuth rate: 0.590o/s 
Elevation: 36.6o 
Elevation rate: −0.263o/s 
Range: 988 km 
Range rate: 4.86 km/s 
What is the state vector of the object? 
 

Problem 5.13 (3rd edition: 5.13) 
Calculate the orbital elements of the satellite in the previous problem. 
 

Problem 5.14 (3rd edition: 5.14) 
A tracking station at latitude −20o and elevation 500 m makes the 

following observations of a satellite at the given times. 

 

 

 

Use the Gibbs method to calculate the state vector of the satellite at the central 
observation time.  

Problem 5.15 (3rd edition: 5.15) 
Calculate the orbital elements of the satellite in the previous problem. 
 

Problem 5.16 (3rd edition: 5.16) 
A sea level tracking station at latitude +29o makes the following 

observations of a satellite at the given times.  

Time 
(min) 

Local sidereal 
time (o) 

Topographic right 
ascension (o) 

Topocentric 
declination (o) 

0.0 0 0 51.5110 
1.0 0.250684 65.9279 27.9911 
2.0 0.501369 79.8500 14.6609 

Use the Gauss method without iterative improvement to estimate the state 
vector of the satellite at the middle observation time. 
Problem 5.17 (3rd edition: 5.17): Refine the estimate in the previous problem 
using iterative improvement. 
Problem 5.18 (3rd edition: 5.18): Calculate the orbital elements from the state 
vector obtained in the previous problem. 
 

Problem 5.22 (3rd edition: 5.22) 
The position vector R of a tracking station and the direction cosine vector 

𝜌𝜌 of a satellite relative to the tracking station at three times are as follows: 

for 𝑡𝑡1 = 0 min 

1 1825.96 3583.66 4933.54 (km)= − + +R I J K  

1 0.301687 0.200673 0.932049= − + +ρ I J K  

for 𝑡𝑡2 = 1 min 

2 3575.63 4933.54 (km)1841.63= +− +R I J K  

2 0.793090 0.210324 0.571640= − − +ρ I J K  

for 𝑡𝑡3 = 2 min 

3 1857.25 3567.54 4933.54 (km)= − + +R I J K  

3 0.873085 0.362969 0.325539= − − +ρ I J K  

Use the Gauss method without iterative improvement to estimate the state 
vector of the satellite at the central observation time.  

Note: In some printings of the book, the vector component highlighted in 
red appears as −1816.30 instead of −1841.63.  

Time 
(min) 

Local sidereal 
time (o) 

Azimuth (o) Elevation  
angle (o) Range (km) 

0 60.0 165.931 9.53549 1214.89 
2 60.5014 145.967 45.7711 421.441 
4 61.0027 2.40962 21.8825 732.079 
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Problem 5.23 (3rd edition: 5.23): Refine the estimate in the previous problem 
using iterative improvement. 
Problem 5.24 (3rd edition: 5.24): Calculate the orbital elements from the state 
vector obtained in the previous problem.  
 

◼ Chapter 6 – Orbital Maneuvers 
Problem 6.1 (3rd edition: 6.1) 

A large spacecraft has a mass of 125,000 kg. Its orbital maneuvering 
engines produce a thrust of 50 kN. The spacecraft is in a 400 km circular earth 
orbit. A delta-v maneuver transfers the spacecraft to a coplanar 300 km by 400 km 
elliptical orbit. Neglecting propellant loss and using elementary physics (linear 
impulse equals change in linear momentum, distance equals speed times time), 
estimate 
(a) the time required for the Δv burn and 
(b) the distance travelled by the spacecraft during the burn. 
(c) Calculate the ratio of your answer for (b) to the circumference of the initial 
circular orbit. 
(d) What percent of the initial mass was expelled as combustion products? 
 

Problem 6.8 (3rd edition: 6.8) 
A spacecraft is in a 300-km circular earth orbit. Calculate  

(a) The total delta-v required for a Hohmann transfer to a 3000-km coplanar 
circular earth orbit. 
(b) The transfer orbit time. 

Problem 6.11 (3rd edition: 6.11) 
Calculate the total delta-v required for a Hohmann transfer from the 

smaller circular orbit to the larger one. 
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Problem 6.13 (3rd edition: 6.13) 
 Two geocentric elliptical orbits have 

common apse lines and their perigees are on 
the same side of the earth. The first orbit has 
a perigee radius of rp = 7000 km and e = 0.3, 
whereas for the second orbit rp = 32,000 km 
and e = 0.5. 
(a) Find the minimum total delta-v and the 
time of flight for a transfer from the perigee 
of the inner orbit to the apogee of the outer 
orbit. 
(b) Do part (a) for a transfer from the apogee 
of the inner orbit to the perigee of the outer 
orbit.  
 

Problem 6.14 (3rd edition: 6.14) 
The space shuttle was launched on a 15-day mission. There were four 

orbits after injection, all of them at 39o inclination.  

→ Orbit 1: 302 km by 296 km 
→ Orbit 2 (day 11): 291 km by 259 km 
→ Orbit 3: (day 12): 259 km circular 
→ Orbit 4: (day 13): 255 km by 194 km 

Calculate the total delta-v, which should be as small as possible, assuming 
Hohmann transfers.  

Problem 6.19 (3rd edition: 6.19) 
The space station and spacecraft A and B are all in the same circular earth 

orbit of 350 km altitude. Spacecraft A is 600 km behind the space station and 
spacecraft B is 600 km ahead of the space station. At the same instant, both 
spacecraft apply a Δ𝑣𝑣⊥ so as to arrive at the space station in one revolution of 
their phasing orbits. 

 
(a) Calculate the time required for each spacecraft to reach the space station. 
(b) Calculate the total delta-v requirement for each spacecraft.  
 

Problem 6.21 (3rd edition: 6.21) 
Two spacecraft are in the same elliptical earth orbit with perigee radius 

8000 km and apogee radius 13,000 km. Spacecraft 1 is at perigee and spacecraft 2 
is 30o ahead. Calculate the total delta-𝜈𝜈 required for spacecraft 1 to intercept and 
rendezvous with spacecraft 2 when spacecraft 2 has traveled 60o.  
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Problem 6.23 (3rd edition: 6.23) 
Spacecraft B and C, which are in the same elliptical earth orbit 1, are 

located in the true anomalies shown. At this instant, spacecraft B executes a 
phasing maneuver so as to rendezvous with spacecraft C after one revolution of 
its phasing orbit 2. Calculate the total delta-v required. Note that the apse line of 
orbit 2 is at 45o to that of orbit 1.  

 
Problem 6.33 (3rd edition: 6.33) 

Spacecraft A and B are in concentric, coplanar circular orbits 1 and 2, 
respectively. At the instant shown, spacecraft A executes an impulsive delta-v 
maneuver to embark on orbit 3 to intercept and rendezvous with spacecraft B in a 
time equal to the period of orbit 1. Calculate the total delta-v required.  

 
Problem 6.34 (3rd edition: 6.34) 

Spacecraft A is in orbit 1, a 10,000 
km radius equatorial earth orbit. Spacecraft 
B is in elliptical polar orbit 2, having 
eccentricity 0.5 and perigee radius 16,000 
km. At the instant shown, both spacecraft 
are in the equatorial plane and B is at its 
perigee. At that instant, spacecraft A 
executes an impulsive delta-v maneuver to 
intercept B one hour later at point C. 
Calculate the delta-v required for A to 
switch to the intercept trajectory 3.  
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Problem 6.35 (3rd edition: 6.35) 
Spacecraft B and C are in the same elliptical orbit 1, characterized by a 

perigee radius of 7000 km and an apogee radius of 10,000 km. The spacecraft are 
in the position shown when B executes an impulsive transfer to orbit 2 to catch 
and rendezvous with C when C arrives at apogee A. Find the total delta-v 
requirement.  

 
◼ Chapter 13 – Rocket Vehicle Dynamics (Chapter 11 in 3rd edition) 
Problem 13.1 (3rd edition: 11.1) [Answer does not match textbook] 
A two stage, solid-propellant sounding rocket has the following properties. 

First stage: 𝑚𝑚0 = 249.5 kg, 𝑚𝑚𝑓𝑓 = 170.1 kg, �̇�𝑚𝑒𝑒 = 10.61 kg/s, 𝐼𝐼𝑠𝑠𝑠𝑠 = 235 s 

Second stage: 𝑚𝑚0 = 113.4 kg, 𝑚𝑚𝑓𝑓 = 58.97 kg, �̇�𝑚𝑒𝑒 = 4.053 kg/s, 𝐼𝐼𝑠𝑠𝑠𝑠 = 235 s 

The delay time between burnout of first stage and ignition of second stage is 3 s. 
As a preliminary estimate, neglect drag and the variation of earth’s gravity with 
altitude to calculate the maximum height reached by the second stage after 
burnout.  

Problem 13.2 (3rd edition: 11.2) 
A two-stage launch vehicle has the following properties: 

First stage: Two solid propellant rockets. Each one has a total mass of 525,000 kg, 
450,000 kg of which is propellant. Isp = 290 s. 

Second stage: Two liquid rockets with Isp = 450 s. Dry mass = 30,000 kg, propellant 
mass = 600,000 kg. 

Calculate the payload mass to a 300 km orbit if launched due east from KSC. Let 
the total gravity and drag loss be 2 km/s. 
 

Problem 13.3 (3rd edition: 11.3) 
Suppose a spacecraft in permanent orbit around the earth is to be used for 

delivering payloads from low earth orbit (LEO) to geostationary equatorial orbit 
(GEO). Before each flight from LEO, the spacecraft is refueled with propellant, 
which it uses up in its round trip to GEO. The outbound leg requires four times as 
much propellant as the inbound return leg. The delta-v for transfer from LEO to 
GEO is 4.22 km/s. The specific impulse of the propulsion system is 430 s. If the 
payload mass is 3500 kg, calculate the empty mass of the vehicle.  
Note: The number highlighted in red appears as 450 s in some printings of 
the 4th edition.  

 

Problem 13.4 (3rd edition: 11.4) 
Consider a rocket comprising similar stages (i.e., each stage has the same 

specific impulse, structural ratio, and payload ratio). The common specific impulse 
is 310 s. The total mass of the vehicle is 150,000 kg, the total structural mass 
(empty mass) is 20,000 kg, and the payload mass is 10,000 kg. Calculate 
(a) The mass ratio n and the total Δv for the three-stage rocket.  
(b) 𝑚𝑚𝑠𝑠,1, 𝑚𝑚𝑠𝑠,2, and 𝑚𝑚𝑠𝑠,3 
(c) 𝑚𝑚𝐸𝐸,1, 𝑚𝑚𝐸𝐸,2, and 𝑚𝑚𝐸𝐸,3 
(d) 𝑚𝑚0,1, 𝑚𝑚0,2, and 𝑚𝑚0,3 
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Problem 13.6 (3rd edition: 11.6) 
A small two-stage vehicle is to propel a 10-kg payload to a speed of 6.2 

km/s. The properties of the stages are as follows. For the first stage, Isp = 300 s and 
𝜀𝜀 = 0.2. For the second stage, Isp = 235 s and 𝜀𝜀 = 0.3. Estimate the optimum mass 
of the vehicle.  

Solutions 

◼ P2.15 (Precision: Minimum) 
We first compute the radial distance of the orbit: 
 

2 260,000 9030 km
398,600

hr
µ

= = =  

 

Then, the period follows: 
 

3 2 3 22 2 9030 8540 s
398,600

T rπ π
µ

= = × =  

 

or 2 h 22 min. 
◼ P2.16 (Precision: Minimum) 

For Mars, 𝜇𝜇 = 42,828 km3/s2 and r = 3396 km. The speed of the spacecraft is 
then 

42,828 3.45 km/s
3396 200

v
r
µ

= = =
+

 

 

The period is, in turn, 
 

( )3 23 22 2 3396 200 6550 s
42,828

T rπ π
µ

= = × + =  

 

or 1 h 49 min.  
◼ P2.17 (Precision: Minimum) 

The ratio of area swept to the corresponding period must remain constant. 
Accordingly, 

4
A ab A
t T T

π∆
= =

∆
 

4ab Aπ∴ =  

0.785
4
abA abπ

∴ = =  

◼ P2.18  
For the ellipse, per Problem 2.9, 
 

( )
2

2 2
ellipse 2 2 cos 1v e e

h
µ θ= + +  

 

For the circle, at the point of intersection with the ellipse, 
 

( )

( )
2

2
circle 2 2 1 cos

1
1 cos

v e
r h h

e

µ µ µ θ

µ θ

= = = +

+

 

 

 

Equating the two previous expressions, 
2

2 2
ellipse circle 2v v

h
µ

= → ( )
2

2
22 cos 1e e

h
µθ+ + = ( )1 cose θ+ ¨ 

2 2 cos 1 1 cose e eθ θ∴ + + = +  

2 cos 0e e θ∴ + =  

cos 0e θ∴ + =  

( )1cos eθ −∴ = −  

◼ P2.19 
The flight path angle 𝛾𝛾 is given by 
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sintan
1 cos

e
e

θγ
θ

=
+

 

 

In the case at hand, 𝜃𝜃 = cos–1(−e), giving 
 

( )
( )

( )sin arccos sin arccos
tan

1 cos arccos 1
e e e e

e e e
γ 2

×  −  ×  −    = =
+  −  − 

 

 

But sin[arccos(−e)] = √1 − 𝑒𝑒2, so that 
 

2

2

1tan
1 1

e e e
e e

γ 2
× −

= =
− −

 

1
2

tan
1

e

e
γ −  
=   − 

 

◼ P2.20 (Precision: Minimum) 
Part (a): The eccentricity of the orbit is given by 

  
 

apogee perigee

apogee perigee

100,000 10,000 0.818
100,000 10,000

r r
e

r r
− −

= = =
+ +

 

 
 

Since this eccentricity value is between 0 and 1, the orbit is elliptical. 
Part (b): The semimajor axis of the orbit is 

 

apogee perigee 100,000 10,000 55,000km
2 2

r r
a

+ +
= = =  

 

Part (c): The period of the orbit is 
 

3 2 3 22 2 55,000 128,400s
398,600

T aπ π
µ

= = × =  

35.7 hT∴ =  
 

Part (d): The specific energy of the orbit is 
 

2 2398,600 3.62km /s
2 2 55,000a
µε = − = − = −

×
 

 

Part (e): The true anomaly 𝜃𝜃 can be found from the orbit equation (2.72) 
on page 81: 

21
1 cos

er a
e θ
−

=
+

 

 

Substituting r = 6378 + 10,000 = 16,378 and other variables brings to 
21 0.81816,378 55,000

1 0.818 cosθ
−

= ×
+ ×

 

18,20016,378
1 0.818 cosθ

∴ =
+ ×

 

18,2001 0.818cos
16,378

θ∴ + =  

1 0.818cos 1.11θ∴ + =  

0.818cos 0.11θ∴ =  

cos 0.134θ∴ =  

( )arccos 0.134 82.3ºθ∴ = =  

Part (f): We first compute the specific angular momentum via equation 
(2.50): 

( )
2

perigee
1 1

1p
hr h e r

e
µ

µ
= → = +

+
 

( ) 2398,600 1 0.818 10,000 85,130km /sh∴ = × + × =  
 

Then, the azimuthal component of velocity is calculated to be 
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85,130 5.20 km/s
6378 10,000

hv
r⊥ = = =

+
 

 
 

while the radial component is given by equation (2.49): 
 

( )398,600sin 0.818 sin 82.3º 3.80 km/s
85,130rv e

h
µ θ= = × × =  

 

Part (g): Finding the speeds at the perigee and apogee is straightforward: 
 

perigee
perigee

85,130 8.51 km/s
10,000

hv
r

= = =  

apogee
apogee

85,130 0.851 km/s
100,000

hv
r

= = =  

◼ P2.21 (Precision: Minimum) 
The radius of the perigee is rperigee = 6378 + 400 = 6778 km, while that of 

the apogee is rapogee = 6378 + 800 = 7178 km. The semimajor axis of the orbit is 
determined as 

perigee apogee 6778 7178 6978km
2 2

r r
a

+ +
= = =  

 

The orbital period is then 
 

3 2 3 22 2 6978 5800s
398,600

T aπ π
µ

= = × =  

96.7 minT∴ =  

The time required to coast from perigee to apogee should equal T/2 = 48.35 
minutes. 
◼ P2.22 (Precision: Minimum) 

