Quiz SM208

DEFLECTIONS OF BEAMS

Lucas Montogue

() PROBLEMS

Problem 1 (Philpot, 2003, w/ permission)

For the beam and loading shown, use the double-integration method to calculate the deflection at point B. Assume that $E l$ is constant for the beam.

A) $\delta_{B}=-\frac{w L^{4}}{24 E I}$
B) $\delta_{B}=-\frac{w L^{4}}{18 E I}$
C) $\delta_{B}=-\frac{w L^{4}}{12 E I}$
D) $\delta_{B}=-\frac{w L^{4}}{6 E I}$

Problem 2 (Philpot, 2013, w/ permission)

For the cantilever steel beam ($E=200 \mathrm{GPa}, I=120 \times 10^{6} \mathrm{~mm}^{4}$) shown, use the double-integration method to determine the deflection at point A. Assume that $L=2.5$ $\mathrm{m}, P=40 \mathrm{kN}$, and $w=30 \mathrm{kN} / \mathrm{m}$.

A) $\delta_{A}=-8.71 \mathrm{~mm}$
B) $\delta_{A}=-14.8 \mathrm{~mm}$
C) $\delta_{A}=-20.5 \mathrm{~mm}$
D) $\delta_{A}=-26.1 \mathrm{~mm}$

Problem 3 (Philpot, 2013, w/ permission)

For the beam and loading shown, use the double-integration method to calculate the deflection at point B. Assume that $E l$ is constant for the beam.

A) $\delta_{B}=-\frac{w_{0} L^{4}}{40 E I}$
B) $\delta_{B}=-\frac{w_{0} L^{4}}{24 E I}$
C) $\delta_{B}=-\frac{7 w_{0} L^{4}}{120 E I}$
D) $\delta_{B}=-\frac{11 w_{0} L^{4}}{120 E I}$

Problem 4 (Philpot, 2013, w/ permission)

For the beam and loading shown, use the double-integration method to determine the maximum beam deflection. What is the maximum beam deflection if E $=200 \mathrm{GPa}, I=120 \times 10^{6} \mathrm{~mm}^{4}, L=5 \mathrm{~m}$, and $w_{0}=50 \mathrm{kN} / \mathrm{m}$?

A) $\delta_{\text {max }}=-8.49 \mathrm{~mm}$
B) $\delta_{\text {max }}=-14.6 \mathrm{~mm}$
C) $\delta_{\text {max }}=-20.7 \mathrm{~mm}$
D) $\delta_{\text {max }}=-26.0 \mathrm{~mm}$

Problem 5 (Philpot, 2013, w/ permission)

For the beam and loading shown, determine the deflection midway between the supports. Assume that $E l$ is constant for the beam.

A) $\delta_{L / 2}=-\frac{w_{0} L^{4}}{8 \pi^{4} E I}$
B) $\delta_{L / 2}=-\frac{w_{0} L^{4}}{4 \pi^{4} E I}$
C) $\delta_{L / 2}=-\frac{w_{0} L^{4}}{2 \pi^{4} E I}$
D) $\delta_{L / 2}=-\frac{w_{0} L^{4}}{\pi^{4} E I}$

Problem 6 (Philpot, 2013, w/ permission)

For the beam and loading shown, determine the deflection midway between the supports. Assume that El is constant for the beam.

A) $\delta_{L / 2}=-\frac{11 w_{0} L^{4}}{5120}$
B) $\delta_{L / 2}=-\frac{13 w_{0} L^{4}}{5120 E I}$
C) $\delta_{L / 2}=-\frac{17 w_{0} L^{4}}{5120 E I}$
D) $\delta_{L / 2}=-\frac{19 w_{0} L^{4}}{5120 E I}$

Problem 7 (Philpot, 2013, w/ permission)

For the beam and loading shown, determine the deflection at the left end of the beam. Assume that $E l$ is constant for the beam.

A) $\delta_{A}=-0.109 \frac{w_{0} L^{4}}{E I}$
B) $\delta_{A}=-0.405 \frac{w_{0} L^{4}}{E I}$
C) $\delta_{A}=-0.710 \frac{w_{0} L^{4}}{E I}$
D) $\delta_{A}=-1.10 \frac{w_{0} L^{4}}{E I}$

Problem 8 (Beer et al., 2012, w/ permission)

Use singularity functions to determine the elastic curve for the beam shown below. Consider the following statements.

Statement 1: The absolute value of the slope at the free end is greater than $3 P a^{2} / 2 E I$.
Statement 2: The absolute value of the deflection at the free end is greater than $4 P a^{3} / E I$.

A) Both statements are true.
B) Statement 1 is true and statement 2 is false.
C) Statement 1 is false and statement 2 is true.
D) Both statements are false.

Problem 9 (Beer et al., 2012, w/ permission)

Use singularity functions to determine the elastic curve for the beam shown below. Consider the following statements.
Statement 1: The absolute value of the slope at point A is greater than $M_{0} a / 2 E I$.
Statement 2: The absolute value of the deflection at point D is greater than $M_{0} a^{2} / E I$.

A) Both statements are true.
B) Statement 1 is true and statement 2 is false.
C) Statement 1 is false and statement 2 is true.
D) Both statements are false.

Problem 10 (Beer et al., 2012, w/ permission)

Use singularity functions to determine the elastic curve for the beam shown below, then determine the deflection at midpoint C.

A) $\delta_{C}=-\frac{13 w a^{4}}{24 E I}$
B) $\delta_{C}=-\frac{17 w a^{4}}{24 E I}$
C) $\delta_{C}=-\frac{19 w a^{4}}{24 E I}$
D) $\delta_{C}=-\frac{23 w a^{4}}{24 E I}$

Problem 11 (Beer et al., 2012, w/ permission)

Use singularity functions to determine the elastic curve for the beam shown below, then determine the deflection at point B.

A) $\delta_{B}=-\frac{w L^{4}}{768 E I}$
B) $\delta_{B}=-\frac{w L^{4}}{384 E I}$
C) $\delta_{B}=+\frac{w L^{4}}{768 E I}$
D) $\delta_{B}=+\frac{w L^{4}}{384 E I}$

Problem 12 (Beer et al., 2012, w/ permission)

Use singularity functions to determine the elastic curve for the beam shown below, then determine the deflection at point C.

A) $\delta_{C}=-\frac{w_{0} L^{4}}{640 E I}$
B) $\delta_{C}=-\frac{3 w_{0} L^{4}}{640 E I}$
C) $\delta_{C}=-\frac{w_{0} L^{4}}{128 E I}$
D) $\delta_{C}=-\frac{7 w_{0} L^{4}}{640 E I}$

Problem 13 (Hibbeler, 2014, w/ permission)

For the beam and loading shown, determine the displacement at point C. Assume EI to be constant for the beam. (The numerator in the right-hand side of each equation has units of kip- ft^{3}.)

A) $\delta_{C}=-\frac{1040}{E I}$
B) $\delta_{C}=-\frac{2100}{E I}$
C) $\delta_{C}=-\frac{3110}{E I}$
D) $\delta_{C}=-\frac{4090}{E I}$

Problem 14 (Hibbeler, 2014, w/ permission)

The wooden beam is subjected to the loading shown. Determine the equation of the elastic curve, then calculate the deflection at end C.

A) $\delta_{C}=-0.103 \mathrm{in}$.
B) $\delta_{C}=-0.326 \mathrm{in}$.
C) $\delta_{C}=-0.544 \mathrm{in}$.
D) $\delta_{C}=-0.767 \mathrm{in}$.