Part (a): The radius of the apogee is rapogee = 6378 + 2000 = 8378 km, while 
the radius of the perigee is rperigee = 6378 + 500 = 6878 km. The eccentricity of the 
orbit is determined as 

apogee perigee

apogee perigee

8378 6878 0.0983
8378 6878

r r
e

r r
− −

= = =
+ +

 

 

Part (b): We first compute the specific angular momentum via equation 
(2.50): 

( ) ( )perigee1 398,600 1 0.0983 6878h e rµ= + = × + ×  

254,900km /sh∴ =  

so that 

perigee
perigee

54,900 7.98km/s
6878

hv
r

= = =  

apogee
apogee

54,900 6.55km/s
8378

hv
r

= = =  

Part (c): The period of a typical elliptical orbit is given by equation (2.82): 
 

3 3

2 22 2

2 2 54,900 6640s
398,6001 1 0.0983

hT
e

π π
µ

   
= = =      − −   

 

111minT∴ =  

◼ P2.24 (Precision: Minimum) 
We first establish the radial and azimuthal components of velocity: 
 

sin 10 sin15º 2.59km/srv v γ= = × =  

cos 10 cos15º 9.66km/sv v γ⊥ = = × =  
 

The specific angular momentum is then 
 

( ) 26378 1000 9.66 71,300 km /sh rv⊥= = + × =  
 

Next, we insert the available data into (2.71) and (2.72) to obtain 
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2 21 71,300 17378
1 cos 398,600 1 cos

hr
e eµ θ θ

= → = ×
+ +

 

cos 0.729 (I)e θ∴ =  
 

In a similar manner, we substitute the available data into the equation for radial 
velocity (eq. (2.49)): 

 

398,600sin 2.59 sin
71,300rv e e

h
µ θ θ= → =  

sin 0.463 (II)e θ∴ =  
 

Dividing (II) by (I) gives the true anomaly 𝜃𝜃: 
 

sin 0.463 tan 0.635
cos 0.729

e
e

θ θ
θ
= → =  

( )arctan 0.635 32.4ºθ∴ = =  
 

Now, substituting 𝜃𝜃 = 32.4o into (I) and solving for eccentricity, 
 
 

( )
0.729cos 0.729 0.863

cos 32.4º
e eθ = → = =  

 
 

Finally, we determine the period using equation (2.82): 
 

2 22 2

3 3
2 2 71,300 111,200s

398,6001 1 0.863

hT
e

π π
µ

   
= = =      − −   

 

30.9hT∴ =  

◼ P2.29 (Precision: Minimum) 
Parts (a) and (b): Inserting the available data into eqs. (2.71)/(2.72), we 

have, for each data point, 
 

( )
2 2

1
1

1 1(6378 1000) (I)
1 cos 398,600 1 cos 40º

h hr
e eµ θ

= → + =
+ +

 

( )
2 2

2
2

1 1(6378 2000) (II)
1 cos 398,600 1 cos150º

h hr
e eµ θ

= → + =
+ +

 

 

Dividing (II) by (I) and solving for e, we obtain 
 

2 398,600(6378 1000)
(6378 2000)

h+
=

+ 2

1
1 cos 40º

398,600
e

h

×
+

1
1 cos150ºe

×
+

 

(6378 1000) 1 cos150º
(6378 2000) 1 cos 40º

e
e

+ +
∴ =

+ +
 

 

Entering this linear equation into Mathematica to save time, we obtain e = 0.0775, 
as shown. 

 

Now, substituting e into either of equations (I) or (II) yields the specific angular 
momentum h: 

( )
2 1(6378 1000)

398,600 1 0.0775 cos 40º
h

+ =
+ ×

 

255,820 km /sh∴ =  

The perigee radial distance is determined next: 
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2 2

perigee
1 55,820 1 7250 km

1 398,600 1 0.0775
hr

eµ
= = × =

+ +
 

 

Subtracting the earthly radius: 

perigee perigee 6378 7250 6378 872kmz r= − = − =  
 

Part (c): The semimajor axis can be found via equation (2.73): 
 

perigee 7250 7860 km
1 1 0.0775

r
a

e
= = =

− −
 

◼ P3.5 
On the minor axis, the eccentric anomaly is 𝜋𝜋/2, so that 

sin sin
2 2B B BM E e E eπ π = − = −  

 
 

(I)
2BM eπ

∴ = −  

 

Now, the time required to reach a given angle is related to the mean anomaly MB 
as 

2
2B B B B
Tt M M t

T
π

π
= → =  

 

so that, substituting in (I), 

2
2B BM e t

T
π π

= − =  

1 1
4 2 B

e t
Tπ

∴ − =  

1
4 2B

et T
π

 ∴ = − 
 

 

◼ P3.6 (Precision: Average) 
  We first determine the eccentric anomaly associated with point B: 
 

1 1 0.3 2tan tan tan 0.734
2 1 2 1 0.3 2
B BE e

e
θ π− −   = = × =   + +   

 

 

( )2arctan 0.734 1.266 radBE∴ = =  
 

Next, we compute the mean anomaly MB: 
 

( )sin 1.266 0.3 sin 1.266 0.980 radB B BM E e E= − = − × =  
 

The time required to fly from P to B is then 
 

0.980 0.156
2 2

B
B

Mt T T T
π π

= = × =  

 

◼ P3.7 (Precision: Average) 
  We combine equations (see Section 2.7) 
 

2 1
1 cos

hr
eµ θ

=
+

 

and  
2

perigee
1

1
hr

eµ
=

+
 

to obtain 

( )perigee 1
1 cos

r e
r

e θ
+

=
+

 

 

Substituting r = 2rperigee and solving for anomaly 𝜃𝜃, we obtain 
 

perigee2 r
perigeer

=
( )1 0.5

1 0.5cosθ

+

+
 

1.52
1 0.5cosθ

∴ =
+
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Solving this equation with Mathematica to save time, we obtain cos𝜃𝜃 = 
−0.5, so that 𝜃𝜃 = 120o.  

 
 

We proceed to compute eccentric anomaly EB, 
 

 

1 1 0.5 120ºtan tan tan 1.0
2 1 2 1 0.5 2
B BE e

e
θ− −     = = × =     + +     

 

( )2arctan 1.0 2 rad
4 2BE π π

∴ = = × =  

 

and then the mean anomaly MB: 

sin 0.5 sin 1.071rad
2 2B B BM E e E π π = − = − × = 

 
 

 

Finally, the time required to fly from P to B is 
 

1.071 0.170
2 2

B
B

Mt T T T
π π

= = × =  

◼ P3.9 (Precision: Average) 
Part (a): The semimajor axis of the orbit is 
 

( ) ( )apogee perigee
1 1 10,000 7000 8500 km
2 2

a r r= + = × + =  

The corresponding period is 

3 2 3 22 2 8500 7799s
398,600

T aπ π
µ

= = × =  

and the eccentricity is 

apogee perigee

apogee perigee

10,000 7000 0.176
10,000 7000

r r
e

r r
− −

= = =
+ +

 

Consider first conditions at t1 = 0.5 h = 1800 s. The mean anomaly 𝑀𝑀1 is 

1
1

2 2 1800 1.450rad
7799

tM
T
π π ×

= = =  

while the eccentric anomaly can be found as 

1 1 1sinE e E M− =  

1 10.176sin 1.450 radE E∴ − =  

This transcendental equation can be solved for E1 in MATLAB by creating an 
anonymous function and then applying fsolve: 

>> orbit = @(E1) (E1 - 0.176*sin(E1) - 1.45) 
x0 = 1.0 
fsolve(orbit, x0) 
 
This returns E1 = 1.626 rad. The corresponding anomaly 𝜃𝜃1 follows as 

1 11 1 0.176 1.626tan tan tan 1.262
2 1 2 1 0.176 2

e E
e

θ + +     = = =     − −     
 

( )1 2arctan 1.262 1.801 radθ∴ = =  

1 103.2ºθ∴ =  

Calculations for t2 = 1.5 h = 5400 s are analogous: 

2
2

2 2 5400 4.350 rad
7799

tM
T
π π ×

= = =  
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2 2 2sinE e E M− =  

2 20.176sin 4.350E E∴ − =  

2 4.197 radE∴ =  

2 21 1 0.176 4.197tan tan tan 2.049
2 1 2 1 0.176 2

e E
e

θ + +     = = = −     − −     
 

( )2 2arctan 2.049 2.234 radθ∴ = − = −  

2 128.0º 232.0ºθ∴ = − =  

It remains to compute the anomaly Δ𝜃𝜃 swept by the orbit: 

2 1 232.0º 103.2º 128.8ºθ θ θ∆ = − = − =  

      Part (b): This part is started by computing the specific angular momentum h,  

( ) ( ) 2
perigee 1 398,600 7000 1 0.176 57,280 km /sh r eµ= + = × × + =  

8 21 1 57,280 3600 1.031 10 km
2 2

A h t∆ = ∆ = × × = ×  

6 2103.1 10 kmA∴ ∆ = ×  

◼ P3.10 (Precision: Average) 
Part (a): The first step is to determine the apogee radius, which in turn 

requires the semimajor axis a: 

3 2 3 22 214 3600
398,600

T a aπ π
µ

= → × =  

29,490 kma∴ =  

Therefore, 

( ) ( )perigee apogee apogee
1 129,490 10,000
2 2

a r r r= + → = × +  

apogee 48,980 kmr∴ =  

The eccentricity of the orbit easily follows: 

apogee perigee

apogee perigee

48,980 10,000 0.661
48,980 10,000

r r
e

r r
− −

= = =
+ +

 

The mean anomaly is then 

102 2 4.488 rad
14

tM
T

π π= = × =  

while the eccentric anomaly is 

sin 0.661sin 4.488E E e E M E E− × = → − =  

Solving for E with MATLAB’s fsolve gives E = 3.992 rad. 

>> orbit = @(E1) (E1 - 0.661*sin(E1) - 4.488) 
x0 = 1.0 
fsolve(orbit, x0) 
ans = 
 
    3.9915 

Next, we compute true anomaly 𝜃𝜃: 
 

1 1 0.661 3.992tan tan tan 4.888
2 1 2 1 0.661 2

e E
e

θ + +     = = × = −     − −     
 

 

( )2arctan 4.888 2.738 rad 156.9ºθ∴ = − = − = −  
 

203.1ºθ∴ =  
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Finally, the radial position is 

( ) ( )
( )

2 21 29,490 1 0.661
42,360 km

1 cos 1 0.661 cos 203.1º

a e
r

e θ

− × −
= = =

+ + ×
 

Part (b): The velocity can be determined with the energy equation: 
 

 

2 2 398,600 398,600
2 2 2 42,360 2 29,490
v v

r a
µ µ

− = − → − = −
×

 

2
9.410 6.758

2
v

∴ − = −  

( )2 6.758 9.410 2.303 km/sv∴ = − + =  

Part (c): To find the radial component of velocity, we first require the specific 
angular momentum h: 

( ) ( )2 2 21 398,600 29,490 1 0.661 81,360 km /sh a eµ= − = × × − =  

Then, 

( )398,600sin 0.661 sin 203.1º 1.271 km/s
81,360rv e

h
µ θ= = × × = −  

 

◼ P3.14 (Precision: Average) 
Referring to Table A.2, we see that the radius of influence of the earth is 

925,000 km. Substituting this and other pertaining data into the orbit equation, 
we can solve for the true anomaly 𝜃𝜃: 

 

( ) ( ) ( )perigee 1 6378 200 1 1
925,000

1 cos 1 1 cos
r e

r
e θ θ

+ + × +
= → =

+ + ×
 

cos 0.986θ∴ = −  
 

170.4ºθ∴ =  

The mean anomaly is given by Barker’s equation: 

3 31 1 1 170.4º 1 170.4ºtan tan tan tan
2 2 6 2 2 2 6 2pM θ θ       = + = +       

       
 

287.4pM∴ =  

We also need the specific angular momentum h: 

2

perigee perigee2
2
hr h rµ
µ

= → =  

22 398,600 6578 72,420 km /sh∴ = × × =  

Finally, the time required for the spacecraft to leave earth’s SOI is 

 

3 3

2 2
72,420 287.4 687,000 s 7.951 days

398,600p
ht M
µ

= = × = =  

 

(The large difference relatively to the answer provided in the text, which is 7.77 d, 
is due to my somewhat reckless roundoff of true anomaly 𝜃𝜃; entering 𝜃𝜃 = 170.33O 
instead of 𝜃𝜃 = 170.4o into Barker’s formula would yield Mp ≈ 280.87, which can be 
used to find t ≈ 7.7698 d, a slightly better approximation.)  
 

◼ P3.15 (Precision: Average) 
Part (a): We first determine the specific angular momentum h, 

( ) ( ) 2
perigee 1 398,600 6600 1 1 72,540 km /sh r eµ= + = × × + =  

and then the mean anomaly for 𝜃𝜃 = 90o, 
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( ) ( )3 3
, 90º

1 1 1 1tan tan tan 45º tan 45º
2 2 6 2 2 6pM θ

θ θ
=

   = + = × + ×   
   

 

, 90º 0.667pM θ=∴ =  
 

The corresponding time 𝑡𝑡𝜃𝜃=90o is given by equation (3.31) in the text, 

3 3

90º , 90º2 2
72,540 0.667 1602 s

398,600p
ht Mθ θµ= == = × =  

The time required to coast from coast is twice this value, or 𝑡𝑡𝜃𝜃=−90oto 90o = 2 × 
1602 = 3204 s = 53.4 min.  
Part (b): The mean anomaly 36 hours after passing through the perigee is  

( )22

3 3
398,600 36 3600

53.94
72,540p

tM
h
µ × ×

= = =  

so that, solving Barker’s equation for tan(𝜃𝜃/2), we get 

( ) ( )2 2
1 3 1 3

tan 3 3 1 3 3 1
2 p p p pM M M Mθ

−
     = + + − + +          

 

( ) ( )2 2
1 3 1 3

tan 3 53.94 3 53.94 1 3 53.94 3 53.94 1
2
θ −     ∴ = × + × + − × + × +         

 

tan 6.720
2
θ ∴ = 
 

 

or  

( )2arctan 6.720 163.1ºθ = =  

The corresponding radial position r is 
 

( )
2 21 72,540 1 305,680 km

1 cos 398,600 1 cos 163.1º
hr
µ θ

= = × =
+ +

 

 

◼ P3.16 (Precision: Average) 
Part (a): The velocity at perigee is 

perigee
perigee

2 2 398,6001.2 1.2 13.19 km/s
6600

v
r

µ ×
= = × =  

The specific angular momentum is 
2

perigee perigee 6600 13.19 87,050 km /sh r v= = × =  
 

The eccentricity of the trajectory can be found from the orbit equation:  
 

2 2

perigee
1 87,050 16600

1 398,600 1
hr

e eµ
= → = ×

+ +
 

1.880e∴ =  
 

Now, the eccentric anomaly F is related to the true anomaly 𝜃𝜃 by equation (3.44a): 
 

1 1.88 1 90ºtanh tan tan 0.553
2 1 2 1.88 1 2
F e

e
θ− −     = = × =     + +     

 

( )12 tanh 0.553 1.245F −∴ = =  
 

The mean anomaly at 𝜃𝜃 = 90o then becomes 
 

( ) ( ),90º 90º 90ºsinh 1.88 sinh 1.245 1.245 1.749hM e F F= − = × = =  
 

so that, solving equation (3.34) for time, 

( ) ( )
2 23 2 3 22 2

,90º 3 3
398,6001 1.749 1.88 1
87,050hM e t t

h
µ

= − → = × −  

41.749 9.718 10 t−∴ = ×  

90º 4
1.749 1800 s

9.718 10
t −∴ = =

×
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The time required for the spacecraft to coast from −90 degrees to +90 degrees is 
twice this value, namely 

90º to 90º 2 1800 3600 s 1.0 ht− = × = =  

Part (b): We begin by computing the mean anomaly 24 hours after the 
craft has passed through perigee: 

 

( ) ( ) ( )
2 23 2 3 22 2
3 3

398,6001 1.88 1 24 3600 83.96
87,050hM e t

h
µ

= − = × − × × =  

, 

To find the eccentric anomaly F, we must solve Kepler’s equation for a hyperbola 
(eq. (3.40)): 

sinh 83.96 1.88sinhhM e F F F F= − → = −  
 

This transcendental equation can be solved for F using MATLAB’s fzero command: 

>> f = @(F) 83.96 - 1.88*sinh(F) + F; 
x0 = 1; 
fzero(f,x0) 
ans = 
    4.5450 

That is, F = 4.545. We proceed to determine the true anomaly 𝜃𝜃: 
 

1 1.88 1 4.545tan tanh tanh 1.771
2 1 2 1.88 1 2

e F
e

θ + +     = = × =     − −     
 

( )2arctan 1.771 121.1ºθ∴ = =  
 

Finally, we establish the radial position r:  
 

( )
2 21 87,050 1 657,400 km

1 cos 398,600 1 1.88 cos 121.1º
hr

eµ θ
= = × =

+ + ×
 

◼ P3.19 (Precision: Average) 
MATLAB function kepler_U can be used to implement Algorithm 3.3:  

 

clear 
global mu 
mu = 398600; 
 
ro = 7200; 
vro = 1; 
a = 10000; 
dt = 3600; 
 
x = kepler_U(dt, ro, vro, 1/a); 
fprintf('\n Initial radial coordinate = %g', ro) 
fprintf('\n Initial radial velocity = %g', vro) 
fprintf('\n Elapsed time = %g', dt) 
fprintf('\n Semimajor axis = %g\n', a) 
fprintf('\n Universal anomaly = %g\n', x) 

The output is: 

Initial radial coordinate = 7200 
Initial radial velocity = 1 
Elapsed time = 3600 
Semimajor axis = 10000 
 
Universal anomaly = 229.341 

As shown, the universal anomaly is 𝜒𝜒 = 229.341 km1/2.  Let us confirm this result 
using equation 3.58. The first step is to solve the energy equation for 𝜐𝜐: 
 

2 1 12
2 2 2
v v

r a r a
µ µ µ  − = − → = − 

 
 

1 12 398,600 8.418 m/s
7200 2 10,000

v  ∴ = × × − = × 
 

 

Then, the azimuthal component of velocity follows from the Pythagorean 
theorem: 

2 2 2 28.418 1.0 8.358 km/srv v v⊥ = − = − =  
 

The specific angular momentum is 
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27200 8.358 60,180 km /sh rv⊥= = × =  

To compute the true anomaly, we make use of two equations. The first is the 
equation for radial velocity 𝑣𝑣𝑟𝑟: 

1.0 sin 1.0rv e
h
µ θ= → =  

398,600 sin 1.0 (I)
60,180

e θ∴ =  

 

The second is the orbit equation: 
 

2 21 60,180 17200 (II)
1 cos 398,600 1 cos

hr
e eµ θ θ

= → = ×
+ +

 

 

Equations (I) and (II) can be solved simultaneously using MATLAB’s fsolve function; 
in the following code snippet, 𝑥𝑥(1) is eccentricity and 𝑥𝑥(2) is true anomaly.   
 

function f = orbitProb(x) 
f(1) = 398600/60180*x(1)*sin(x(2)) - 1; 
f(2) = 7200 - 60180^2/398600*1/(1 + x(1)*cos(x(2)));  
>> fun = @orbitProb; 

>> fun = @orbitProb; 
x0 = [0.1, 0] 
x = fsolve(fun,x0) 
x = 
    0.3023    0.5229 
 

Hence, e = 0.302 and 𝜃𝜃 = 0.523 rad = 29.97o. Then, we compute the time at the 
initial true anomaly as follows: 
 

1 11 1 0.302 0.523tan tan tan 0.196
2 1 2 1 0.302 2
E e

e
θ− −     = = × =     + +     

 

( )1 2arctan 0.196 0.387 radE∴ = =  

( )1 1 1sin 0.387 0.302 sin 0.387 0.273 radM E e E= − = − × =  

3 21
1

9952

0.273 2 10,000
2 2 398,600
Mt T π
π π

=

 
= = × × 

 

 

1 432.4 st =  
 

Then, we proceed to determine E one hour later: 
 

2 1 3600 4032 st t= + =  

2 2
2 2 4032 2.546 rad

9952
M t

T
π π

= = × =  

( ) ( )2 2 2 2 2sin 0.302sin 2.546E e E M E E− = → − =  

2 2.680 radE∴ =  
 

At last, the universal anomaly is given by equation (3.58): 
 

( ) ( ) 1 2
2 1 10,000 2.680 0.387 229.3 kma E Eχ = − = × − =  

◼ P3.20 (Precision: Average) 
Algorithm 3.4 can be executed with the code rv_from_r0v0.m; all we have 

to do is insert as inputs the initial position vector r0, the initial velocity vector v0, 
and the time t = 2 h = 2 × 3600 = 7200 s.  

 

global mu 
mu = 398600; 
 
R0 = [20000, -105000, -19000]; 
V0 = [0.9, -3.4, -1.5]; 
t = 2*3600; 

 
[R, V] = rv_from_r0v0(R0, V0, t); 

 
fprintf('\n Initial position vector (km):') 
fprintf('\n r0 = (%g, %g, %g)\n', R0(1), R0(2), R0(3)) 
fprintf('\n Initial velocity vector (km/s):') 
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fprintf('\n v0 = (%g, %g, %g)\n', V0(1), V0(2), V0(3)) 
fprintf('\n\n Elapsed time = %g s\n', t) 
fprintf('\n Final position vector (km):') 
fprintf('\n r = (%g, %g, %g)\n', R(1), R(2), R(3)) 
fprintf('\n Final velocity vector (km/s):') 
fprintf('\n v = (%g, %g, %g)', V(1), V(2), V(3)) 
 

The output is: 
 

Elapsed time = 7200 s 
 

Final position vector (km): 
r = (26337.8, -128752, -29655.9) 

 
Final velocity vector (km/s): 
v = (0.862796, -3.2116, -1.46129) 
 

Hence, after two hours, the final position and velocity vectors are, respectively: 
 

26,337.8 128,752 26,655.9 km= − −r i j k  

0.862796 3.2116 1.46129 km/s= − −v i j k  

◼ P4.3 (Precision: Average) 
The norms of the inertial position and velocity vectors are, respectively, 
 

2 2 22500 16,000 4000 16,681 kmr = = + + =r  

( ) ( )2 2 23 1 5 5.916 km/sv = = − + − + =v  
 

The radial component of velocity is such that 
 

( ) ( )2500 3 16,000 1 4000 5
0.210 km/s

16,681rv
r

× − + × − + ×⋅
= = = −

r v
 

 

The angular momentum vector is given by the cross product 
 

22500 16,000 4000 84,000 24,500 45,500 (km /s)
3 1 5

= × = = − +
− −

I J K
h r v I J K  

 
 

which has norm h = ‖𝐡𝐡‖ = 98,620 km2/s. The second orbital element we require is 
the inclination 𝑖𝑖: 

1 1 45,500cos cos 62.52º
98,620

zhi
h

− −   = = =      
 

 

The node line vector N is, in turn, 
 

224,500 84,000 (km /s)= × = +N K h I J  

and the corresponding magnitude is N = ‖𝐍𝐍‖ = 87,500 km2. Then, the right 
ascension of the ascending node Ω becomes 
 

1 1 24,500cos cos 73.74º
87,500

xN
N

− −   Ω = = =      
 

 

The eccentricity vector e is given by equation (4.10): 
 

 

21
rv rv

r
µ

µ
  = − −    

e r v  

( )21 396,8005.916 16,681 0.210
398,600 16,681

  ∴ = × − − × −  
  

e r v  

[ ]1 11.21 3503
398,600

∴ = × +e r v  

( ) ( )1 11.21 2500 16,000 4000 3503 3 5
398,600

∴ = ×  + + + − − +  e I J K I J K  

0.0439 0.441 0.156∴ = + +e I J K  
 

The corresponding magnitude is e = ‖𝐞𝐞‖ = 0.468. The penultimate orbital element 
we need is the argument of perigee, namely 
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1 1 24,500 84,000 0.0439 0.441 0.156cos cos
87,500 0.468N e

ω − − + + +  = ⋅ = ⋅      

N e I J I J K
 

( )1cos 0.931 21.43ºω −∴ = =  
 

Finally, the true anomaly is given by the equation listed in topic 13 of algorithm 
4.2: 

1 1 0.0439 0.441 0.156 2500 16,000 4000cos cos
0.468 16,681e r

θ − − + + + +  = ⋅ = ⋅      

e r I J K I J K
 

( )1cos 0.997θ −∴ =  
 

Now, note that 𝒆𝒆 ∙ 𝒓𝒓 = −3500, which means that 𝜃𝜃 ∈ (180o, 360o). Thus, the true 
anomaly can only be (see eq. (4.31a)) 
 

( )1360º cos 0.997 360º 4.439º 355.6ºθ −= − = − =  
 

The six orbital elements are summarized below. 
 

Orbital Element Value 
Specific angular momentum, h 98,620 km2/s 

Inclination, i 62.52o 
Right ascension of ascending node, Ω 73.74o 

Eccentricity, e 0.468 
Argument of perigee, 𝜔𝜔 21.43o 

True anomaly, 𝜃𝜃 355.6o 
 

◼ P4.5 (Precision: Average) 
The calculations are identical to those of Problem 4.3. We can speed things 

up by using MATLAB code coe_from_sv as provided in Appendix D.18. The inputs 
are vectors r and v and the gravitational parameter 𝜇𝜇.  

r = [6500, -7500, -2500]; 
v = [4, 3, -3]; 
mu = 398600; 
elements = coe_from_sv(r,v,mu); 
fprintf('The specific angular momentum is %g\n', elements(1)) 
fprintf('The eccentricity is %g\n', elements(2)) 
fprintf('The R.A. of the ascending node is %g\n', elements(3)) 
fprintf('The inclination is %g\n', elements(4)) 
fprintf('The argument of perigee is %g\n', elements(5)) 
fprintf('The true anomaly is %g\n', elements(6)) 
 

Here’s the output: 
 

The specific angular momentum is 58655.8 
The eccentricity is 0.222606 
The R.A. of the ascending node is 1.87747 
The inclination is 0.566272 
The argument of perigee is 1.2629 
The true anomaly is 2.35141 

The orbital parameters are summarized below. 
 

Orbital Element Value 
Specific angular momentum, h 58,656 km2/s 

Inclination, i 0.566 rad 
(32.43o) 

Right ascension of ascending node, Ω 
1.877 rad 
(107.5o) 

Eccentricity, e 0.223 

Argument of perigee, 𝜔𝜔 
1.263 rad 
(72.36o) 

True anomaly, 𝜃𝜃 
2.351 rad 
(134.7o)  

 

◼ P4.6 (Precision: Average) 
The magnitudes of the position and eccentricity vectors we were given are, 

respectively, 

( ) ( )2 2 26000 1000 5000 7874 kmr = = − + − + =r  

2 2 20.4 0.5 0.6 0.877e = = + + =e  
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As stated, the satellite is approaching perigee; thus, the true anomaly may be 
computed from the second of eqs. (4.13a): 
 

 

1 1 0.4 0.5 0.6 6000 1000 5000360º cos 360º cos
0.877 7874e r

θ − − − − − − − −   = − ⋅ = − ⋅   
   

e r I J K I J K
 

( )1360º cos 0.854 360º 31.35º 328.65ºθ −∴ = − = − =  

◼ P4.7 (Precision: Average) 
We first compute the unit normal w to the orbital plane: 

×
=

×
r ew
r e

 

where  

6600 1300 5200 1820 1880 2780 km
0.4 0.5 0.6

× = − − − = − − +
− − −

I J K
r e I J K  

 

and the corresponding norm is 
 

2 2 21820 1880 2780 3818 km× = + + =r e  

so that 

1820 1880 2780 0 7.477 0.492
38 8

0.
1

28− − +
= = − − +

I J Kw I J K  

 

It remains to compute the inclination 𝑖𝑖: 
 

( )1 1cos cos 4 º0 3. . 88 272zi w− −= = =  

◼ P4.14 (Precision: Average) 
The solution procedure is analogous to the one adopted in Example 3.7, 

page 175. We begin by computing the magnitudes 
 

 

2 2 2
0 5000 8000 2100 9665 kmr = + + =  

2 2 2
0 4 3.5 3 6.103 km/sv = + + =  

 

 

We also need the radial component of velocity, 
 

( ) ( ) ( )0 0
,0

0

5000 4 8000 3.5 2100 3
0.176 km/s

9665rv
r

− × − − × − × −⋅
= = = −

v r
 

 

and the reciprocal 𝛼𝛼 of the semimajor axis,  
 

2 2
4 10

0

2 2 6.103 1.135 10 km
9665 398,600

v
r

α
µ

− −= − = − = ×  

 

We can speed things up by calculating the universal anomaly with kepler_U: 
 

global mu 
mu = 398600; 
dt = 50*60; 
ro = 9665; 
vro = -0.176; 
a = 1.135e-4; 
x = kepler_U(dt, ro, vro, a)  

x = 
 
  212.3778 
 

As shown, kepler_U returns 𝜒𝜒 ≈ 212.4 km1/2. Next, Lagrange coefficients 𝑓𝑓 and 𝑔𝑔 
can be determined with code f_and_g.m (Appendix D.15 in the text): 
 

x = 212.4; 
t = 50*60; 
ro = 9665; 
a = 1.135e-4; 
[fLag, gLag] = f_and_g(x, t, ro, a) 

 fLag = 
 
   -0.4933 
 
gLag = 
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   1.0445e+03 

As shown, f_and_g returns 𝑓𝑓 ≈ −0.493 and 𝑔𝑔 ≈ 1045 s-1. Substituting into 
equation (3.67) brings to 
 

( )
( )

0 0 0.493 5000 8000 2100

1045 4 3.5 3 1715 7601 2100 km

f g= + = − × − − −

+ × − + − = − + −

r r v I J K

I J K I J K
 

 

Finally, to find the updated velocity vector v, we need derivatives 𝑓𝑓̇ and �̇�𝑔, which 
are given by equations (3.69c) and (3.69d), respectively. The calculation of these 
coefficients can be automated with the accompanying function fDot_and_gDot: 
 

x = 212.4; 
t = 50*60; 
ro = 9665; 
r = norm([-1715,7601,-2100]); 
a = 1.135e-4; 
[fDotLag, gDotLag] = fDot_and_gDot(x, r, ro, a) 
 
fDotLag = 
 
  -5.8499e-04 
 
gDotLag = 
 
   -0.7884 

As shown, the results are 𝑓𝑓̇ ≈ −5.850×10–4 s–1 and �̇�𝑔 = −0.788. Substituting into 
equation (3.68) yields 

( ) ( )

( )

4
0 0 5.850 10 5000 8000 2100

0.788 4 3.5 3 6.077 1.922 3.593 km/s

f g −= + = − × × − − −

− × − + − = + +

r r v I J K

I J K I J K

 
 

In the second method, we first compute the classical orbital elements using the 
coe_from_sv code: 
 

R = [-5000, -8000, -2100]; 
V = [-4, 3.5, -3]; 
mu = 398600; 
elmnts = coe_from_sv(R,V,mu); 
fprintf('The spec. ang. momentum is %g\n', elmnts(1)) 
fprintf('The eccentricity is %g\n', elmnts(2)) 
fprintf('The right ascension of ascending node is %g\n', elmnts(3)) 
fprintf('The inclination of the orbit is %g\n', elmnts(4)) 
fprintf('The argument of the perigee is %g\n', elmnts(5)) 
fprintf('The true anomaly is %g\n', elmnts(6)) 
 
The spec. ang. momentum is 58963 
The eccentricity is 0.100957 
The right ascension of ascending node is 1.3633 
The inclination of the orbit is 2.56718 
The argument of the perigee is 0.150736 
The true anomaly is 3.40226 
 
The true anomaly 𝜃𝜃 = 3.402 rad = 194.9o, and the period T is calculated as 
 

2 22 2

33
2 2 58,963 8232 s

398,6001 1 0.101

hT
e

π π
µ

   
= = × =      − −   

 

 

We proceed to determine the time since perigee passage at true anomaly 𝜃𝜃 = 
194.9o : 

0 1 1 0.101 194.9ºtan tan tan 6.901
2 1 2 1 0.101 2

E e
e

θ− −     = = × = −     + +    
 

( )0 2arctan 6.901 2.854 radE∴ = − = −  

( )0 0 0sin 2.854 0.101 sin 2.854 2.825 radM E e E= − = − − × − = −  

0
0

2.825 8232 3701 s
2 2
Mt T
π π

−
= = × = −  

 