() SOLUTIONS

P. $1 \rightarrow$ Solution

Consider the free body diagram for the beam in question

Taking moments about point A, we have

$$
\begin{gathered}
\Sigma M_{A}=0 \rightarrow-w \times 3 L \times \frac{3 L}{2}+C_{y} \times 2 L=0 \\
\therefore-\frac{9 w L^{2}}{2}+2 L C_{y}=0 \\
\therefore C_{y}=\frac{9 w L}{4}
\end{gathered}
$$

Summing forces in the y-direction, we have

$$
\begin{gathered}
\Sigma F_{y}=0 \rightarrow A_{y}+C_{y}-w \times 3 L=0 \\
\therefore A_{y}+\frac{9 w L}{4}-3 w L=0 \\
\therefore A_{y}=\frac{3 w L}{4}
\end{gathered}
$$

Consider now a segment of the beam joining end A of the beam to a section a a somewhere along its span, as shown.

Referring to the figure, the bending moment $M(x)$ is determined as

$$
\begin{gathered}
\Sigma M_{a-a}=M(x)-A_{y} x+w x \times\left(\frac{x}{2}\right)=0 \\
\therefore M(x)-\frac{3 w L}{4} x+\frac{w}{2} x^{2}=0 \\
\therefore M(x)=-\frac{w}{2} x^{2}+\frac{3 w L}{4} x
\end{gathered}
$$

We can then substitute this result into the moment equation,

$$
E I v^{\prime \prime}=M(x) \rightarrow E I \frac{d^{2} v}{d x^{2}}=-\frac{w}{2} x^{2}+\frac{3 w L}{4} x
$$

Integrating once, we obtain

$$
E I \frac{d^{2} v}{d x^{2}}=-\frac{w}{2} x^{2}+\frac{3 w L}{4} x \rightarrow E I \frac{d v}{d x}=-\frac{w}{6} x^{3}+\frac{3 w L}{8} x^{2}+C_{1}(\mathrm{I})
$$

Integrating twice, we obtain
$E I \frac{d v}{d x}=-\frac{w}{6} x^{3}+\frac{3 w L}{8} x^{2}+C_{1} \rightarrow E I v=-\frac{w}{24} x^{4}+\frac{w L}{8} x^{3}+C_{1} x+C_{2}$ (II)

The boundary conditions are $v(0)=0$ (the deflection at support A is zero) and $v(2 \mathrm{~L})=0$ (the deflection at support C is zero). Substituting the former into equation (II) gives

$$
\begin{gathered}
E I \times 0=-\frac{w}{24} \times 0^{4}+\frac{w L}{8} \times 0^{3}+C_{1} \times 0+C_{2} \\
\therefore C_{2}=0
\end{gathered}
$$

Substituting the remaining boundary condition into equation (II) yields

$$
\begin{gathered}
E I \times 2 L=-\frac{w}{24} \times(2 L)^{4}+\frac{w L}{8} \times(2 L)^{3}+C_{1} \times 2 L+C_{2}=0 \\
\therefore-\frac{2 w L^{4}}{3}+w L^{4}+2 L C_{1}+0=0 \\
\therefore \frac{w L^{3}}{3}+2 C_{1}=0 \\
\therefore C_{1}=-\frac{w L^{3}}{6}
\end{gathered}
$$

The elastic curve for the beam is then

$$
\begin{aligned}
& E I v=-\frac{w}{24} x^{4}+\frac{w L}{8} x^{3}-\frac{w L^{3}}{6} x \\
& \therefore v=-\frac{w x}{24 E I}\left(x^{3}-3 L x^{2}+4 L^{3}\right)
\end{aligned}
$$

Substituting $x=L$, we can determine the deflection at B,

$$
\begin{aligned}
\delta_{B}=v(L)= & -\frac{w \times L}{24 E I}\left(L^{3}-3 L \times L^{2}+4 L^{3}\right)= \\
\therefore \delta_{B}= & -\frac{w L}{24 E I}\left(L^{3}-3 L^{3}+4 L^{3}\right) \\
& \therefore \delta_{B}=-\frac{w L^{4}}{12 E I}
\end{aligned}
$$

© The correct answer is \mathbf{C}.

P. $2 \rightarrow$ Solution

Consider a segment joining the left end A to a section $a-a$ somewhere along the beam span.

Taking moments about section $a-a$, the bending moment $M(x)$ is determined to be

$$
\begin{gathered}
\Sigma M_{a-a}=0 \rightarrow M(x)+\frac{w}{2} x^{2}+P x=0 \\
\therefore M(x)=-\frac{w}{2} x^{2}-P x
\end{gathered}
$$

Substituting into the bending moment equation, we have

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)=-\frac{w}{2} x^{2}-P x
$$

Integrating once, we get

$$
E I \frac{d^{2} v}{d x^{2}}=-\frac{w}{2} x^{2}-P x \rightarrow E I \frac{d v}{d x}=-\frac{w}{6} x^{3}-\frac{P}{2} x^{2}+C_{1}(\mathrm{I})
$$

Integrating twice, we get
$E I \frac{d v}{d x}=-\frac{w}{6} x^{3}-\frac{P}{2} x^{2}+C_{1} \rightarrow E I v=-\frac{w}{24} x^{4}-\frac{P}{6} x^{3}+C_{1} x+C_{2} \quad$ (II)
The available boundary conditions are $v^{\prime}(\mathrm{L})=0$ (the slope at support B is zero) and $v(L)=0$ (the deflection at support B is zero). Substituting the former into equation (I) brings to

$$
\begin{gathered}
E I \times 0=-\frac{w}{6} \times L^{3}-\frac{P}{2} \times L^{2}+C_{1}=0 \\
\therefore C_{1}=\frac{w L^{3}}{6}+\frac{P L^{2}}{2}
\end{gathered}
$$

Substituting the remaining boundary condition into equation (II), we obtain

$$
\begin{gathered}
E I \times 0=-\frac{w}{24} \times L^{4}-\frac{P}{6} L^{3}+\left(\frac{w L^{3}}{6}+\frac{P L^{2}}{2}\right) \times L+C_{2}=0 \\
\therefore-\frac{w L^{4}}{24}-\frac{P L^{3}}{6}+\frac{w L^{4}}{6}+\frac{P L^{3}}{2}+C_{2}=0 \\
\therefore \frac{w L^{4}}{8}+\frac{P L^{3}}{3}+C_{2}=0 \\
\therefore C_{2}=-\frac{w L^{4}}{8}-\frac{P L^{3}}{3}
\end{gathered}
$$

Substituting the C_{1} and C_{2} into equation (II), the elastic curve is shown to be

$$
\begin{aligned}
& E I v=-\frac{w}{24} x^{4}-\frac{P}{6} x^{3}+\left(\frac{w L^{3}}{6}+\frac{P L^{2}}{2}\right) x-\frac{w L^{4}}{8}-\frac{P L^{3}}{3} \\
& \therefore E I v=-\frac{w}{24} x^{4}+\frac{w L^{3}}{6} x-\frac{w L^{4}}{8}-\frac{P}{6} x^{3}+\frac{P L^{2}}{2} x-\frac{P L^{3}}{3} \\
& \therefore v=-\frac{w}{24 E I}\left(x^{4}-4 L^{3} x+3 L^{4}\right)-\frac{P}{6 E I}\left(x^{3}-3 L^{2} x+2 L^{3}\right)
\end{aligned}
$$

To determine the deflection at the free end, we substitute $x=0$ in the expression above,

$$
\begin{gathered}
v(0)=-\frac{w}{24 E I}\left(0^{4}-4 L^{3} \times 0+3 L^{4}\right)-\frac{P}{6 E I}\left(0^{3}-3 L^{2} \times 0+2 L^{3}\right) \\
\therefore v(0)=-\frac{w L^{4}}{8 E I}-\frac{P L^{3}}{3 E I}
\end{gathered}
$$

Lastly, we can substitute the numerical data,

$$
\begin{gathered}
\delta_{A}=v(0)=-\frac{\left(30 \times 10^{3}\right) \times 2.5^{4}}{8 \times\left(200 \times 10^{9}\right) \times\left(120 \times 10^{-6}\right)} \times 1000-\frac{\left(40 \times 10^{3}\right) \times 2.5^{3}}{3 \times\left(200 \times 10^{9}\right) \times\left(120 \times 10^{-6}\right)} \times 1000 \\
\therefore \delta_{A}=-14.8 \mathrm{~mm}
\end{gathered}
$$

C The correct answer is \mathbf{B}.

P. $3 \rightarrow$ Solution

Consider the free body diagram for the beam.

Taking moments about point A, we have

$$
\begin{gathered}
\Sigma M_{A}=0 \rightarrow-M_{A}-\frac{w_{0} L}{2} \times \frac{2 L}{3}=0 \\
\therefore M_{A}=-\frac{w_{0} L^{2}}{3}
\end{gathered}
$$

Summing forces in the y-direction, we obtain

$$
\begin{gathered}
\Sigma F_{y}=0 \rightarrow A_{y}-\frac{w_{0} L}{2}=0 \\
\therefore A_{y}=\frac{w_{0} L}{2}
\end{gathered}
$$

Consider a segment joining the left end A to a section a - a somewhere along the beam span.

Taking moments about section $a-a$, the bending moment $M(x)$ is determined
to be

$$
\begin{aligned}
\Sigma M_{a-a}= & 0 \rightarrow M(x)-M_{A}+\frac{w_{0} x}{2 L} \times x \times \frac{x}{3}-A_{y} \times x=0 \\
\therefore & M(x)+\frac{w_{0} L^{2}}{3}+\frac{w_{0}}{6 L} x^{3}-\frac{w_{0} L}{2} x=0 \\
& \therefore M(x)=-\frac{w_{0}}{6 L} x^{3}+\frac{w_{0} L}{2} x-\frac{w_{0} L^{2}}{3}
\end{aligned}
$$

We can then set up the bending moment equation,

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)=-\frac{w_{0}}{6 L} x^{3}+\frac{w_{0} L}{2} x-\frac{w_{0} L^{2}}{3}
$$

Integrating once, we find that

$$
E I \frac{d^{2} v}{d x^{2}}=-\frac{w_{0}}{6 L} x^{3}+\frac{w_{0} L}{2} x-\frac{w_{0} L^{2}}{3} \rightarrow E I \frac{d v}{d x}=-\frac{w_{0}}{24 L} x^{4}+\frac{w_{0} L}{4} x^{2}-\frac{w_{0} L^{2}}{3} x+C_{1} \text { (I) }
$$

Integrating a second time, we find that
$E I \frac{d v}{d x}=-\frac{w_{0}}{24 L} x^{4}+\frac{w_{0} L}{4} x^{2}-\frac{w_{0} L^{2}}{3} x+C_{1} \rightarrow E I v=-\frac{w_{0}}{120 L} x^{5}+\frac{w_{0} L}{12} x^{3}-\frac{w_{0} L^{2}}{6} x^{2}+C_{1} x+C_{2}$

The available boundary conditions are $v^{\prime}(0)=0$ (the slope at the fixed end is zero) and $v(0)=0$ (the deflection at the fixed end is zero). Substituting the former into equation (I), it is easy to see that $C_{1}=0$. Likewise, if we substitute the second boundary condition into equation (II), it follows that

$$
\begin{gathered}
E I \times 0=-\frac{w_{0}}{120 L} \times 0^{5}+\frac{w_{0} L}{12} \times 0^{3}-\frac{w_{0} L^{2}}{6} \times 0^{2}+0 \times 0+C_{2} \\
\therefore C_{2}=0
\end{gathered}
$$

That is to say, both integration constants are equal to zero. The elastic curve, then, is shown to be

$$
\begin{aligned}
& E I v=-\frac{w_{0}}{120 L} x^{5}+\frac{w_{0} L}{12} x^{3}-\frac{w_{0} L^{2}}{6} x^{2} \\
& \therefore v=-\frac{w_{0} x^{2}}{120 L E I}\left(x^{3}-10 L^{2} x+20 L^{3}\right)
\end{aligned}
$$

The deflection at the free end can be determined if we substitute $x=L$ in the relation above,

$$
\begin{gathered}
\delta_{B}=v(L)=-\frac{w_{0} x^{2}}{120 L E I}\left(L^{3}-10 L^{2} \times L+20 L^{3}\right) \\
\therefore \delta_{B}=-\frac{w_{0} L^{2}}{120 L E I}\left(L^{3}-10 L^{3}+20 L^{3}\right) \\
\therefore \delta_{B}=-\frac{11 w_{0} L^{4}}{120 E I}
\end{gathered}
$$

C The correct answer is \mathbf{D}.

P. $4 \rightarrow$ Solution

Consider the free body diagram for the beam in question.

Summing moments about point A, we have

$$
\begin{gathered}
\Sigma M_{A}=0 \rightarrow B_{y} L-\frac{w_{0} L}{2} \times \frac{2 L}{3}=0 \\
\therefore B_{y} L-\frac{w_{0} L^{2}}{3}=0 \\
\therefore B_{y}=\frac{w_{0} L}{3}
\end{gathered}
$$

Summing forces in the y-direction, we find that

$$
\begin{gathered}
\Sigma F_{y}=0 \rightarrow A_{y}+B_{y}-\frac{w_{0} L}{2}=0 \\
\therefore A_{y}+\frac{w_{0} L}{3}-\frac{w_{0} L}{2}=0 \\
\therefore A_{y}=\frac{w_{0} L}{6}
\end{gathered}
$$

Consider a segment that goes from support A to a section $a-a$ somewhere along the beam span, as shown.