25 
© 2022 Montogue Quiz 

The negative sign means time until perigee passage. We press on to update the 
true anomaly of the spacecraft at t = t0 + 50×60 = −701 s: 

( )701
2 2 0.535 rad

8232
tM
T

π π
−

= = × = −  

sin 0.535 0.101sinM E e E E E= − → − = −  

0.591 rad (Numerical solution)E∴ = −  

1 1 0.101 0.591tan tan tan 0.337
2 1 2 1 0.101 2

e E
e

θ + + −     = = × = −     − −     
 

( )2arctan 0.337 37.25ºθ∴ = − = −  
 

Then, position vector {𝒓𝒓}�̅�𝑥 and velocity vector {𝝂𝝂}𝑋𝑋� in perifocal coordinates are 
given by equations (4.45) and (4.46), respectively: 
 

{ } ( )

( )
( )

2 2cos cos 37.25º
1 58,963 1sin sin 37.25º

1 cos 398,600 1 0.101 cos 37.25º
0 0

X
h

e

θ
θ

µ θ

 −  
  = = × −  + + × −      

r  

{ }
( )
( )

cos 37.25º
8073 sin 37.25º

0
X

 − 
 ∴ = − 
  

r  

{ }
6426
4887 km
0

X

 
 ∴ = − 
  

r  

{ }
( )

( )
sin sin 37.25º

398,600cos 0.101 cos 37.25º
58,963

0 0
X e

h

θ
µ θ

−  − −  
  = + = × + −  
     

v  

{ }
4.092
6.064 km/s

0
X

 
 ∴ =  
  

v  

 

Next, we calculate the matrix [𝑸𝑸]�̅�𝑥𝑋𝑋 of the transformation from perifocal to 
geocentric equatorial coordinates: 

 

[ ]
sin cos sin cos cos cos cos sin sin cos sin sin
sin cos cos cos sin cos cos cos sin sin sin cos

sin sin cos sin cos
Xx

i i i
i i i

i i i

ω ω ω ω ω
ω ω ω ω ω

− Ω + Ω Ω + Ω 
 = − Ω − Ω Ω − Ω 
 Ω − Ω 

Q  

 

[ ]
0.327 0.781 0.532
0.941 0.318 0.112

0.0816 0.537 0.840
Xx

 
 ∴ = − − 
 − 

Q  

 

We now have enough information to carry out the transformation from perifocal 
to geocentric equatorial components: 
 

{ } [ ] { }
0.327 0.781 0.532 6426
0.941 0.318 0.112 4887

0.0816 0.537 0.840 0
X xxX

   
   = = − − −   
   −   

r Q r  

 

>> QxX = [0.327, 0.781, 0.532; 0.941, -0.318, -0.112; 0.0816, 0.537, 
-0.840]; 
>> rx = [6426, -4887, 0]'; 
>> mtimes(QxX,rx) 
 
ans = 
 
   1.0e+03 * 
 
   -1.7154 
    7.6009 
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   -2.1000 

That is, 

1715 7601 2100 km= − + −r I J K  
 

Likewise for the velocity vector: 

{ } [ ] { }
0.327 0.781 0.532 4.092
0.941 0.318 0.112 6.064

0.0816 0.537 0.840 0
X xxX

   
   = = − −   
   −   

v Q v  

>> vx = [4.092, 6.064, 0]'; 
>> mtimes(QxX,vx) 
 

ans = 
 

    6.0741 
    1.9222 
    3.5903 

That is, 

6.074 1.922 3.590 km/s= + +v I J K  

◼ P4.15 (Precision: Average) 
Part (a): The specific angular momentum for this orbit is 
 

 

( ) ( ) ( ) 2
perigee1 398,600 1 1.5 6378 300 81,576 km /sh e rµ= + = × + × + =  

 

 

The perifocal radial position is given by equation (4.45): 
 

{ } ( )

( )
( )

2 2cos cos 0
1 81,576 1sin sin 0

1 cos 398,600 1 1.5cos 0
0 0

x
h

e

θ
θ

µ θ

  
  = = ×   + +      

r  

{ }
1

6678 0
0

x

 
 ∴ =  
  

r  

{ } 6678 kmx∴ =r p  
 

The perifocal velocity is given by equation (4.46): 
 

{ }
( )
( )

sin sin 0
398,600cos 1.5 cos 0
81,576

0 0
x e

h

θ
µ θ

−  −  
  = + = × +  
     

v  

{ }
0

4.886 2.5
0

x

 
 ∴ = ×  
  

v  

{ } 12.22 km/sx∴ =v q  

Part (b): To compute the geocentric equatorial components, we first write 
down the transformation matrix 

[ ]
sin cos sin cos cos cos cos sin sin cos sin sin
sin cos cos cos sin cos cos cos sin sin sin cos

sin sin cos sin cos
Xx

i i i
i i i

i i i

ω ω ω ω ω
ω ω ω ω ω

− Ω + Ω Ω + Ω 
 = − Ω − Ω Ω − Ω 
 Ω − Ω 

Q  

[ ]
0.297 0.848 0.439
0.801 0.472 0.369

0.520 0.242 0.819
Xx

− 
 ∴ = − − 
 − 

Q  

Then, we perform the pertaining matrix multiplication using MATLAB: 

>> QxX = [-0.297, 0.848, 0.439; -0.801, -0.472, 0.369; 0.520, -0.242, 
0.819]; 
>> rx = [6678, 0, 0]'; 
>> mtimes(QxX, rx) 
ans = 
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   1.0e+03 * 
 

   -1.9834 
   -5.3491 
    3.4726 

Thus, 

{ } [ ] { } 1983 5349 3473 kmX xxX= = − − +r Q r I J K  

Proceeding similarly with the velocity vector: 

>> vx = [0, 12.22, 0]'; 
mtimes(QxX, vx) 
 

ans = 
 

   10.3626 
   -5.7678 
   -2.9572 

Thus, 

{ } [ ] { } 10.36 5.768 2.957 km/sX xxX= = − −v Q v I J K  

◼ P4.16 (Precision: Average) 
Part (a): The true anomaly at time t = 2 × 3600 = 7200 s is calculated as 

( ) ( )
2 23 2 3 22 2
3 3

398,6001 1.5 1 7200 2.945
81,576hM e t

h
µ

= − = × − × =  

sinh 1.5 sinh 2.945he F F M F F− = → × − =  

( )1.886 Numerical solutionF∴ =  

1 1.5 1 1.886tan tanh tanh 1.647
2 1 2 1.5 1 2

e F
e

θ + +     = = × =     − −     
 

( )2arctan 1.647 117.5ºθ∴ = =  

The distance vector in perifocal coordinates is given by equation (4.45): 

{ } ( )

( )
( )

2 2cos cos 117.5º
1 81,576 1sin sin 117.5º

1 cos 398,600 1 1.5 cos 117.5º
0 0

x
h

e

θ
θ

µ θ

  
  = = ×   + + ×      

r  

{ }
0.462

54,315 0.887 25,093 48,177 km
0

x

− 
 ∴ = = − + 
  

r p q  

The velocity vector in perifocal coordinates is given by equation (4.46): 

{ }
( )
( )

sin sin 117.5º
398,600cos 1.5 cos 117.5º
81,576

0 0
x e

h

θ
µ θ

−  −  
  = + = × +  
     

v  

{ }
0.887

4.886 1.038 4.334 5.072 km/s
0

x

− 
 ∴ = × = − + 
  

v p q  

Part (b): The same transformation matrix used in Problem 4.15 also applies 
here: 

[ ]
0.297 0.848 0.439
0.801 0.472 0.369

0.520 0.242 0.819
Xx

− 
 = − − 
 − 

Q  

The matrix multiplications we require can be automated with MATLAB; firstly, for 
the position vector in geocentric coordinates:  
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>> QxX = [-0.297, 0.848, 0.439; -0.801, -0.472, 0.369; 0.520, -0.242, 
0.819]; 
rx = [-25093, 48177, 0]'; 

mtimes(QxX,rx) 

ans = 
   1.0e+04 * 
    4.8307 
   -0.2640 
   -2.4707 
 

Thus, 

{ } [ ] { } 48,307 2640 24,707 kmX xxX= = − −r Q r I J K  

Similarly, the velocity in geocentric coordinates is such that 

>> vx = [-4.334, 5.072, 0]'; 

mtimes(QxX,vx) 

ans = 
    5.5883 
    1.0776 
   -3.4811 
 

That is, 

{ } [ ] { } 5.588 1.078 3.481 km/sX xxX= = + −v Q v I J K  

◼ P4.18 (Precision: Average) 
 

Part (a): The calculations are identical to the ones in Problem 4.15. Note 
that the specific angular momentum is missing; calculating it is effortless: 
 

( ) ( ) 2
perigee1 398,600 1 1.2 6578 75,950 km /sh e rµ= + = × + × =  

 

Then, the perifocal state vector can be found from equations (4.45) and 
(4.46): 

{ }
2 2cos cos0

1 75,950 1sin sin 0
1 cos 398,600 1 1.2 cos0

0 0
x

h
e

θ
θ

µ θ

   
   = = × ×   + + ×
      

r  

{ }
1

6578 0 6578 km
0

x

 
 ∴ = × = 
  

r p  

{ }
sin sin 0

398,600cos 1.2 cos0
75,950

0 0
x e

h

θ
µ θ

− −   
   = + = × +   
      

v  

{ }
0

5.25 1.2 6.3 km/s
0

x

 
 ∴ = × = 
  

v q  

 

Part (b): Again, the calculations are identical to part (b) of Problem 4.15. 
We can speed things up by using the MATLAB code sv_from_coe.m in Appendix 
D.22. This function takes two inputs: The first is a vector containing six orbital 
elements; the second is the gravitational parameter 𝜇𝜇.  

 

mu = 398600; %Gravitational parameter 
ecc = 1.2; %Eccentricity 
rperigee = 6578; %Radial distance of perigee 
inc = 50*pi/180; %Inclination 
RA = 75*pi/180; %Right ascension of ascending node 
w = 80*pi/180; %Argument of perigee 
TA = 0; %True anomaly 
h = sqrt(mu*(1+ecc)*rperigee); %Specific angular momentum  
elements = [h, ecc, RA, inc, w, 0]; 
[r,v] = sv_from_coe(elements, mu) 
 

Here’s the output: 
r = 
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 1.0e+03 * 
       -3.7265    2.1811    4.9625 
v = 
       -4.1878  -10.6496    1.5359 
 

That is, 

{ } 3727 2181 4963 kmX = − + +r I J K  

and  

{ } 4.188 10.65 1.536 km/sX = − + +v I J K  

◼ P4.19 (Precision: Average) 
Part (a): The first step is to update the true anomaly 𝜃𝜃 for 2 hours past 

perigee: 

( ) ( )
2 23 2 3 22 2
3 3

398,6001 1.2 1 7200 0.762
75,950hM e t

h
µ

= − = × − × =  

( ) ( )sinh 1.2sinh 0.762he F F M F F− = → − =  

1.317 (Numerical solution)F∴ =  

1 1.2 1 1.317tan tanh tan tanh 1.915
2 1 2 2 1.2 1 2

e F
e

θ θ+ +       = → = =       − −       
 

( )2arctan 1.915 124.9ºθ∴ = =  

As before, the perifocal state vectors can be found from equations (4.45) and 
(4.46): 

{ } ( )

( )
( )

2 2cos cos 124.9º
1 75,950 1sin sin 124.9º

1 cos 398,600 1 1.2 cos 124.9º
0 0

x
h

e

θ
θ

µ θ

  
  = = × ×   + + ×      

r  

{ }
0.572

46,173 0.820 26,411 37,862 km
0

x

− 
 ∴ = × = − + 
  

r p q  

{ }
( )
( )

sin sin 124.9º
398,600cos 1.2 cos 124.9º
75,950

0 0
x e

h

θ
µ θ

−  −  
  = + = × +  
     

v  

{ }
0.820

5.248 0.628 4.303 3.260 km/s
0

x

− 
 ∴ = × = − + 
  

v p q  

Part (b): We can employ the same MATLAB routine as in Problem 4.18, 
remembering to update the true anomaly to 𝜃𝜃 = 124.9o:  

mu = 398600; %Gravitational parameter 
ecc = 1.2; %Eccentricity 
rperigee = 6578; %Radial distance of perigee 
inc = 50*pi/180; %Inclination 
RA = 75*pi/180; %Right ascension of ascending node 
w = 80*pi/180; %Argument of perigee 
TA = 124.8*pi/180; %% True anomaly after 2 h = 124.9 deg 
h = sqrt(mu*(1+ecc)*rperigee); %Specific angular momentum  
elements = [h, ecc, RA, inc, w, TA]; 
[r,v] = sv_from_coe(elements, mu) 

Here’s the output: 

r = 

   1.0e+04 * 

    0.1170   -4.3470   -1.4755 

v = 

    1.2435   -4.4751   -2.8118 
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That is, 

{ } 1170 43,470 14,755 kmX = − −r I J K  

and  

{ } 1.244 4.475 2.812 km/sX = − −v I J K  

◼ P5.4 (Precision: Average) 
The magnitudes of the given position vectors are  

2 2 2
1 3600 4600 3600 6861 km= + + =r  

2 2 2
2 5500 6240 5200 9810 km= + + =r  

Assume a prograde trajectory. The z-component of vector r1 × r2 = 4.776×108 km, 
which is positive and hence indicates that Δ𝜃𝜃 can be determined with the first of 
eqs. (5.26): 

( ) ( )1 11 2

1 2

3600 5500 4600 6240 3600 5200
cos cos

6861 9810r r
θ − −  × − + × + × −  ⋅

∆ = =   ×   

r r
 

( )1cos 0.156 98.97ºθ −∴∆ = − =  

We also need parameter A: 

( ) ( ) ( ) ( )
1 2 6861 9810sin sin 98.97º 7537 km

1 cos 1 cos 98.97º
r rA θ

θ
×

= ∆ = × =
− ∆ −

 

To compute function F(z), we refer to equation (5.40):  

( ) ( )
( )
( )

( ) ( )
( )1 2 1 2

3 2
1 11 zS z zS z

F z r r A S z A r r A t
C z C z C z

µ
  − −  = + + + + + − ∆

    
 

The following MATLAB script can be used to solve the equation F(z) = 0:  

mu = 398600; 
deltat = 1800;  
r1 = 6861; 
r2 = 9810; 
A = 7537; 
y = @(z) ((r1 + r2 + A*(z*stumpS(z)-
1)/sqrt(stumpC(z)))/stumpC(z))^1.5*stumpS(z) ... 
    + A*sqrt(r1 + r2 + A*(z*stumpS(z)-1)/sqrt(stumpC(z))) - 
sqrt(mu)*deltat; 
z0 = 1; 
fzero(y,z0) 

ans = 

    2.0151 

The solution is z = 2.015; since z > 0, the orbit is an ellipse. We proceed to evaluate 
the Stumpf functions at z: 

>> [stumpS(2.015), stumpC(2.015)] 

ans = 

    0.1507    0.4215 

Therefore, S(2.015) = 0.151 and C(2.015) = 0.422. We proceed to compute 
Lagrange parameters 𝑓𝑓 and 𝑔𝑔, which first requires  
 

( )
( )1 2

1 2.015 0.151 16861 9810 7537 8599
0.422

zS z
y r r A

C z
− × −

= + + = + + × =  

so that 

1

85991 1 0.253
6861

yf
r

= − = − = −  

85997537 1107 s
398,600

yg A
µ

= = × =  
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and, using equation (5.28): 

( ) ( ) ( ) ( )1 2 1
1 1 5500 6240 5200 0.253 3600 4600 3600

1107
f

g
= − = ×  − + − − − × + +  v r r I J K I J K  

1 4.146 6.688 3.875 km/s∴ = − + −v I J K  

The magnitude of v1 is 8.771 km/s. It remains to compute the specific energy 𝜀𝜀: 

( )
2 2

21

1

8.771 398,600 19.63 km/s
2 2 6861
v

r
µε = − = − = −  

◼ P5.5 (Precision: Average) 
Since we have velocity and position vectors, we may compute the specific 

angular momentum vectorially:  

2
1 1 3600 4600 3600 41,902 976 43,148 (km /s)