Taking moments about section $a-a$, we can derive an expression for the bending moment $M(x)$,

$$
\begin{aligned}
& \Sigma M_{a-a}= 0 \rightarrow M(x)+\frac{w_{0} x^{2}}{2 L} \times \frac{x}{3}-A_{y} \times x=0 \\
& \therefore M(x)+\frac{w_{0}}{6 L} x^{3}-\frac{w_{0} L}{6} x=0 \\
& \therefore M(x)=-\frac{w_{0}}{6 L} x^{3}+\frac{w_{0} L}{6} x
\end{aligned}
$$

We can then set up and solve the bending moment equation,

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)=-\frac{w_{0}}{6 L} x^{3}+\frac{w_{0} L}{6} x
$$

Integrating a first time, it follows that
$E I \frac{d^{2} v}{d x^{2}}=-\frac{w_{0}}{6 L} x^{3}+\frac{w_{0} L}{6} x \rightarrow E I \frac{d v}{d x}=-\frac{w_{0}}{24 L} x^{4}+\frac{w_{0} L}{12} x^{2}+C_{1}(\mathrm{I})$
Integrating again, it follows that
$E I \frac{d v}{d x}=-\frac{w_{0}}{24 L} x^{4}+\frac{w_{0} L}{12} x^{2}+C_{1} \rightarrow E I v=-\frac{w_{0}}{120 L} x^{5}+\frac{w_{0} L}{36} x^{3}+C_{1} x+C_{2} \quad$ (II)
The available boundary conditions are $v(0)=0$ (the deflection at support A is zero) and $v(L)=0$ (the deflection at support B is zero). Applying the former to equation (II), it is obvious that $C_{2}=0$. Applying the other boundary condition to equation (I), we obtain

$$
\begin{gathered}
E I \times 0=-\frac{w_{0}}{120 L} \times L^{5}+\frac{w_{0} L}{36} \times L^{3}+C_{1} \times L+0=0 \\
\therefore-\frac{w_{0} L^{4}}{120}+\frac{w_{0} L^{4}}{36}+C_{1} L=0 \\
\therefore \frac{7 w_{0} L^{4}}{360}+C_{1} L=0 \\
\therefore C_{1}=-\frac{7 w_{0} L^{3}}{360}
\end{gathered}
$$

The equation for the elastic curve is then

$$
\begin{aligned}
& E I v=-\frac{w_{0}}{120 L} x^{5}+\frac{w_{0} L}{36} x^{3}-\frac{7 w_{0} L^{3}}{360} x \\
& \therefore v=-\frac{w_{0} x}{360 L E I}\left(3 x^{4}-10 L^{2} x^{2}+7 L^{4}\right)
\end{aligned}
$$

It is not immediately clear where the maximum deflection occurs. We do know, however, that the maximum deflection occurs where the beam slope is zero. Accordingly, we can set equation (I) to zero and solve for x,

$$
\begin{aligned}
& E I \frac{d v}{d x}=-\frac{\text { 收 }}{24 L} x^{4}+\frac{\text { 收 } L}{12} x^{2}-\frac{7 \nu L_{Q}^{3}}{360}=0 \\
& \therefore-\frac{0.0417}{L} x^{4}+0.0833 L x^{2}-0.0194 L^{3}=0
\end{aligned}
$$

There are two positive solutions to the equation above, namely, $x=1.315 \mathrm{~L}$, which is meaningless, and $x=0.519 L$, which is the one feasible result. Thus, the maximum deflection occurs slightly to the right of the middle of the beam. Substituting $x=0.519 \mathrm{~L}$ in the equation for the elastic curve, we obtain

$$
\begin{gathered}
\delta_{\max }=v(0.519 L)=-\frac{w_{0} \times 0.519 L}{360 L E I} \times\left[3 \times(0.519 L)^{4}-10 L^{2} \times(0.519 L)^{2}+7 \times L^{4}\right] \\
\therefore \delta_{\max }=-0.00652 \frac{w_{0} L^{4}}{E I}
\end{gathered}
$$

Substituting the numerical data we were given, the maximum deflection follows as

$$
\delta_{\max }=-0.00652 \times \frac{\left(50 \times 10^{3}\right) \times 5^{4}}{\left(200 \times 10^{9}\right) \times\left(120 \times 10^{-6}\right)} \times 1000=-8.49 \mathrm{~mm}
$$

C The correct answer is \mathbf{A}.

P. $5 \rightarrow$ Solution

The load equation for this beam is

$$
E I \frac{d^{4} v}{d x^{4}}=-w_{0} \sin \left(\frac{\pi x}{L}\right)
$$

Integrating successively, we have

$$
\begin{gather*}
E I \frac{d^{4} v}{d x^{4}}=-w_{0} \sin \left(\frac{\pi x}{L}\right) \rightarrow E I \frac{d^{3} v}{d x^{3}}=\frac{w_{0} L}{\pi} \cos \left(\frac{\pi x}{L}\right)+C_{1} \text { (I) } \\
E I \frac{d^{3} v}{d x^{3}}=\frac{w_{0} L}{\pi} \cos \left(\frac{\pi x}{L}\right)+C_{1} \rightarrow E I \frac{d^{2} v}{d x^{2}}=\frac{w_{0} L^{2}}{\pi^{2}} \sin \left(\frac{\pi x}{L}\right)+C_{1} x+C_{2} \text { (II) } \\
E I \frac{d^{2} v}{d x^{2}}=\frac{w_{0} L^{2}}{\pi^{2}} \sin \left(\frac{\pi x}{L}\right)+C_{1} x+C_{2} \rightarrow E I \frac{d v}{d x}=-\frac{w_{0} L^{3}}{\pi^{3}} \cos \left(\frac{\pi x}{L}\right)+\frac{C_{1} x^{2}}{2}+C_{2} x+C_{3} \quad \text { (III) } \tag{III}\\
E I \frac{d v}{d x}=-\frac{w_{0} L^{3}}{\pi^{3}} \cos \left(\frac{\pi x}{L}\right)+\frac{C_{1} x^{2}}{2}+C_{2} x+C_{3} \rightarrow E I v=-\frac{w_{0} L^{4}}{\pi^{4}} \sin \left(\frac{\pi x}{L}\right)+\frac{C_{1} x^{3}}{6}+\frac{C_{2} x^{2}}{2}+C_{3} x+C_{4} \text { (IV) }
\end{gather*}
$$

The available boundary/continuity/symmetry conditions are listed below.

Number	Condition	Meaning
(1)	at $x=0, M=E I \frac{d^{2} v}{d x^{2}}=0$	The bending moment at the left end is zero.
(2) $x=L, M=E I \frac{d^{2} v}{d x^{2}}=0$	The bending moment at the right end is zero.	
(3)	at $x=0, v=0$	The deflection at the left end is zero.
(4)	at $x=L, v=0$	The deflection at the right end is zero.

Substituting boundary condition (1) into equation (II), we obtain

$$
\begin{gathered}
E I \frac{d^{2} v}{d x^{2}}=\frac{w_{0} L^{2}}{\pi^{2}} \underbrace{\sin \left(\frac{\pi \times 0}{L}\right)}_{=0}+C_{1} \times 0+C_{2}=0 \\
\therefore 0+0+C_{2}=0 \\
\therefore C_{2}=0
\end{gathered}
$$

Substituting boundary condition (2) into equation (II), we obtain

$$
\begin{gathered}
E I \frac{d^{2} v}{d x^{2}}=\frac{w_{0} L^{2}}{\pi^{2}} \underbrace{\sin \left(\frac{\pi \times L}{L}\right)}_{=0}+C_{1} \times L+\underbrace{C_{2}}_{=0}=0 \\
\therefore 0+C_{1} L+0=0 \\
\therefore C_{1}=0
\end{gathered}
$$

Substituting boundary condition (3) into equation (IV), we obtain

$$
\begin{gathered}
E I v=-\frac{w_{0} L^{4}}{\pi^{4}} \underbrace{\sin \left(\frac{\pi \times 0}{L}\right)}_{=0}+\frac{C_{1} \times 0^{3}}{6}+\frac{C_{2} \times 0^{2}}{2}+C_{3} \times 0+C_{4}=0 \\
\therefore C_{4}=0
\end{gathered}
$$

Lastly, substituting boundary condition (4) into equation (IV), we also obtain $C_{3}=0$. The equation of the elastic curve is then

$$
E I v=-\frac{w_{0} L^{4}}{\pi^{4}} \sin \left(\frac{\pi}{L} x\right) \rightarrow v=-\frac{w_{0} L^{4}}{\pi^{4} E I} \sin \left(\frac{\pi}{L} x\right)
$$

Substituting $x=L / 2$ in this equation, we can determine the deflection midway between the supports,

$$
\begin{gathered}
\delta_{L / 2}=v\left(\frac{L}{2}\right)=-\frac{w_{0} L^{4}}{\pi^{4} E I} \sin \left(\frac{\pi}{\nless} \times \frac{\not \subset}{2}\right) \\
\therefore \delta_{L / 2}=-\frac{w_{0} L^{4}}{\pi^{4} E I}
\end{gathered}
$$

C The correct answer is \mathbf{D}.

P. $6 \Rightarrow$ Solution

The load equation for this beam is

$$
E I \frac{d^{4} v}{d x^{4}}=-\frac{w_{0}}{L^{3}} x^{3}
$$

Integrating four times successively brings to

$$
\begin{gathered}
E I \frac{d^{4} v}{d x^{4}}=-\frac{w_{0}}{L^{3}} x^{3} \rightarrow E I \frac{d^{3} v}{d x^{3}}=-\frac{w_{0}}{4 L^{3}} x^{4}+C_{1} \text { (I) } \\
\therefore E I \frac{d^{3} v}{d x^{3}}=-\frac{w_{0}}{4 L^{3}} x^{4}+C_{1} \rightarrow E I \frac{d^{2} v}{d x^{2}}=-\frac{w_{0}}{20 L^{3}} x^{5}+C_{1} x+C_{2} \text { (II) } \\
\therefore E I \frac{d^{2} v}{d x^{2}}=-\frac{w_{0}}{20 L^{3}} x^{5}+C_{1} x+C_{2} \rightarrow E I \frac{d v}{d x}=-\frac{w_{0}}{120 L^{3}} x^{6}+\frac{C_{1}}{2} x^{2}+C_{2} x+C_{3} \text { (III) } \\
E I \frac{d v}{d x}=-\frac{w_{0}}{120 L^{3}} x^{6}+\frac{C_{1}}{2} x^{2}+C_{2} x+C_{3} \rightarrow E I v=-\frac{w_{0}}{840 L^{3}} x^{7}+\frac{C_{1}}{6} x^{3}+\frac{C_{2}}{2} x^{2}+C_{3} x+C_{4} \text { (IV) }
\end{gathered}
$$

The available boundary/continuity/symmetry conditions are listed below.

Number	Condition	Meaning
(1)	at $x=0, M=E I \frac{d^{2} v}{d x^{2}}=0$	The bending moment at the left end is zero.
(2) $x=L, M=E I \frac{d^{2} v}{d x^{2}}=0$	The bending moment at the right end is zero.	
(3)	at $x=0, v=0$	The deflection at the left end is zero.
(4) $x=L, v=0$	The deflection at the right end is zero.	

Applying condition (1) to equation (II), it is clear that $C_{2}=0$. Applying condition (2) to equation (II), in turn, we have

$$
\begin{gathered}
E I \frac{d^{2} v}{d x^{2}}=-\frac{w_{0}}{20 L^{3}} \times L^{5}+C_{1} \times L+0=0 \\
\therefore C_{1}=\frac{w_{0} L}{20}
\end{gathered}
$$

Applying condition (3) to equation (IV), we effortlessly obtain $C_{4}=0$. Applying condition (4) to equation (IV), in turn, we see that

$$
\begin{gathered}
E I v=-\frac{w_{0}}{840 L^{3}} \times L^{7}+\frac{w_{0} L}{20} \times \frac{1}{6} \times L^{3}+\frac{0}{2} \times L^{2}+C_{3} \times L+0=0 \\
\therefore-\frac{w_{0} L^{4}}{840}+\frac{w_{0} L^{4}}{120}+C_{3} \times L=0 \\
\therefore C_{3}=-\frac{w_{0} L^{3}}{140}
\end{gathered}
$$

Gleaning our results, the equation of the elastic curve is

$$
\begin{gathered}
E I v=-\frac{w_{0}}{840 L^{3}} x^{7}+\frac{1}{6} \times \frac{w_{0} L}{20} x^{3}+\frac{0}{2} \times x^{2}-\frac{w_{0} L^{3}}{140} \times x+0 \\
\therefore E I v=-\frac{w_{0}}{840 L^{3}} x^{7}+\frac{w_{0} L}{120} x^{3}-\frac{w_{0} L^{3}}{140} x \\
\therefore v=-\frac{w_{0}}{840 L^{3} E I}\left(x^{7}-7 L^{4} x^{3}+6 L^{6} x\right)
\end{gathered}
$$

Substituting $x=L / 2$, the deflection midway between the supports is shown to be

$$
\begin{gathered}
\delta_{L / 2}=v\left(\frac{L}{2}\right)=-\frac{w_{0}}{840 L^{3} E I}\left[\left(\frac{L}{2}\right)^{7}-7 L^{4} \times\left(\frac{L}{2}\right)^{3}+6 L^{6} \times\left(\frac{L}{2}\right)\right] \\
\therefore \delta_{L / 2}=-\frac{w_{0}}{840 L^{3} E I}\left(\frac{L^{7}}{128}-\frac{7 L^{7}}{8}+3 L^{7}\right) \\
\therefore \delta_{L / 2}=-\frac{w_{0}}{840 L^{3} E I}\left(\frac{L^{7}}{128}-\frac{112 L^{7}}{128}+\frac{384 L^{7}}{128}\right) \\
\therefore \delta_{L / 2}=-\frac{w_{0}}{840 L^{3} E I}\left(\frac{273 L^{7}}{128}\right) \\
\therefore \delta_{L / 2}=-\frac{13 w_{0} L^{4}}{5120 E I}
\end{gathered}
$$

C The correct answer is \mathbf{B}.

P. $7 \Rightarrow$ Solution

The load equation for this beam is

$$
E I \frac{d^{4} v}{d x^{4}}=-w_{0} \cos \left(\frac{\pi x}{2 L}\right)
$$

Integrating four times successively, we obtain

$$
\begin{gathered}
E I \frac{d^{4} v}{d x^{4}}=-w_{0} \cos \left(\frac{\pi x}{2 L}\right) \rightarrow E I \frac{d^{3} v}{d x^{3}}=-\frac{2 w_{0} L}{\pi} \sin \left(\frac{\pi x}{2 L}\right)+C_{1} \text { (I) } \\
\therefore E I \frac{d^{3} v}{d x^{3}}=-\frac{2 w_{0} L}{\pi} \sin \left(\frac{\pi x}{2 L}\right)+C_{1} \rightarrow E I \frac{d^{2} v}{d x^{2}}=\frac{4 w_{0} L^{2}}{\pi^{2}} \cos \left(\frac{\pi x}{2 L}\right)+C_{1} x+C_{2} \text { (II) } \\
\therefore E I \frac{d^{2} v}{d x^{2}}=\frac{4 w_{0} L^{2}}{\pi^{2}} \cos \left(\frac{\pi x}{2 L}\right)+C_{1} x+C_{2} \rightarrow E I \frac{d v}{d x}=\frac{8 w_{0} L^{3}}{\pi^{3}} \sin \left(\frac{\pi x}{2 L}\right)+\frac{C_{1}}{2} x^{2}+C_{2} x+C_{3} \text { (III) } \\
E I \frac{d v}{d x}=\frac{8 w_{0} L^{3}}{\pi^{3}} \sin \left(\frac{\pi x}{2 L}\right)+\frac{C_{1}}{2} x^{2}+C_{2} x+C_{3} \rightarrow E I v=-\frac{16 w_{0} L^{4}}{\pi^{4}} \cos \left(\frac{\pi x}{2 L}\right)+\frac{C_{1}}{6} x^{3}+\frac{C_{2}}{2} x^{2}+C_{3} x+C_{4} \text { (IV) }
\end{gathered}
$$

The available boundary/symmetry/continuity equations are listed below.