4.146 6.688 3.875
= × = = − − +

− −

i j k
h r v i j k  

2 2 2 241,902 976 43,148 60,154 (km /s)∴ = + + =h  

We also need the orbital eccentricity, 

2 2
2 2
12 2

1

2 60,154 2 398,6001 1 8.771 0.325
6861398,600

he v
r
µ

µ
  × = + − = + × − =   

  
 

so that 
2 21 60,154 1 6851 km

1 398,600 1 0.325p
hr

eµ
= = × =

+ +
 

Deducting the earthly radius, 

6378 473 kmp pz r= − =  

In turn, the inclination 𝑖𝑖 is  

1 1 43,148cos cos 44.17º
60,154

zhi
h

− −   = = =      
 

◼ P5.6 (Precision: Average) 
We can easily solve this Lambert’s problem with code lambert.m, which is 

provided in Appendix D.25. This code takes four inputs. The first two inputs are 
position vectors r1 and r2; the third is the time of flight from r1 to r2; the fourth is a 
string to which we assign value ‘pro’ if the orbit is prograde or ‘retro’ if the orbit is 
retrograde. The outputs are velocity vectors v1 and v2. Implementing the code in 
the problem at hand is straightforward: 

global mu 
mu = 398600; 
r1 = [5644, -2830, -4170]; 
r2 = [-2240, 7320, -4980]; 
dt = 20*60; 
string = 'pro'; 
 
[v1, v2] = lambert(r1, r2, dt, string); 
 
fprintf('Solution:\n') 
fprintf('\n v1 (km/s) = [%g, %g, %g]', v1(1), v1(2), v1(3)) 
fprintf('\n v2 (km/s) = [%g, %g, %g]\n', v2(1), v2(2), v2(3)) 

Here’s the output:  

v1 (km/s) = [-4.13223, 9.01237, -4.3781] 

v2 (km/s) = [-7.28524, 6.31978, 2.5272] 

That is, 

1 4.132 9.012 4.378 km/s= − + −v I J K  
 

2 7.285 6.320 2.527 km/s= − + +v I J K
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◼ P5.7 (Precision: Average) 
The orbital elements can be determined by using coe_from_sv.m with r1 

and v1 as inputs. That is:  

global mu 
mu = 398600; 
r1 = [5644, -2830, -4170]; 
v1 = [-4.132, 9.012, -4.378]; 
elements = coe_from_sv(r1, v1, mu); 
 
fprintf('Spec. Ang. Momentum (km^2/s): %g\n', elements(1)) 
fprintf('Eccentricity: %g\n', elements(2)) 
fprintf('R.A. of Ascending Node (deg): %g\n', elements(3)*180/pi) 
fprintf('inclination (deg): %g\n', elements(4)*180/pi) 
fprintf('Argument of Perigee(deg): %g\n', elements(5)*180/pi) 
fprintf('True Anomaly (deg): %g\n', elements(6)*180/pi) 
fprintf('Semimajor axis (km): %g\n', elements(7)) 

Here’s the output:  

Spec. Ang. Momentum (km^2/s): 76093.6 
Eccentricity: 1.20037 
R.A. of Ascending Node (deg): 130.007 
inclination (deg): 59.0184 
Argument of Perigee(deg): 259.981 
True Anomaly (deg): 320.021 
Semimajor axis (km): -32948 

The six orbital elements are summarized below. 
 

Orbital Element Value 
Specific angular momentum, h  76,094 km2/s 

Inclination, i  59.02o 
Right ascension of ascending node, Ω 130.0o 

Eccentricity, e 1.200 
Argument of perigee, 𝜔𝜔 260.0o 

True anomaly, 𝜃𝜃 320.0o 
 

Finally, we were also asked to compute the perigee altitude: 
 

2 2

perigee
1 76,094 1 6603 km

1 398,600 1 1.20
hr

eµ
= = × =

+ +
 

perigee perigee 6378 225 kmz r∴ = − =  
 

◼ P5.12 (Precision: Average) 
The MATLAB code rv_from_observe.m can be used to compute the state 

vector of a space object from the given data. The pertaining code follows:  
 

% Variables 
% deg - Conversion factor used to convert from degrees to radians 
% mu - Gravitational parameter 
% 
% Re - Equatorial radius of the earth (km) 
% f - Earth's flattening factor 
% wE - Angular velocity of the Earth (rad/s) 
% omega - earth's angular velocity vector (rad/s) in the geocentric 
%         equatorial frame 
%  
% rho - slant range of object (km) 
% rhodot - range rate (km/s) 
% A - azimuth (deg) of object relative to observation site 
% Adot - Time rate of change of azimuth (deg/s) 
% a - Elevation angle (deg) of object relative to observation site 
% adot - Time rate of change of elevation angle (deg/s) 
% 
% theta - Local sidereal time (deg) of tracking site 
% phi - Geodetic latitude (deg) of site 
% H - Elevation of site (km) 
%  
% r - Geocentric equatorial position vector of object (km) 
% v - Geocentric equatorial velocity vector of object (km/s) 
% 
% rp - Perigee radius (km) 
% coe - Orbital elements [h e RA inc w TA a] 
%                     h - Spec. angular momentum (km^2/2) 
%                     e - Eccentricity  
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%                     RA - Right ascension of the ascending node 
(rad) 
%                     inc - Inclination of the orbit (rad) 
%                     w - Argument of perigee (rad) 
%                     TA - True anomaly (rad) 
%                     a - Semimajor axis (km) 
global f Re wE mu 
deg = pi/180; 
f = 0.0033528; 
Re = 6378; 
wE = 7.2921e-5; 
mu = 398600; 
 
rho = 988; 
rhodot = 4.86; 
A = 36; 
Adot = 0.59; 
a = 36.6; 
adot = -0.263; 
theta = 40; 
phi = 35; 
H = 0; 
 
[r,v] = rv_from_observe(rho, rhodot, A, Adot, a, adot, theta, phi, 
H); 
fprintf('\nState vector:\n') 
fprintf('\n r (km) = [%g, %g, %g]', r(1), r(2), r(3)) 
fprintf('\n v (km/s) = [%g, %g, %g]\n', v(1), v(2), v(3)) 
 
Here’s the output: 

State vector: 
 
 r (km) = [3794.66, 3792.71, 4501.31] 
 v (km/s) = [-7.72483, 7.72134, 0.0186586] 

That is: 

3795 3793 4501 km= + +r I J K  

7.725 7.721 0.0187 km/s= − + +v I J K  

◼ P5.13 (Precision: Average) 
Equipped with position vector r and velocity vector v, we can easily obtain 

the orbital elements using code coe_from_sv.m in Appendix D.18: 

deg = pi/180; 
mu = 398600; 
 
r = [3795, 3793, 4501]; 
v = [-7.725, 7.721, 0.0187]; 
 
elements = coe_from_sv(r,v,mu); 
 
fprintf('\n The spec. angular momentum is (km^2/s): %g', elements(1)) 
fprintf('\n The eccentricity is: %g', elements(2)) 
fprintf('\n The right ascension is (deg): %g', elements(3)/deg) 
fprintf('\n The inclination is (deg): %g', elements(4)/deg) 
fprintf('\n The argument of perigee is (deg): %g', elements(5)/deg) 
fprintf('\n The true anomaly is (deg): %g', elements(6)/deg) 
fprintf('\n The semimajor axis is (km): %g\n', elements(7)) 

Here’s the output: 

 The spec. angular momentum is (km^2/s): 76491.2 
 The eccentricity is: 1.09593 
 The right ascension is (deg): 315.132 
 The inclination is (deg): 39.9925 
 The argument of perigee is (deg): 89.8108 
 The true anomaly is (deg): 0.0767075 
 The semimajor axis is (km): -73007.7 

The orbital elements are summarized below. 
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◼ P5.14 (Precision: Maximum) 

The local sidereal time 𝜃𝜃, azimuth A, angular elevation a and slant range 𝜌𝜌 
are provided at three observation times. The rates are not provided, but we can 
use function rv_from_observe.m, provided in Appendix D.28, to find the position 
vectors at each of the times. The code is listed below; note that zeros are passed 
to the rate variables. 

% Variables 
% deg - Conversion factor used to convert from degrees to radians 
% 
% Re - Equatorial radius of the earth (km) 
% f - Earth's flattening factor 
%  
% t – Vector of three observation times (min) 
% rho – Vector of slant ranges (km) of the object at the three 
observation  
% times 
% az – Vector of azimuths (deg) of the object relative to the 
observation 
% site at the 3 observation times 
% el – Vector of elevation angles (deg) of the object relative to the  
% observation site at the 3 observation times 
% 
% theta – Vector of local sidereal times (deg) of the tracking site 
at  
% the 3 observation times 
% phi - Geodetic latitude (deg) of site 
% H - Elevation of site (km) 
%  
% r - Geocentric equatorial position vector of object (km) 

global f Re wE 
deg = pi/180; 
Re = 6378; 
f = 0.0033528; 
 
phi = -20; 
H = 0.5; 
t = [0, 2, 4]; 
theta = [60, 60.5014, 61.0027]; 
az = [165.931, 145.967, 2.40962]; 
el = [9.53549, 45.7711, 21.8825]; 
rho = [1214.89, 421.441, 732.079]; 
 
fprintf('\n\n Solution') 
fprintf('\n\n  Time') 
fprintf('\n  (min)   Geocentric position vector (km)\n') 
for i = 1:3 
    [r,v] = rv_from_observe(rho(i), 0, az(i), 0, el(i), ... 
        0, theta(i), phi, H); 
    fprintf('\n %5.1f       [%g, %g, %g]\n', t(i), r(1), r(2), r(3)) 
end 

Here’s the output: 

  Time 
  (min)   Geocentric position vector (km) 
 
   0.0       [2641.68, 5158.02, -3328.73] 
 
   2.0       [2908.04, 5474.36, -2500.03] 
 
   4.0       [3118.6, 5685.65, -1623.34] 

Accordingly, the three position vectors are 
 

1 2641.7 5158.0 3328.7 km= + −r I J K  

2 2908.0 5474.4 2500.0 km= + −r I J K  

Orbital Element Value 
Specific angular momentum, h  76,491 km2/s 

Inclination, i  39.99o 
Right ascension of ascending node, Ω 315.1o 

Eccentricity, e 1.096 
Argument of perigee, 𝜔𝜔 89.81o 

True anomaly, 𝜃𝜃 0.0767o 
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3 3118.6 5685.7 1623.3 km= + −r I J K  
 

Now, we can apply Gibbs’ method, implemented in file gibbs.m and listed in 
Appendix D.24, to establish the velocity vector v2 that corresponds to position 
vector r2. The pertaining code follows: 

global mu 
mu = 398600; 
 
%Position vectors 
r1 = [2642, 5158, -3329]; 
r2 = [2908, 5474, -2500]; 
r3 = [3119, 5686, -1623]; 
 
%Applying algorithm 5.1 
[v2, ierr] = gibbs(r1,r2,r3); 
 
%Abort if the 3 pos, vectors are not coplanar: 
if ierr == true 
    fprinf('\n These vectors are not coplanar. \n\n') 
    return 
end 
 
%Output 
fprintf(' Solution:') 
fprintf('\n') 
fprintf('\n v2 (km/s) = [%g, %g, %g]', v2(1), v2(2), v2(3)) 
fprintf('\n') 

Here’s the output: 

Solution: 
 
 v2 (km/s) = [1.994, 2.2064, 7.1306] 

That is, 

2 1.994 2.2064 7.1306 km/s= + +v I J K  

Finally, the state vector that describes the satellite at observation 2 is 

2 2908.0 5474.4 2500.0 km= + −r I J K  

2 1.994 2.2064 7.1306 km/s= + +v I J K  

◼ P5.15 (Precision: Maximum) 
We’ve already obtained the pertaining position and velocity vectors in 

Problem 5.14; all that’s left to do is insert these into function coe_from_sv.m in 
Appendix D.18: 

 r = [2908.0, 5474.4, -2500.0]; 

v = [1.994, 2.2064, 7.1306]; 

elements = coe_from_sv(r, v, 398600); 
 
fprintf('\n Spec. angular momentum (km^2/m): %g', elements(1)) 
fprintf('\n Eccentricity: %g', elements(2)) 
fprintf('\n Right ascension (deg): %g', elements(3)*180/pi) 
fprintf('\n Inclination (deg): %g', elements(4)*180/pi) 
fprintf('\n Argument of the perigee (deg): %g', elements(5)*180/pi) 
fprintf('\n True anomaly (deg): %g', elements(6)*180/pi) 

Here’s the output: 

Spec. angular momentum (km^2/2): 51639.8 
 Eccentricity: 0.0013425 
 Right ascension (deg): 60.0011 
 Inclination (deg): 94.9989 
 Argument of the perigee (deg): 290.811 
 True anomaly (deg): 47.1362 

The orbital elements are summarized below. 
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◼ P5.16/17 (Precision: Maximum) 
We first use equations (5.56) and (5.57) to convert the given data into 

three tracking position vectors (R1, R2, R3) and three direction cosine vectors (𝝆𝝆𝟏𝟏, 
𝝆𝝆𝟐𝟐, 𝝆𝝆𝟑𝟑). Afterwards, these vectors and the three observation times are inserted in 
function gauss.m, which implements algorithms 5.5 (to compute an approximation 
of the state vector (r,v)) and 5.6 (to iteratively improve the estimated state 
vector).  

global mu 
mu = 398600; 
Re = 6378; %Earthly radius 
f = 1/298.26; %Earth's flattening 
deg = pi/180; %Angle conversion factor 
 
H = 0; %Elevation of observation site 
phi = 29*pi/180; %Latitude of site 
t = [0, 60, 120]; %Vector containing times 
ra = [0, 65.9279, 79.85]*deg; %Vector of topocentric equatorial right 
ascensions 
dec = [51.511, 27.9911, 14.6609]*deg; %Vector of topocentric 
declination values 
theta = [0, 0.250684, 0.501369]*deg; %Vector of local sidereal times 
 
%Equations 5.56 and 5.57 
fact1 = Re/sqrt(1-(2*f - f*f)*sin(phi)^2); 
fact2 = (Re*(1-f)^2/sqrt(1 - (2*f - f*f)*sin(phi)^2) + H)*sin(phi); 
for i = 1:3 
    R(i,1) = (fact1 + H)*cos(phi)*cos(theta(i)); 
    R(i,2) = (fact1 + H)*cos(phi)*sin(theta(i)); 
    R(i,3) = fact2; 
    rho(i,1) = cos(dec(i))*cos(ra(i)); 
    rho(i,2) = cos(dec(i))*sin(ra(i)); 
    rho(i,3) = sin(dec(i)); 
end 
 
%Algorithms 5.5 and 5.6: 
 [r, v, r_old, v_old] = gauss(rho(1,:), rho(2,:), rho(3,:), ... 
                            R(1,:), R(2,:), R(3,:), ... 
                            t(1), t(2), t(3)); 
 
fprintf('\n\n Solution: \n') 
fprintf('\n Without iterative improvement (Problem 5.16) \n') 
fprintf('\n r (km) = [%g, %g, %g]', r_old(1), r_old(2), r_old(3)) 
fprintf('\n v (km/s) = [%g, %g, %g]', v_old(1), v_old(2), v_old(3)) 
fprintf('\n\n With iterative improvement (Problem 5.17) \n') 
fprintf('\n r (km) = [%g, %g, %g]', r(1), r(2), r(3)) 
fprintf('\n v (km/s) = [%g, %g, %g]', v(1), v(2), v(3)) 

Here’s the output: 

Solution:  

 Without iterative improvement (Problem 5.16)  

 r (km) = [5788.09, 484.257, 3341.52] 
 v (km/s) = [-0.460072, 8.05816, -0.265618] 

 With iterative improvement (Problem 5.17)  

 r (km) = [5788.42, 485.007, 3341.96] 
 v (km/s) = [-0.460926, 8.0706, -0.266112] 

As shown, the state vector without iterative improvement is constituted of 

5788.09 484.257 3341.52 km
0.46007 8.05816 0.265618 km/s

= + +
= − + −
r I J K

v I J K
 

In turn, the results with iterative improvement are 

Orbital Element Value 
Specific angular momentum, h  51,639.8 km2/s 

Inclination, i  95.00o 
Right ascension of ascending node, Ω 60.00o 

Eccentricity, e 0.001343 
Argument of perigee, 𝜔𝜔 290.81o 

True anomaly, 𝜃𝜃 47.136o 
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5788.42 485.007 3341.96 km
0.460926 8.0706 0.266112 km/s

= + +
= − + −
r I J K

v I J K
 

◼ P5.18 (Precision: Maximum) 
At this point in the course, the student should know that the orbital 

elements can be easily established by entering the position and velocity vectors 
into coe_from_sv.m, which is provided in Appendix D.18. Here’s the code: 

r = [5788.42, 485.007, 3341.96]; 
v = [-0.460926, 8.0706, -0.266112]; 
elements = coe_from_sv(r, v, 398600); 
 
fprintf('\n Spec. angular momentum (km^2/m): %g', elements(1)) 
fprintf('\n Eccentricity: %g', elements(2)) 
fprintf('\n Right ascension (deg): %g', elements(3)*180/pi) 
fprintf('\n Inclination (deg): %g', elements(4)*180/pi) 
fprintf('\n Argument of the perigee (deg): %g', elements(5)*180/pi) 
fprintf('\n True anomaly (deg): %g', elements(6)*180/pi) 
fprintf('\n Semimajor axis (km): %g\n', elements(7)) 

Here’s the output: 

 Spec. angular momentum (km^2/m): 54201.2 
 Eccentricity: 0.100054 
 Right ascension (deg): 270 
 Inclination (deg): 30.0001 
 Argument of the perigee (deg): 89.9993 
 True anomaly (deg): 4.15098 
 Semimajor axis (km): 7444.75 

The orbital elements are summarized below. 
 