Number	Condition	Meaning
(1)	at $x=0, V=E I \frac{d^{3} v}{d x^{3}}=0$	The shear force at the free end is zero.
(2)	at $x=0, M=E I \frac{d^{2} v}{d x^{2}}=0$	The bending moment at the free end is zero.
(3)	at $x=L, \frac{d v}{d x}=0$	The slope at the fixed end is zero.
(4)	The deflection at the fixed end is zero.	

Applying condition (1) to equation (I), it is clear that $C_{1}=0$. Applying condition (2) to equation (II), in turn, we see that

$$
\begin{gathered}
E I \frac{d^{2} v}{d x^{2}}=\frac{4 w_{0} L^{2}}{\pi^{2}} \underbrace{\cos \left(\frac{\pi \times 0}{2 L}\right)}_{=1}+0 \times 0+C_{2}=0 \\
\therefore \frac{4 w_{0} L^{2}}{\pi^{2}}+C_{2}=0 \\
\therefore C_{2}=-\frac{4 w_{0} L^{2}}{\pi^{2}}
\end{gathered}
$$

Likewise, mapping condition (3) onto equation (III) yields

$$
\begin{gathered}
E I \frac{d v}{d x}=\frac{8 w_{0} L^{3}}{\pi^{3}} \underbrace{\sin \left(\frac{\pi \times L}{2 L}\right)}_{=1}+\frac{0}{2} \times L^{2}-\frac{4 w_{0} L^{2}}{\pi^{2}} \times L+C_{3}=0 \\
\therefore \frac{8 w_{0} L^{3}}{\pi^{3}}-\frac{4 w_{0} L^{3}}{\pi^{2}}+C_{3}=0 \\
\therefore C_{3}=-\frac{4 w_{0} L}{\pi^{3}}(2-\pi)
\end{gathered}
$$

Finally, applying condition (4) to equation (IV) gives

$$
\begin{gathered}
-\frac{16 w_{0} L^{4}}{\pi^{4}} \times \underbrace{\cos \left(\frac{\pi \times L}{2 L}\right)}_{=0}-\frac{4 w_{0} \times L \times L^{2}}{2 \pi^{2}}-\frac{4 w_{0} \times L^{3} \times L}{\pi^{3}} \times(2-\pi)+C_{4} \\
\therefore C_{4}=\frac{2 w_{0} L^{4}}{\pi^{3}}(4-\pi)
\end{gathered}
$$

Cleaning our results, the equation of the elastic curve is determined to be

$$
\begin{aligned}
E I v= & -\frac{16 w_{0} L^{4}}{\pi^{4}} \cos \left(\frac{\pi x}{2 L}\right)+\frac{0}{6} \times x^{3}+\frac{1}{2}\left(-\frac{4 w_{0} L^{2}}{\pi^{2}}\right) x^{2}-\frac{4 w_{0} L}{\pi^{3}}(2-\pi) x+\frac{2 w_{0} L^{4}}{\pi^{3}}(4-\pi) \\
& \therefore v=-\frac{w_{0}}{2 \pi^{4} E I}\left[32 L^{4} \cos \left(\frac{\pi x}{2 L}\right)+4 \pi^{2} L^{2} x^{2}+8 \pi L^{3}(2-\pi) x-4 \pi L^{4}(4-\pi)\right]
\end{aligned}
$$

Substituting $x=0$, we can establish the deflection at the left end of the beam,

$$
\begin{gathered}
\delta_{A}=v(0)=-\frac{w_{0}}{2 \pi^{4} E I}[32 L^{4} \underbrace{\cos \left(\frac{\pi \times 0}{2 L}\right)}_{=1}+4 \pi^{2} L^{2} \times 0^{2}+8 \pi L^{3}(2-\pi) \times 0-4 \pi L^{4}(4-\pi)] \\
\therefore \delta_{A}=-\frac{w_{0}}{2 \pi^{4} E I} \times\left[32 L^{4}+0+0-4 \pi L^{4}(4-\pi)\right] \\
\therefore \delta_{A}=-\frac{w_{0} L^{4}}{E I} \times\left[\frac{32-4 \pi(4-\pi)}{2 \pi^{4}}\right]
\end{gathered}
$$

Evaluating the quantity in brackets with the help of a CAS such as Mathematica, we ultimately have

$$
\delta_{A} \approx-0.109 \frac{w_{0} L^{4}}{E I}
$$

\bigcirc The correct answer is \mathbf{A}.

P. $8 \rightarrow$ Solution

To begin, we write the shear force equation, with x measured from the free end A,

$$
V(x)=-P-P\langle x-a\rangle^{0}
$$

Integrating, we obtain

$$
M(x)=-P x-P\langle x-a\rangle^{1}
$$

We can then set up the bending moment equation,

$$
E I v^{\prime \prime}=M(x) \rightarrow E I \frac{d^{2} v}{d x^{2}}=-P x-P\langle x-a\rangle^{1}
$$

Integrating once, we obtain
$E I \frac{d^{2} v}{d x^{2}}=-P x-P\langle x-a\rangle^{1} \rightarrow E I \frac{d v}{d x}=-\frac{P}{2} x^{2}-\frac{P}{2}\langle x-a\rangle^{2}+C_{1}(\mathrm{I})$
Integrating a second time gives

$$
E I \frac{d v}{d x}=-\frac{P}{2} x^{2}-\frac{P}{2}\langle x-a\rangle^{2}+C_{1} \rightarrow E I v=-\frac{P}{6} x^{3}-\frac{P}{6}\langle x-a\rangle^{3}+C_{1} x+C_{2} \text { (II) }
$$

The available boundary conditions are $v^{\prime}(2 a)=0$ (the slope at support C is zero) and $v(2 a)=0$ (the deflection at support C is zero). Applying the former to equation (I), it follows that

$$
\begin{gathered}
E I \frac{d v}{d x}=-\frac{P}{2} \times(2 a)^{2}-\frac{P}{2} \times\langle 2 a-a\rangle^{2}+C_{1}=0 \\
\therefore-\frac{P}{2} \times 4 a^{2}-\frac{P}{2} \times a^{2}+C_{1}=0 \\
\therefore-2 P a^{2}-\frac{P a^{2}}{2}+C_{1}=0 \\
\therefore C_{1}=\frac{5 P a^{2}}{2}
\end{gathered}
$$

Applying the remaining boundary condition to equation (II), we have

$$
\begin{gathered}
E I v=-\frac{P}{6} \times(2 a)^{3}-\frac{P}{6}\langle 2 a-a\rangle^{3}+\frac{5 P a^{2}}{2} \times 2 a+C_{2}=0 \\
\therefore-\frac{4 P a^{3}}{3}-\frac{P a^{3}}{6}+5 P a^{3}+C_{2}=0 \\
\therefore C_{2}=-\frac{7 P a^{3}}{2}
\end{gathered}
$$