 
 
 
 

 

 
◼ P5.22/23 (Precision: Maximum) 

We have the position vector set (R1, R2, R3), the direction cosine vectors 
(𝝆𝝆𝟏𝟏,𝝆𝝆𝟐𝟐,𝝆𝝆𝟑𝟑), and the corresponding times; we can use gauss.m (Appendix D.29) to 
obtain the state vector of the satellite. Here’s the code:  

t = [0, 60, 120]; 
R = [-1825.96, 3583.66, 4933.54; ... 
    -1841.63, 3575.63, 4933.56; ... 
    -1857.25, 3567.54, 4933.54]; 
rho = [-0.301687, 0.200673, 0.932049; ... 
    -0.793090, -0.210324, 0.571640; ... 
    -0.873085, -0.362969, 0.325539]; 
 
[r, v, r_old, v_old] = gauss(rho(1,:), rho(2,:), rho(3,:), ... 
                             R(1,:), R(2,:), R(3,:), ... 
                             t(1),   t(2),   t(3)); 
 
fprintf('\n\n Solution: \n') 
fprintf('\n Without iterative improvement (Problem 5.22) \n') 
fprintf('\n r (km) = [%g, %g, %g]', r_old(1), r_old(2), r_old(3)) 
fprintf('\n v (km/s) = [%g, %g, %g]', v_old(1), v_old(2), v_old(3)) 
fprintf('\n\n With iterative improvement (Problem 5.23) \n') 
fprintf('\n r (km) = [%g, %g, %g]', r(1), r(2), r(3)) 
fprintf('\n v (km/s) = [%g, %g, %g]', v(1), v(2), v(3)) 

Here’s the output:  
 
Without iterative improvement (Problem 5.22)  
 
 r (km) = [-2351.29, 3440.47, 5300.91] 
 v (km/s) = [-6.62007, -3.88644, -0.414434] 
 
 With iterative improvement (Problem 5.23)  
 
 r (km) = [-2352.14, 3440.24, 5301.52] 

Orbital Element Value 
Specific angular momentum, h  54,201.2 km2/s 

Inclination, i  30.00o 
Right ascension of ascending node, Ω 270.00o 

Eccentricity, e 0.100054 
Argument of perigee, 𝜔𝜔 89.9993o 

True anomaly, 𝜃𝜃 4.15098o 
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 v (km/s) = [-6.63063, -3.89267, -0.415125] 

As shown in the code, the state vector without iterative improvement is 
constituted of 

2351.29 3440.47 5300.91 km
6.62007 3.88644 0.414434 km/s

= − + +
= − − −
r I J K

v I J K
 

In turn, the results with iterative improvement are 

2352.14 3440.24 5301.52 km
6.63063 3.89267 0.415125 km/s

= − + +
= − − −

r I J K
v I J K

 

◼ P5.24 (Precision: Maximum) 
As usual, the orbital elements can be obtained with code coe_from_sv.m in 

Appendix D.18. 
 

r = [-2352.14, 3440.24, 5301.52]; 
v = [-6.63063, -3.89267, -0.415125]; 
elements = coe_from_sv(r, v, 398600); 
 
fprintf('\n Spec. angular momentum (km^2/m): %g', elements(1)) 
fprintf('\n Eccentricity: %g', elements(2)) 
fprintf('\n Right ascension (deg): %g', elements(3)*180/pi) 
fprintf('\n Inclination (deg): %g', elements(4)*180/pi) 
fprintf('\n Argument of the perigee (deg): %g', elements(5)*180/pi) 
fprintf('\n True anomaly (deg): %g', elements(6)*180/pi) 
fprintf('\n Semimajor axis (km): %g\n', elements(7)) 

Here’s the output: 

 Spec. angular momentum (km^2/m): 51924.7 
 Eccentricity: 0.00306513 
 Right ascension (deg): 27.9986 
 Inclination (deg): 52.0013 
 Argument of the perigee (deg): 92.6061 
 True anomaly (deg): 1.32085 
 Semimajor axis (km): 6764.16 

The orbital elements are summarized below. 
 

 
 
 
 
◼ P6.1 (Precision: Minimum) 

Part (a): Considering first the circular orbit, we have a radius r1 = 6378 + 
400 = 6778 km and a speed 

1
1

398,600 7.668 km/s
6778

v
r
µ

= = =  

For the elliptical orbit, in turn, we have 𝑟𝑟𝑎𝑎2 = 6778 km and 𝑟𝑟𝑠𝑠2 = 6378 + 300 = 

6678 km. The specific angular momentum then becomes 

22 2
2

2 2

6778 66782 2 398,600 51,784km /s
6778 6678

a p

a p

r r
h

r r
µ ×

= = × × =
+ +

 

whence we find the speed 

2
2

2

51,784 7.640 km/s
6778a

a

hv
r

= = =  

The value of Δ𝑣𝑣 follows as 

12 7.640 7.668 0.028km/sav vυ∆ = − = − =  

28m/sυ∴∆ =  

Orbital Element Value 
Specific angular momentum, h  51,924.7 km2/s 

Inclination, i  52.0013o 
Right ascension of ascending node, Ω 27.9986o 

Eccentricity, e 0.00306513 
Argument of perigee, 𝜔𝜔 92.6061o 

True anomaly, 𝜃𝜃 1.32085o 
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Now, from the impulse theorem, denoting T as thrust,  

m vT t m v t
T
×∆

×∆ = ×∆ → ∆ =  

125,000 28 70 s
50,000

t ×
∴∆ = =  

Part (b): Since speed is not constant, the easiest way to proceed is to take 
an average value 𝑣𝑣avg such that 

( )1 1
avg 1

0.0287.668 7.682km/s
2 2 2

v v v vv v
+ + ∆ ∆

= = + = + =  

and then multiply it by the burn time Δt: 

avg 7.682 70 538kms v t∆ = ∆ = × =  

Part (c): The ratio we aim for is 

538 0.0126 1.26%
Orbit circumference 2 6778

s
π

∆
= = =

×
 

Part (d): Applying the rocket equation with a specific impulse Isp = 290 sec 
read from Table 6.1: 

0 0.0281 1 exp 0.979%
290 0.00981

v I gspm e
m

−∆∆  = − = − − = × 
 

◼ P6.8 (Precision: Average) 
Part (a): Orbit 1 is a circle associated with speed 𝑣𝑣1, namely 

1
398,600 7.726 km/s

6378 300
v

r
µ

= = =
+

 

Orbit 2 is a transfer ellipse with eccentricity 

( ) ( )
( ) ( )

apogee,2 perigee,2
2

apogee,2 perigee,2

6378 3000 6378 300
0.1682

6378 3000 6378 300
r r

e
r r

− + − +
= = =

+ + + +
 

and specific angular momentum  

2 2
2 2

perigee,2
2

1 16678
1 398,600 1 0.1682

h hr
eµ

= → = ×
+ +

 

2
2 55,764 km /sh∴ =  

so that 

perigee,2
55,764 8.350km/s
6678

v = =  

apogee,2
55,764 5.946km/s
9378

v = =  

Orbit 3 is a circle with speed 𝑣𝑣3 computed as 

3
398,600 6.520km/s

6378 3000
v

r
µ

= = =
+

 

We can proceed to determine the Δ𝑣𝑣’s,  

1 perigee,2 1 8.350 7.726 0.624km/sv v v∆ = − = − =  

2 3 apogee,2 6.520 5.946 0.574km/sv v v∆ = − = − =  

Lastly, 

total 1 2 0.624 0.574 1.198 km/sv v v∆ = ∆ + ∆ = + =  

Part (b): We first compute the period of the transfer ellipse: 

( ) ( )2 perigee,2 apogee,2
1 1 6678 9378 8028 km/s
2 2

a r r= + = × + =  
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3 2 3 2
2

2 2 8028 7159s
398,600

T aπ π
µ

= = × =  

The orbit transfer time is half of this value, or 𝑡𝑡perigee to apogee = 3580 s = 59.67 
min.  
◼ P6.11 (Precision: Average) 

Let r be the radius of the smaller orbit 1 and 3r be the radius of the bigger 
orbit 3. The speed of the spacecraft in smaller orbit 1 is 

,1 1A
A

v v
r r
µ µ

= = =  

For the transfer orbit 2, the angular momentum of the spacecraft is given by 

2
32 2 1.225
3

A B

A B

r r r rh r
r r r r

µ µ µ×
= = × =

+ +
 

The speed of the spacecraft for orbit 2 at point A is given by 

2
,2

1.225 1.225A
A

rhv
r r r

µ µ
= = =  

while at point B, 

2
,2

1.225 0.408
3B

B

rhv
r r r

µ µ
= = =  

 

The speed of the spacecraft in bigger orbit 3 at point B is given by 

,3 0.577
3B

B
v

r r r
µ µ µ

= = =  

The total change in speed required for the orbit transfer is  

,2 ,1 ,3 ,2 1.225 1 0.577 0.408A A B Bv v v v v
r
µ

 ∆ = − + − = − + −   

0.394v
r
µ

∴ ∆ =  

◼ P6.13 (Precision: Minimum) 
We first calculate the apogee radius of orbit 1, here labeled as rB:  

1
70000.3
7000

B A B

B A B

r r re
r r r
− −

= → =
+ +

 

13,000 kmBr∴ =  

Similarly for orbit 2: 

D
2

D

32,0000.5
32,000

D C

D C

r r re
r r r

− −
= → =

+ +
 

96,000 kmDr∴ =  

We proceed to compute the angular momenta: 

2
1

7000 13,0002 2 398,600 60,230 km /s
7000 13,000

A B

A B

r rh
r r

µ ×
= = × × =

+ +
 

2
2

32,000 96,0002 2 398,600 138,320 km /s
32,000 96,000

C D

C D

r rh
r r

µ ×
= = × × =

+ +
 

2
3

7000 96,0002 2 398,600 72,120 km /s
7000 96,000

A D

A D

r rh
r r

µ ×
= = × × =

+ +
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2
4

13,000 32,0002 2 398,600 85,850 km /s
13,000 32,000

B C

B C

r rh
r r

µ ×
= = × × =

+ +
 

and the pertaining velocities: 

1
,1

60,230 8.604 km/s
7000A

A

hv
r

= = =  

3
,3

72,120 10.303 km/s
7000A

A

hv
r

= = =  

1
,1

60,230 4.633 km/s
13,000B

B

hv
r

= = =  

4
,4

85,850 6.604 km/s
13,000B

B

hv
r

= = =  

2
,2

138,320 4.323km/s
32,000C

C

hv
r

= = =  

4
,4

85,850 2.683km/s
32,000C

C

hv
r

= = =  

2
,2

138,320 1.441km/s
96,000D

D

hv
r

= = =  

3
,3

72,120 0.751 km/s
96,000D

D

hv
r

= = =  

The periods of orbits 3 and 4 are, respectively, 

3 2 3 2

3
2 2 7000 96,000 116,310 s

2 2398,600
A Dr rT π π

µ
+ +   = = × =   

   
 

3 32.31 hT∴ =  

3 2 3 2

4
2 2 13,000 32,000 33,590 s

2 2398,600
B Cr rT π π

µ
+ +   = = × =  

  
 

4 9.33 hT∴ =  

Part (a): The minimum total Δv1 required for a transfer from the perigee of 
the inner orbit to the apogee of the outer orbit is given by 

total ,2 ,3 ,3 ,1 1.441 0.751 10.303 8.604D D A Av v v v v∆ = − + − = − + −  

total 2.389 km/sv∴ ∆ =  

The corresponding time of flight is T3/2 = 32.31/2 = 16.16 h.  
Part (b): The minimum total Δv1 required for a transfer from the apogee of 

the inner orbit to the perigee of the outer orbit is given by 

total ,4 ,1 ,2 ,4 6.604 4.633 4.323 2.683B B C Cv v v v v∆ = − + − = − + −  

total 3.611 km/sv∴ ∆ =  

The corresponding time of flight is T4/2 = 9.33/2 = 4.67 h. 

◼ P6.14 (Precision: Minimum) 
We first compute the pertaining radial distances: 

apogee,1 6378 302 6680 kmr = + =  

perigee,1 6378 296 6674 kmr = + =  
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apogee,2 6378 291 6669 kmr = + =  

perigee,2 6378 259 6637 kmr = + =  

3 6378 259 6637 kmr = + =  

apogee,4 6378 255 6633 kmr = + =  

perigee,4 6378 194 6572 kmr = + =  

Then, we determine the momenta and the velocities: 

apogee,1 perigee,1 2
1

apogee,1 perigee,1

6680 66742 2 398,600 51,590 km /s
6680 6674

r r
h

r r
µ ×

= = × × =
+ +

 

1
apogee,1

apogee,1

51,590 7.723 km/s
6680

hv
r

= = =  

1
perigee,1

perigee,1

51,590 7.730 km/s
6674

hv
r

= = =  

apogee,2 perigee,2 2
2

apogee,2 perigee,2

6669 66372 2 398,600 51,500 km /s
6669 6637

r r
h

r r
µ ×

= = × × =
+ +

 

2
apogee,2

apogee,2

51,500 7.722 km/s
6669

hv
r

= = =  

2
perigee,2

perigee,2

51,500 7.760 km/s
6637

hv
r

= = =  

3
3

396,800 7.750 km/s
6637

v
r
µ

= = =  

apogee,4 perigee,4 2
4

apogee,4 perigee,4

6633 65722 2 398,600 51,300 km /s
6633 6572

r r
h

r r
µ ×

= = × × =
+ +

 

4
apogee,4

apogee,4

51,300 7.734 km/s
6633

hv
r

= = =  

4
perigee,4

perigee,4

51,300 7.806 km/s
6572

hv
r

= = =  

Now, for a transfer from the apogee of orbit 1 to the perigee of orbit 2, we must 
have 

apogee,1 perigee,2 2
12

apogee,1 perigee,2

6680 66372 2 398,600 51,520 km /s
6680 6637

r r
h

r r
µ ×

= = × × =
+ +

 

12 12
12 apogee,1 perigee,2

apogee,1 perigee,2

51,520 51,5207.723 7.760
6680 6637

h hv v v
r r

∴∆ = − + − = − + −  

12 0.0130 km/sv∴∆ =  

For transition from the perigee of orbit 2 to circular orbit 3, assumed tangent, the 
delta-v is 

23 perigee,2 3 7.760 7.750 0.010km/sv v v∆ = − = − =  

For transition from circular orbit 3 to the perigee of orbit 4, 

3 perigee,4 2
34

3 perigee,4

6637 65722 2 398,600 51,310 km /s
6637 6572

r r
h

r r
µ ×

= = × × =
+ +
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34 34
34 3 perigee,4

3 perigee,4

51,310 51,3107.750 7.806
6637 6572

h hv v v
r r

∆ = − + − = − + −  

34 0.0205 km/sv∴∆ =  

Gleaning our results, we obtain the total delta-v: 

total 12 23 34 0.013 0.010 0.0205 0.0435km/sv v v v∆ = ∆ + ∆ + ∆ = + + =  

total 43.5m/sv∴ ∆ =  

◼ P6.19 (Precision: Average) 
Part (a): For the circular orbit of the space station, 

6378 350 6728 kmr = + =  

398,600 7.697 km/s
6728Cv

r
µ

= = =  

  

 

The time required for spacecraft A to reach the station is the time it takes for the 
space station to fly around the original position of spacecraft A: 

2 600 2 6728 6005492 5414 s 90.23min
2 2 6728SA c
rt T

r
π π

π π
− × −

= = × = =
×

 

The time required for spacecraft B to reach the space station is the time it takes 
for the space station to fly around to the original position of spacecraft B: 

2 600 2 6728 6005492 5570 s 92.83min
2 2 6728BS c
rt T

r
π π

π π
+ × +

= = × = =
×

 

  Part (b): The period of spacecraft A’s phasing orbit is tSA, as determined in 
the previous part; the semimajor axis of that orbit follows as 

3 2 3 22 25414
398,600SA A At a aπ π

µ
= → = ×  

6664 kmAa∴ =  

Spacecraft A is at the apogee of its phasing orbit. Resorting to the energy 
equation, the corresponding speed is 

2 1 2 1398,600 7.660 km/s
6728 6664A

A
v

r a
µ
   = − = × − =   

  
 

The delta-v required to drop into the phasing orbit is 

7.660 7.697 0.037 km/sA A Cv v v∆ = − = − = −  

Spacecraft A must therefore slow down in order to speed up (i.e., catch the space 
station). After one circuit of its phasing orbit, this delta-v must be added in order 
to rejoin the circular orbit. Thus, 

,total 2 2 0.037 0.074 km/sA Av v∆ = ∆ = × − =  

The period of spacecraft B’s phasing orbit is tBS, which determines the semimajor 
axis of that orbit: 

3 2 3 22 25570
398,600BS B Bt a aπ π

µ
= → =  

6792kmBa∴ =  

Spacecraft B is at the perigee of its phasing orbit. From the energy equation, 

3 2 3 22 2 6728 5492s 91.53min
398,600CT rπ π

µ
= = × = =
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2 1 2 1398,600 7.733 km/s
6728 6792B

A
v

r a
µ
   = − = × − =   

  
 

The prograde delta-v required to enter the phasing orbit is 

7.733 7.697 0.036 km/sB B Cv v v∆ = − = − =  

Spacecraft B must therefore speed up in order to slow down (i.e., allow the space 
station to catch up). After one circuit of its phasing orbit, this delta-v must be 
subtracted in order to rejoin the circular orbit. Thus, 

,total 2 2 0.036 0.072 km/sB Bv v∆ = ∆ = × − =  

◼ P6.21 (Precision: Average) 
The solution is started by finding the period of spacecraft 1: 
 

1
13,000 8000 10,500 km

2 2
A Pr ra + +

= = =  

1
13,000 8000 0.238
13,000 8000

A P

A P

r re
r r
− −

= = =
+ +

 

( ) ( ) 2
1 1 398,600 1 0.238 8000 62,831 km /sPh e rµ= + = × + × =  

3 2 3 2
1

2 2 10,500 10,708 s
398,600

T aπ π
µ

= = × =  

Next, we compute the time of flight from P to C:  

1 11

1

1 1 0.238 30º2 tan tan tan tan 0.414 rad
1 2 1 0.238 2

C
C

eE
e

θ− −   − −   = = × =     + +      
 

( ) ( )1 sin 0.414 0.238 sin 0.414 0.318C C CM E e E= − = − × =  

0.318 10,708 542 s
2 2

C
C

Mt T
π π

= = × =  

As for the time of flight from P to D:  

1 11

1

1 1 0.238 90º2 tan tan tan tan 1.33 rad
1 2 1 0.238 2

D
D

eE
e

θ− −   − −   = = × =      + +     
 

( ) ( )1 sin 1.33 0.238 sin 1.33 1.10 radD D DM E e E= − = − × =  

1.10 10,708 1875 s
2 2

D
D

Mt T
π π

= = × =  

The time of flight from C to D is given by the difference 

1875 542 1333 sCD D Ct t t= − = − =  

We can determine the trajectory from P to D using Lambert’s problem. Note first 
that radial distance rD at point D is  

2 2
1

1

1 62,831 1 9904 km
1 cos 398,600 1 0.238 cos90ºD

D

hr
eµ θ

= = × =
+ + ×

 

so that, in perifocal coordinates, 

8000 km ; 9905 kmP D= =r p r q  

Note further that, on orbit 1,  

( ) ( ),1
1

398,600sin cos sin 0 0.238 cos0
62,831P P pe

h
µ θ θ = − + + = × − + +   v p q p q  
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( ),1
398,600 0 1.238
62,831P∴ = × +v p q  

,1 7.854 km/sP∴ =v q  

and  

( ) ( ),1
1

398,600sin cos sin 90º 0.238 cos90º
62,831D D De

h
µ θ θ= − + +  = × − + +    v p q p q  

( ),1
398,600 0.238
62,831D∴ = × − +v p q  

( ),1 6.344 0.238 6.344 1.510 km/sD∴ = × − + = − +v p q p q  

In turn, the velocities on orbit 2 at P and D, which we denote as vD,2 and vP,2 
respectively, can be found using code lambert.m in Appendix D.25. Here’s the 
input code: 

global mu 
mu = 398600; 
deg = pi/180; 
 
r1 = 8000; 
r2 = 9905; 
dt = 1333; 
dtheta = 90; 
 
R1 = [r1, 0, 0]; 
R2 = [r2*cos(dtheta*deg), r2*sin(dtheta*deg), 0]; 
 
string = 'pro'; 
[V1,V2] = lambert(R1, R2, dt, string); 
 
fprintf('\n\n Solution: \n') 
fprintf('\nVelocity vector V1 (km/s) = [%g, %g, %g]', V1(1), V1(2), 
V1(3)) 
fprintf('\nVelocity vector V2 (km/s) = [%g, %g, %g]\n', V2(1), V2(2), 
V2(3)) 

Here’s the output: 

Solution:  
 
Velocity vector V1 (km/s) = [-2.51299, 9.56256, 0] 
Velocity vector V2 (km/s) = [-7.72342, 4.35213, 0] 

Clearly, the velocities we require are 

,2 2.513 9.563 km/sP = − +v p q  

,2 7.723 4.352 km/sD = − +v p q  

We can proceed to determine the Δv’s: 

( ),2 ,1 2.513 9.563 7.854 2.513 1.709 km/sP P P∆ = − = − + − = − +v v v p q q p q  

2 22.513 1.709 3.039 km/sP∴ ∆ = + =v  

( ) ( ),2 ,1 7.723 4.352 6.344 1.510 1.379 2.842 km/sD D D∆ = − = − + − − + = − +v v v p q p q p q  

2 21.379 2.842 3.159 km/sD∴ ∆ = + =v  

Finally, 

total 3.039 3.159 6.198 km/sP Dv∆ = ∆ + ∆ = + =v v  

◼ P6.23 (Precision: Average) 
  We begin by computing the period of orbit 1: 

,1 ,1 2
1

,1 ,1

8100 18,9002 2 398,600 67,232 km /s
8100 18,900

p a

p a

r r
h

r r
π ×

= = × × =
+ +
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,1 ,1
1

,1 ,1

18,900 8100 0.40
18,900 8100

a p

a p

r r
e

r r
− −

= = =
+ +

 

,1 ,1
1

8100 18,900 13,500 km
2 2

p ar r
a

+ +
= = =  

3 2 3 2
1 1

2 2 13,500 15,610 s
398,600

T aπ π
µ

= = × =  

At point B on orbit 1: 

( )
2 2
1

1

1 67,232 1 8840 km
1 cos 396,800 1 0.40 cos 45ºB

B

hr
eµ θ

= = × =
+ + ×

 

1
, 1

67,232 7.605 km/s
8840B

B

hv
r⊥ = = =  

( ) ( ), 1 1
1

398,600sin 0.40 sin 45º 1.677 km/s
67,232r B Bv e

h
µ θ= = × × =  

( ) ( )2 2 2 2
,1 , 1 , 1 7.605 1.677 7.788 km/sB B r Bv v v⊥= + = + =  

, 11 1
,1

, 1

1.677tan tan 12.44º
7.605

r B
B

B

v
v

γ − −

⊥

   = = =       
 

The period of orbit 2 is the time tCB it takes to fly from C to B on orbit 1. 

1

1

1 1 0.4 150ºtan tan tan 2.443
2 1 2 1 0.4 2
C CE e

e
θ− −     = = =    + +     

 

( )12 tan 2.443 2.365CE −∴ = =  

( )1 sin 2.365 0.4 sin 2.365 2.085C C CM E e E= − = − × =  

1
2.085 15,610 5180 s

2 2
C

C
Mt T
π π

= = × =  

1

1

1 1 0.4 45ºtan tan tan 0.271
2 1 2 1 0.4 2
B BE e

e
θ− −     = = × =     + +     

 

( )12 tan 0.271 0.529BE −∴ = =  

( )1 sin 0.529 0.4 sin 0.529 0.327B B BM E e E= − = − × =  

1
0.327 15,610 812 s

2 2
B

B
Mt T
π π

= = × =  

( ) ( )1 15,610 5180 812 11,242 sCB C Bt T t t= − − = − − =  

2 11,242 sT∴ =  

Then, we find the semimajor axis of orbit 2:  
2 2
3 32

2
11,242 398,600 10,847 km

2 2
Ta µ

π π
   ×

= = =       
 

Since 𝑎𝑎2 = (𝑟𝑟𝐵𝐵 + 𝑟𝑟𝑎𝑎,2)/2, the apogee of orbit 2 is 

,2 22 2 10,847 8840 12,854 kma Br a r= − = × − =  

The specific angular momentum of orbit 2 is 
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,2 2
2

,2

8840 12,8542 2 398,600 64,619 km /s
8840 12,854

B a

B a

r r
h

r r
µ ×

= = × × =
+ +

 

Since B is the perigee of orbit 2,  

2
,2

64,619 7.310 km/s
8840B

B

hv
r

= = =  

and  

,2 0Bγ =  

The delta-v required to transfer from orbit 1 to orbit 2 at B is 

( )2 2
,1 ,2 ,1 ,2 ,2 ,12 cosB B B B B Bv v v v v γ γ∆ = + − −  

( )2 27.788 7.310 2 7.788 7.310 cos 0 12.44º 1.703 km/sv∆ = + − × × × − =  

The delta-v required to transfer from orbit 2 back to orbit 1 at the end of the 
phasing maneuver is the same; therefore,  

total 2 2 1.703 3.406 km/sBv v∆ = ∆ = × =  

◼ P6.33 (Precision: Average) 
  Let C denote the arrival point on spacecraft A as it embarks on the orbit of 
craft B. The time of flight from A to C is 

3 2 3 2
,3 1 1

2 2 8000 7121 s
398,600ACt T Rπ π

µ
= = = × =  

The true anomaly of C on orbit 2 is 

3 3
2 2,3 1

,2
2 2

80002 2 2 2.714 rad 155.5º
14,000

AC
C

t R
T R

θ π π π
   = = = × = =   

  
 

The perifocal position vectors of A and C are 

8000 kmA =r p  

( ) ( )2 cos sin 14,000 cos155.5º sin155.5ºC B BR θ θ= + = × +r p q p q  

12,740 5806 kmC∴ = − +r p q  

Now, we can use lambert.m to determine orbit 3; the inputs are position vectors rA 
and rC and time tAC,3 = 7121 s. The input code is shown below:  

global mu  
mu = 398600; 
R1 = 8000; 
R2 = 14000; 
r1 = R1*[1, 0, 0]; 
dtheta = 2*pi*(R1/R2)^(3/2); 
r2 = R2*[cos(dtheta), sin(dtheta), 0]; 
dt = 2*pi/sqrt(mu)*R1^(3/2); 
string = 'pro'; 
 
[v1, v2] = lambert(r1, r2, dt, string); 
 
fprintf('\n\n Solution: \n') 
fprintf('\nVelocity vector V1 (km/s) = [%g, %g, %g]', v1(1), v1(2), 
v1(3)) 
fprintf('\nVelocity vector V2 (km/s) = [%g, %g, %g]\n', v2(1), v2(2), 
v2(3)) 

Here’s the output: 

Solution:  

Velocity vector V1 (km/s) = [2.06162, 7.73163, 0] 
Velocity vector V2 (km/s) = [-0.610235, -4.577, -0] 
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That is, 

,3 2.062 7.732A = +v p q  

,3 0.610 4.577C = − −v p q  

Because orbits 1 and 2 are circular, equation (2.125) can be used to yield 

,1
1

398,600 7.059 km/s
8000A R

µ
= = =v q q q  

( ) ( ),2
2

398,600sin cos sin155.5º cos155.5º
14,000C B BR

µ θ θ= − + = × − +v p q p q  

,2 2.213 4.855 km/sC∴ = − −v p q  

We can proceed to determine ΔvA and ΔvC: 

 

( ) ( ),3 ,1 2.062 7.732 7.059 2.062 0.673 km/sA A A∆ = − = + − = −v v v p q q p q  

2.169 km/sA Av∴∆ = ∆ =v  

( ) ( ),2 ,3 2.213 4.855 0.610 4.577 1.603 0.278 km/sC C C∆ = − = − − − − − = − −v v v p q p q p q  

1.627 km/sC Cv∴∆ = ∆ =v   

Finally,  

total 2.169 1.627 3.796 km/sA Cv v v∆ = ∆ + ∆ = + =  

◼ P6.34 (Precision: Average) 
  Firstly, we obtain velocity vector vB for craft B as it outlines elliptical orbit 
2: 

16,000 (km)B =r J  

( ) ( ) 2
22 1 398,600 16,000 1 0.5 97,808 km /sBh r eµ= + = × × + =  

2 97,808 6.113 km/s
16,000B

B

h
r

= = =v K K K  

Equipped with rB and vB, we can determine the corresponding rC and vC,2 at time 
tBC = 1 hr using code rv_from_r0v0.m. Here’s the input: 

global mu 
mu = 398600; 
 
r0 = [0, 16000, 0]; %Initial position vector (km) 
v0 = [0, 0, 6.113]; %Initial velocity vector (km/s) 
t = 3600; %Elapsed time (in this case, 1 hour) 
 
[r, v] = rv_from_r0v0(r0, v0, t); %Algorithm 3.4 
 
fprintf('\n Final position vector: ') 
fprintf('\n r = [%12.5e %12.5e, %12.5e] (km)\n', r(1), r(2), r(3)) 
fprintf('\n Final velocity vector: ') 
fprintf('\n v = [%12.5e %12.5e,I %12.5e] (km/s)\n', v(1), v(2), v(3)) 

Here’s the output: 

Final position vector:  
 r = [ 0.00000e+00  7.82906e+03,  1.84968e+04] (km) 
 
Final velocity vector:  
 v = [ 0.00000e+00 -3.75299e+00,  3.62618e+00] (km/s) 

The state vector is then 
7829 18,497 (km)C = +r J K  

,2 3.753 3.626 (km/s)C = − +v J K  
 

We also have rA = 10,000I km. Knowing rA, rC, and the flight time ΔtAC = 1 h, we 
may use lambert.m (Algorithm 5.2) to obtain vA,3 and vC,3. Here’s the input code: 

global mu 
mu = 398600; 
rA = [10000, 0, 0];  
rC = [0, 7829, 18497]; 
tAC = 3600; 
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string = 'pro'; 
 
[vA, vC] = lambert(rA, rC, tAC, string); 
 
fprintf('\n\n Solution of Lambert''s problem: \n') 
fprintf('\n Velocity vector vA (km/s) = 
[%12.5e, %12.5e, %12.5e]', ... 
    vA(1), vA(2), vA(3)) 
fprintf('\n Velocity vector vC (km/s) = 
[%12.5e, %12.5e, %12.5e]\n', ... 
    vC(1), vC(2), vC(3)) 

Here’s the output: 

Solution of Lambert's problem:  

 Velocity vector vA (km/s) = [ 9.48526e-01,  3.13605e+00,  
7.40932e+00] 
 Velocity vector vC (km/s) = [-4.00569e+00,  1.20499e+00,  
2.84695e+00] 