Substituting these variables into equation (I), the beam slope is given by

$$
\begin{aligned}
E I v^{\prime} & =-\frac{P}{2} x^{2}-\frac{P}{2}\langle x-a\rangle^{2}+\frac{5 P a^{2}}{2} \\
\therefore v^{\prime}= & \frac{P}{E I}\left[-\frac{1}{2} x^{2}-\frac{1}{2}\langle x-a\rangle^{2}+\frac{5 a^{2}}{2}\right]
\end{aligned}
$$

The slope at the free end is then

$$
\begin{gathered}
\theta_{A}=v^{\prime}(0)=\frac{P}{E I}[-\frac{1}{2} \times 0^{2}-\underbrace{\frac{1}{2}\langle 0-a\rangle^{2}}_{=0}+\frac{5 a^{2}}{2}] \\
\therefore \theta_{A}=\frac{5 P a^{2}}{2 E I}
\end{gathered}
$$

Thus, statement 1 is true. In a similar manner, the elastic curve is established as

$$
\begin{aligned}
& E I v=-\frac{P}{6} x^{3}-\frac{P}{6}\langle x-a\rangle^{3}++\frac{5 P a^{2}}{2} x-\frac{7 P a^{3}}{2} \\
& \therefore v=\frac{P}{E I}\left[-\frac{1}{6} x^{3}-\frac{1}{6}\langle x-a\rangle^{3}+\frac{5 a^{2}}{2} x-\frac{7 a^{3}}{2}\right]
\end{aligned}
$$

so that, with $x=0$, we have

$$
\begin{gathered}
\delta_{A}=v(0)=\frac{P}{E I}[-\frac{1}{6} \times 0^{3}-\underbrace{\frac{1}{6}\langle 0-a\rangle^{3}}_{=0}+\frac{5 a^{2}}{2} \times 0-\frac{7 a^{3}}{2}] \\
\therefore \delta_{A}=-\frac{7 P a^{3}}{2 E I}
\end{gathered}
$$

Thus, statement 2 is false.

© The correct answer is \mathbf{B}.

P. $9 \rightarrow$ Solution

It is easily shown that the system is self-equilibrated, i.e., $R_{B}=R_{D}=0$. We can then set up the bending moment equation,

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)=-M_{0}\langle x-a\rangle^{0}
$$

Integrating once, we obtain

$$
E I v^{\prime \prime}=-M_{0}\langle x-a\rangle^{0} \rightarrow E I \frac{d v}{d x}=-M_{0}\langle x-a\rangle^{1}+C_{1} \quad(\mathrm{I})
$$

Integrating a second time, we obtain

$$
E I v^{\prime}=-M_{0}\langle x-a\rangle^{1}+C_{1} \rightarrow E I v=-\frac{M_{0}}{2}\langle x-a\rangle^{2}+C_{1} x+C_{2} \text { (II) }
$$

The boundary conditions are $v(0)=0$ (the deflection at support A is zero) and $v(2 a)=0$ (the deflection at support C is zero). Substituting the former into equation (II), it is easy to see that $C_{2}=0$. Substituting the remaining condition into the same equation, in turn, we see that

$$
\begin{gathered}
E I v=-\frac{M_{0}}{2}\langle 2 a-a\rangle^{2}+C_{1} \times 2 a+0=0 \\
\therefore-\frac{M_{0} a^{2}}{2}+2 a \times C_{1}=0 \\
\therefore C_{1}=\frac{M_{0} a}{4}
\end{gathered}
$$

We are now in position to evaluate the slope at end A of the beam,

$$
\begin{gathered}
\theta_{A}=v^{\prime}(0)=\frac{1}{E I}[-M_{0} \underbrace{\langle 0-a\rangle^{1}}_{=0}+\frac{M_{0} a}{4}]=\frac{1}{E I} \times \frac{M_{0} a}{4} \\
\therefore \theta_{A}=\frac{M_{0} a}{4 E I}
\end{gathered}
$$

Thus, statement 1 is false. Next, to determine the deflection at the right end of the beam, we substitute $x=3 a$ in equation (II),

$$
\begin{gathered}
\delta_{D}=v(3 a)=\frac{M_{0}}{E I}\left[-\frac{1}{2}\langle 3 a-a\rangle^{2}+\frac{a}{4} \times 3 a\right] \\
\therefore \delta_{D}=\frac{M_{0}}{E I}\left[-2 a^{2}+\frac{3 a^{2}}{4}\right] \\
\therefore \delta_{D}=-\frac{5 M_{0} a^{2}}{4 E I}
\end{gathered}
$$

Thus, statement 2 is true.
O The correct answer is \mathbf{C}.

P. $10 \rightarrow$ Solution

From symmetry, is easy to see that reactions $A_{y}=B_{y}=w a$. The distributed loads can be represented by the equation

$$
w(x)=w-w\langle x-a\rangle^{0}+w\langle x-3 a\rangle^{0}
$$

However, $d V / d x=-w(x)$; that is,

$$
\frac{d V}{d x}=-w+w\langle x-a\rangle^{0}-w\langle x-3 a\rangle^{0}
$$

Moreover, $d M / d x=V(x)$; that is,

$$
\frac{d M}{d x}=A_{y}-w x+w\langle x-a\rangle^{1}-w\langle x-3 a\rangle^{1}
$$

The bending moment $M(x)$ is such that

$$
\begin{aligned}
& M(x)=\underbrace{M_{A}}_{=0}+A_{Y} x-\frac{1}{2} w x^{2}+\frac{1}{2} w\langle x-a\rangle^{2}-\frac{1}{2} w\langle x-3 a\rangle^{2} \\
& \therefore M(x)=w a x-\frac{1}{2} w x^{2}+\frac{1}{2} w\langle x-a\rangle^{2}-\frac{1}{2} w\langle x-3 a\rangle^{2}
\end{aligned}
$$

We can then set up and integrate the bending moment equation,

$$
\begin{gather*}
E I \frac{d^{2} v}{d x^{2}}=M(x) \rightarrow E I \frac{d^{2} v}{d x^{2}}=w a x-\frac{1}{2} w x^{2}+\frac{1}{2} w\langle x-a\rangle^{2}-\frac{1}{2} w\langle x-3 a\rangle^{2} \\
\therefore E I \frac{d v}{d x}=\frac{w a}{2} x^{2}-\frac{1}{6} w x^{3}+\frac{1}{6}\langle x-a\rangle^{3}-\frac{1}{6} w\langle x-3 a\rangle^{3}+C_{1} \quad \text { (I) } \\
\therefore E I v=\frac{w a}{6} x^{3}-\frac{1}{24} w x^{4}+\frac{1}{24}\langle x-a\rangle^{4}-\frac{1}{24} w\langle x-3 a\rangle^{4}+C_{1} x+C_{2} \quad \text { (II) } \tag{II}
\end{gather*}
$$

The available boundary conditions are $v(0)=0$ (the deflection at support A is zero) and $v(4 a)=0$ (the deflection at support B is zero). Substituting the former into equation (I), we effortlessly obtain $C_{2}=0$. Substituting the second boundary condition into equation (II), we have

$$
\begin{gathered}
E I \times 0=\frac{w a}{6} \times(4 a)^{3}-\frac{1}{24} w \times(4 a)^{4}+\frac{1}{24}\langle 4 a-a\rangle^{4}-\frac{1}{24} w\langle 4 a-3 a\rangle^{4}+C_{1} \times 4 a+0=0 \\
\therefore \frac{64 w}{6} a^{4}-\frac{256 w}{24} a^{4}+\frac{81 w}{24} a^{4}-\frac{1}{24} a^{4}+C_{1} \times 4 a=0 \\
\therefore C_{1}=-\frac{5 w a^{3}}{6}
\end{gathered}
$$