That is, 

,3 0.949 3.136 7.409 km/sA = + +v I J K  

,3 4.006 1.205 2.847 km/sC = − + +v I J K  

Note that vA,1 for craft A in the circular orbit 1 is 

,1
,1

398,600 6.313 km/s
10,000A

Ar
µ

= = =v J J J  

It remains to determine ΔvA, 
 

( ),3 ,1 0.949 3.136 7.409 6.313A A A∆ = − = + + −v v v I J K J  

0.949 3.177 7.409 km/sA∴∆ = − +v I J K  

8.117 km/sA Av∴∆ = ∆ =v  

◼ P6.35 (Precision: Average) 
  We begin by computing parameters of orbit 1: 
 

,1 ,1
1

,1 ,1

10,000 7000 0.176
10,000 7000

a p

a p

r r
e

r r
− −

= = =
+ +

 

( ) ( ) 2
1 ,1 11 398,600 7000 1 0.176 57,282 km /sph r eµ= + = × × + =  

,1 ,1
1

10,000 7000 8500 km
2 2

a pr r
a

+ +
= = =  

3 2 3 2
1 1

2 2 8500 7799 s
398,600

T aπ π
µ

= = × =  

Next, we establish the time since perigee at C: 
 

1 11

1

1 1 0.176 120º2 tan tan 2 tan tan 1.934 rad
1 2 1 0.176 2

C
C

eE
e

θ− −   − −
= = =    + +  

 

( )sin 1.934 0.176 sin 1.934 1.769 radC C CM E e E= − = − × =  

1
1.769 7799 2196 s

2 2
C

C
Mt T
π π

= = × =  

The time of flight from C to A on orbit 1 then becomes 

1
,1

7799 2196 1704 s
2 2CA C
Tt t= − = − =  

The time of flight from B to A on orbit 2 is the same as 𝑡𝑡𝐶𝐶𝐶𝐶,1, that is, 

,2 ,1 1704 sBA CAt t= =  

The state vector of point A on orbit 1 is  
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10,000 kmA = −r p  

1 57,282 5.728 km/s
10,000A

A

h
r

= − = − = −v q q q  

The state vector of point B on orbit 1 is 

( ) ( ) ( )
2
1

1

1 57,282 1cos sin cos90º sin 90º
1 cos 398,600 1 0.176 cos90ºB B B

B

h
e

θ θ
µ θ

2
= + = × +

+ + ×
r p q p q  

8232 kmB∴ =r q  

( ) ( ),1 1
1

398,600sin cos sin 90º 0.176 cos90º
57,282B B Be

h
µ θ θ= − + +  = × − + +    v p q p q  

,1 6.959 1.225 km/sB∴ = − +v p q  

Equipped with rA, rB, and tBA,2, we can use lambert.m (Appendix D.25) to determine 
orbit 2. Here’s the input MATLAB code:  

global mu 
mu = 398600; 
rA = [-10000, 0, 0]; 
rB = [0, 8232, 0]; 
tBA = 1704; 
string = 'pro'; 
 
[vB, vA] = lambert(rB, rA, tBA, string); 
 
fprintf('\n\n Solution of Lambert''s Problem:\n') 
fprintf('\n Velocity vector vA (km/s) = 
[%12.5e, %12.5e, %12.5e]', ... 
    vA(1), vA(2), vA(3)) 
fprintf('\n Velocity vector vB (km/s) = 
[%12.5e, %12.5e, %12.5e]\n', ... 
    vB(1), vB(2), vB(3)) 

Here’s the output: 

Solution of Lambert's Problem: 

 Velocity vector vA (km/s) = [-2.35756e+00, -6.78022e+00,  
0.00000e+00] 

 Velocity vector vB (km/s) = [-8.23642e+00, -9.01357e-01,  
0.00000e+00] 

That is,  

,2 2.358 6.780 km/sA = − −v p q  

,2 8.236 0.901 km/sB = − −v p q  

The corresponding Δv’s and their magnitudes are calculated next.  

( ),1 ,2 5.728 2.358 6.708A A A∆ = − = − − − −v v v q p q  

2.358 0.980A∴∆ = +v p q  

2.554 km/sA Av∴∆ = ∆ =v  

( ) ( ),2 ,1 8.236 0.901 6.959 1.225B B B∆ = − = − − − − +v v v p q p q  

1.277 2.126B∴∆ = − −v p q  

2.480 km/sB Bv∴∆ = ∆ =v  

Finally,  

total 2.554 2.480 5.034 km/sA Bv v v∆ = ∆ + ∆ = + =  

◼ P13.1 (Precision: Minimum) 
The effective exhaust velocity is c = Ispg = 235 × 9.81 = 2310 m/s. The 

burnout velocity 𝑣𝑣𝑏𝑏𝑏𝑏 is given by equation (f) in Example 13.1:  
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( )0 0
0lnbo f

f e

m gv c m m
m m

 
= − −  

  
 

( )249.5 9.812310 ln 249.5 170.1 811 m/s
170.1 10.61bov  ∴ = × − × − = 

 
 

Likewise, the burnout altitude is given by equation (e) in the same example,  

2
0

0 0
0

1ln
2

f f
bo f f

e e

m m mch m m m g
m m m

−   
= + − −   

    
 

22310 170.1 1 249.5 170.1170.1ln 249.5 170.1 9.81
10.61 249.5 2 10.61boh −   ∴ = × + − − ×   

   
 

2830 mboh∴ =  

To find the starting parameters for the second stage, we must account for the 3-
second staging delay:  

811 9.81 3 782 m/sbo sv v g t= − ∆ = − × =  

2 21 12830 811 3 9.81 3 5220 m
2 2bo bo s sh h v t g t= + ∆ − ∆ = + × − × × =  

Accordingly, the starting parameters for the second stage are 𝑣𝑣0 = 782 m/s and h 
= 5220 m. Since the specific impulse of the second stage is the same as that of the 
first, the exhaust velocity continues to be c = 2310 m/s. The burnout velocity is 
now 

( )113.4 9.81782 2310 ln 113.4 58.97 2160 m/s
58.97 4.053bov  = + × − × − = 

 
 

The burnout altitude is, in turn, 

0 0
0 0 0 0

0

1ln
2

f f f
bo f f

e e e

mm m m mch h v m m m g
m m m m

  − −   
= + + + − −              

 

113.4 58.97 2310 58.975220 782 ln 58.97 113.4 58.97
4.053 4.053 113.4

1 113.4 58.97 9.81 24,700 m
2 4.053

boh  −   ∴ = + × + × + −        
− − × = 

 

 

As the rocket coasts to apogee, we have as initial conditions v0 = 2160 m/s and h0 
= 24,700 m. The maximum time of flight, assuming the craft is subjected to a 
constant gravity g ≈ 9.81 m/s2, is  

0
0 max max0 vv gt t

g
= − → =  

max
2160 220 s
9.81

t∴ = =  

so that 

2 2
max 0 0 max max

1 124,700 2160 220 9.81 220 262,500 m
2 2

h h v t gt= + − = + × − × × =  

max 262.5 kmh∴ =  

This result diverges from the answer mentioned in the textbook, which is 322 km.  

◼ P13.2 (Precision: Minimum) 
The latitude at the KSC is about 28o. Thus, 

( )5
0 earth earth cos 7.29 10 6378 cos 28º 0.411 km/sv Rω φ −= = × × × =  

and the corresponding delta-v is, given that the craft must achieve an altitude of 
300 km, 
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398,600 2 0.411 9.315 km/s
6378 300

v∆ = + − =
+

 

Substituting into equation (13.28) and accounting for both stages,  

0,1 0,2
,1 ,2 ,1 0 ,2 0

,1 ,2
ln ln 9315bo bo bo sp sp

f f

m m
v v v I g I g

m m
   

= + = + =      
   

 

( )
2 525,000 30,000 600,000290 9.81 ln

2 525,000 450,000 30,000 600,000

30,000 600,000450 9.81 ln 9315
30,000

PL

PL

PL

PL

m
m

m
m

 × + + +
∴ × ×   × − + + + 

 + +
+ × × = + 

 

61.68 10 630,0002845 ln 4415 ln 9315
780,000 30,000

PL PL

PL PL

m m
m m

   × + +
∴ × + × =   + +  

 

It remains to solve the transcendental equation above for the payload mass mPL. 
One way to go is MATLAB’s fsolve command:  

rocket = @(mPL) 2845*log((1.68e6 + mPL)/(7.8e5 + mPL)) + ... 
    4415*log((6.3e5 + mPL)/(3e4 + mPL)) - 9315; 
m0 = 1000; 
fsolve(rocket, m0) 

The code above outputs 𝑚𝑚𝑃𝑃𝑃𝑃 ≈ 110,880 kg; this is the payload mass we were asked 
to determine.  
 

◼ P13.3 (Precision: Minimum) 
Let 𝑚𝑚𝑃𝑃,out and 𝑚𝑚𝑃𝑃,in denote the masses of propellant in the outbound and 

inbound legs of the trajectory, respectively. From the problem statement,  

,out ,out
,out ,in ,out

5
4 4
p p

p p p p
m m

m m m m= + = + =  

Further, let 𝑚𝑚𝑒𝑒 and 𝑚𝑚𝑃𝑃𝑃𝑃 denote the empty and payload masses, respectively. From 
the rocket delta-v equation, we may write 

0
,out

ln 4220 m/se p PL
sp

e p p PL

m m m
v I g

m m m m
 + +

∆ = =  + − + 
 

,out

,out ,out

5 3500
4450 9.81 ln 42205

4

e p

e p p PL

m m
v

m m m m

 + + 
∴∆ = × × = 

 + − +
 

 

,out

,out

1.25 3500
4218 ln 4220 (I)

0.25 3500
e p

e p

m m
v

m m
 + +

∴∆ = × =  + + 
 

Considering now the return of the craft from GEO to LEO,  

,out

0
4ln 4220

p
e

sp
e

m
m

v I g
m

 
+ 

∆ = = 
  
 

 

,out

4430 9.81 ln 4220
p

e

e

m
m

v
m

 
+ 

∴∆ = × × = 
  
 

 

,out
42204 exp

430 9.81

p
e

e

m
m

m

+  ∴ =  × 
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,out

4 2.72
p

e

e

m
m

m

+
∴ =  

,out 2.72
4

p
e e

m
m m∴ + =  

,out 1.72
4

p
e

m
m∴ =  

,out 6.88p em m∴ =  

Substituting 𝑚𝑚𝑠𝑠,out into (I) and manipulating,  

1.25 6.88 35004218 ln 4220
0.25 6.88 3500

e e

e e

m mv
m m

 + × +
∴∆ = × = + × + 

 

8.6 3500 4220ln 1.00
1.72 3500 4218

e e

e e

m m
m m

 + +
∴ = = + + 

 

9.6 3500ln 1.0
2.72 3500

e

e

m
m

 +
∴ = + 

 

9.6 3500 2.72
2.72 3500

e

e

m
m
+

∴ =
+

 

( )9.6 3500 2.72 2.72 3500e em m∴ + = × +  

9.6 3500 7.40 9520e em m∴ + = +  

2.2 6020em∴ =  

6020 2736 kg
2.2em∴ = =  

◼ P13.4 (Precision: Minimum) 
Part (a): The payload mass fraction 𝜋𝜋𝑃𝑃𝑃𝑃 is 

0

10,000 0.0667
150,000

PL
PL

m
m

π = = =  

The common payload ratio for a restricted three-stage rocket is given on page 
724: 

1 3 1 3

1 3 1 3
0.0667 0.682

1 1 0.0667
PL

PL

πλ
π

= = =
− −

 

The structural ratio 𝜀𝜀 is, in turn,  

0

20,000 0.143
150,000 10,000

E

PL

m
m m

ε = = =
− −

 

The common mass ratio is given by equation (13.55), that is,  

( ) ( )three-stage 1 3 1 3
1 1 2.04

1 0.0667 1 0.143 0.143PL
n

π ε ε
= = =

− + × − +
 

The total delta-v afforded by the three stages follows from equation (13.56): 

( )3
0 0ln 3 ln 3 310 9.81 ln 2.04 6505 m/ssp spv I g n I g n∆ = = = × × × =  

6.51 km/sv∴ ∆ =  

Part (b): The stage propellant masses are given by eqs. (13.58) on page 
724:  

( )( ) ( ) ( )1 3 1 3

,1

1 1 1 0.0667 1 0.143
10,000 76,400 kg

0.0667
PL

P PL
PL

m m
π ε

π

− − − × −
= = × =  
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( )( ) ( ) ( )1 3 1 3

,2 2 3 2 3

1 1 1 0.0667 1 0.143
10,000 31,000 kg

0.0667
PL

P PL
PL

m m
π ε

π

− − − × −
= = × =  

( )( ) ( ) ( )1 3 1 3

,3 2 3 1 3

1 1 1 0.0667 1 0.143
10,000 12,600 kg

0.0667
PL

P PL
PL

m m
π ε

π

− − − × −
= = × =  

Part (c): The empty stage masses are given by eqs. (13.57): 

( ) ( )1 3 1 3

,1

1 1 0.0667 0.143
10,000 12,740 kg

0.0667
PL

E PL
PL

m m
π ε

π

− − ×
= = × =  

( ) ( )1 3 1 3

,2 2 3 2 3

1 1 0.0667 0.143
10,000 5170 kg

0.0667
PL

E PL
PL

m m
π ε

π

− − ×
= = × =  

( ) ( )1 3 1 3

,3 1 3 1 3

1 1 0.0667 0.143
10,000 2096 kg

0.0667
PL

E PL
PL

m m
π ε

π

− − ×
= = × =  

Part (d): Gleaning results from previous parts, the total masses 𝑚𝑚0 are 
calculated to be 

0,3 ,3 ,3 2096 12,600 10,000 24,700 kgE P PLm m m m= + + = + + =  

0,2 ,2 ,2 0,3 5170 31,000 24,700 60,870 kgE Pm m m m= + + = + + =  

0,1 ,1 ,1 0,2 12,740 76,400 60,870 150,010 kgE Pm m m m= + + = + + =  

The small difference in the final result, which should’ve been 150,000 kg, is due to 
roundoff.  
◼ P13.6 (Precision: Minimum) 

The first step is to determine the exhaust velocities for the two stages: 

1 ,1 0 300 9.81 2943 m/s 2.943 km/sspc I g= = × = =  

2 ,2 0 235 9.81 2305 m/s 2.305 km/sspc I g= = × = =  

The burnout velocity 𝑣𝑣𝑏𝑏𝑏𝑏 was given as 6.2 km/s; substituting into equation (13.84) 
brings to 

1 2
1 2

1 1 2 2

1 1ln ln bo
c cc c v
c c
η η
ε η ε η

   − −
+ =   

   
 

2.943 1 2.305 12.943ln 2.305ln 6.2
2.943 0.2 2.305 0.3

η η
η η

   × − × −
∴ + =   × × × ×   

 

2.943 1 2.305 12.943ln 2.305ln 6.2
0.589 0.692

η η
η η

   − −
∴ + =   

   
 

This transcendental equation can be solved for the Lagrange multiplier 𝜂𝜂:  

lagrange = @(eta) 2.943*log((2.943*eta - 1)/(0.589*eta)) + ... 
    2.305*log((2.305*eta - 1)/(0.692*eta)) - 6.2; 
eta0 = 1; 
fsolve(lagrange, eta0) 

This MATLAB snippet returns 𝜂𝜂 = 1.731. We can proceed to calculate the optimum 
mass ratios using equation (13.87):  

1
1

1 1

1 2.943 1.731 1 4.02
2.943 0.2 1.731

cn
c
η
ε η
− × −

= = =
× ×

 

2
2

2 2

1 2.305 1.731 1 2.50
2.305 0.3 1.731

cn
c
η
ε η
− × −

= = =
× ×

 

The corresponding stage masses follow as 
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2
2

2 2

1 2.50 1 10 60 kg
1 1 0.3 2.50PL

nm m
nε
− −

= = × =
− − ×

 

( ) ( )1
1 2

1 1

1 4.02 1 60 10 1079 kg
1 1 0.2 4.02PL
nm m m

nε
− −

= + = × + =
− − ×

 

Finally, the optimum mass M of the vehicle becomes 

1 2 1079 60 1139 kgM m m= + = + =  
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