Gleaning our results, the elastic curve is determined to be

$$
\begin{aligned}
& E I v= \frac{w a}{6} x^{3}-\frac{1}{24} w x^{4}+\frac{1}{24}\langle x-a\rangle^{4}-\frac{1}{24} w\langle x-3 a\rangle^{4}+\left(-\frac{5 w a^{3}}{6}\right) x+0 \\
& \therefore v=\frac{w}{E I}\left[\frac{a}{6} x^{3}-\frac{1}{24} x^{4}+\frac{1}{24}\langle x-a\rangle^{4}-\frac{1}{24}\langle x-3 a\rangle^{4}-\frac{5 a^{3}}{6} x\right]
\end{aligned}
$$

Substituting $x=2 a$, the deflection at midpoint C follows as

$$
\begin{gathered}
\delta_{C}=v(2 a)=\frac{w}{E I}[\frac{a}{6} \times(2 a)^{3}-\frac{1}{24} \times(2 a)^{4}+\frac{1}{24}\langle 2 a-a\rangle^{4}-\frac{1}{24} \underbrace{\langle 2 a-3 a\rangle^{4}}_{=0}-\frac{5 a^{3}}{6} \times 2 a] \\
\therefore \delta_{C}=\frac{w}{E I}\left(\frac{8 a^{4}}{6}-\frac{16 a^{4}}{24}+\frac{a^{4}}{24}-0-\frac{10 a^{4}}{6}\right) \\
\therefore \delta_{C}=-\frac{23 w a^{4}}{24 E I}
\end{gathered}
$$

C The correct answer is \mathbf{D}.

P. $11 \Rightarrow$ Solution

Using statics, it is easy to see that vertical reactions A_{y} and C_{y} are such that $A_{y}=$ $w L / 4$ and $C_{y}=3 w L / 4$. We can replace the loading configuration given with the following equivalent setup.

The shear force $V(x)$ is expressed as

$$
\begin{gathered}
V(x)=A_{y}-w x+w\left\langle x-\frac{L}{2}\right\rangle+C_{y}\langle x-L\rangle^{0}+w\langle x-L\rangle \\
\therefore V(x)=\frac{w L}{4}-w x+w\left\langle x-\frac{L}{2}\right\rangle+\frac{3 w L}{4}\langle x-L\rangle^{0}+w\langle x-L\rangle
\end{gathered}
$$

Integrating once, we obtain the bending moment $M(x)$,

$$
\begin{gathered}
V(x)=\frac{w L}{4}-w x+w\left\langle x-\frac{L}{2}\right\rangle+\frac{3 w L}{4}\langle x-L\rangle^{0}+w\langle x-L\rangle \\
\therefore M(x)=\frac{w L}{4} x-\frac{w}{2} x^{2}+\frac{w}{2}\left\langle x-\frac{L}{2}\right\rangle^{2}+\frac{3 w L}{4}\langle x-L\rangle^{1}+\frac{w}{2}\langle x-L\rangle^{2}
\end{gathered}
$$

Since $E I\left(d^{2} v / d x^{2}\right)=M(x)$, the elastic curve can be obtained if we integrate the relation above twice more,

$$
\begin{gathered}
E I \frac{d^{2} v}{d x^{2}}=\frac{w L}{4} x-\frac{w}{2} x^{2}+\frac{w}{2}\left\langle x-\frac{L}{2}\right\rangle^{2}+\frac{3 w L}{4}\langle x-L\rangle^{1}+\frac{w}{2}\langle x-L\rangle^{2} \\
\therefore E I \frac{d v}{d x}=\frac{w L}{8} x^{2}-\frac{w}{6} x^{3}+\frac{w}{6}\left\langle x-\frac{L}{2}\right\rangle^{3}+\frac{3 w L}{8}\langle x-L\rangle^{2}+\frac{w}{6}\langle x-L\rangle^{3}+C_{1} \quad \text { (I) } \\
\therefore E I v=\frac{w L}{24} x^{3}-\frac{w}{24} x^{4}+\frac{w}{24}\left\langle x-\frac{L}{2}\right\rangle^{4}+\frac{3 w L}{24}\langle x-L\rangle^{3}+\frac{w}{24}\langle x-L\rangle^{4}+C_{1} x+C_{2} \quad \text { (II) }
\end{gathered}
$$

The pertaining boundary conditions are $v(0)=0$ (the deflection at support A is zero) and $v(L)=0$ (the deflection at support C is zero). Applying the former to equation (II), we effortlessly have $C_{2}=0$. Resorting to the other boundary condition, equation (II) becomes

$$
\begin{gathered}
E I v=\frac{w L}{24} \times L^{3}-\frac{w}{24} \times L^{4}+\frac{w}{24}\left\langle L-\frac{L}{2}\right\rangle^{4}+\frac{3 w L}{24}\langle L-L\rangle^{3}+\frac{w}{24}\langle L-L\rangle^{4}+C_{1} \times L+\underbrace{C_{2}}_{\because=0}=0 \\
\therefore \frac{w L^{4}}{24}-\frac{w L^{4}}{24}+\frac{w}{24} \times \frac{L^{4}}{16}+0+0+C_{1} \times L=0 \\
\therefore C_{1}=-\frac{w L^{3}}{384}
\end{gathered}
$$

Therefore, the elastic curve is given by

$$
\begin{aligned}
& E I v=\frac{w L}{24} x^{3}-\frac{w}{24} x^{4}+\frac{w}{24}\left\langle x-\frac{L}{2}\right\rangle^{4}+\frac{3 w L}{24}\langle x-L\rangle^{3}+\frac{w}{24}\langle x-L\rangle^{4}-\frac{w L^{3}}{384} x \\
& v=\frac{w}{E I}\left[\frac{L}{24} x^{3}-\frac{1}{24} x^{4}+\frac{1}{24}\left\langle x-\frac{L}{2}\right\rangle^{4}+\frac{3 L}{24}\langle x-L\rangle^{3}+\frac{1}{24}\langle x-L\rangle^{4}-\frac{L^{3}}{384} x\right]
\end{aligned}
$$

We can now determine the deflection at point B, which corresponds to $x=L / 2$.

$$
\begin{aligned}
& \delta_{B}=\frac{w}{E I}\left[\frac{L}{24} \times\left(\frac{L}{2}\right)^{3}-\frac{1}{24} \times\left(\frac{L}{2}\right)^{4}+\right. \frac{1}{24}\langle\underbrace{\left\langle\frac{L}{2}-\frac{L}{2}\right\rangle^{4}}_{=0}+\frac{3 L}{24}\langle\underbrace{\left.\frac{L}{2}-L\right\rangle^{3}}_{=0}+\frac{1}{24} \underbrace{\left\langle\frac{L}{2}-L\right\rangle^{4}}_{=0}-\frac{L^{3}}{384} \times\left(\frac{L}{2}\right)] \\
& \therefore \delta_{B}=\frac{w}{E I}\left(\frac{L^{4}}{192}-\frac{L^{4}}{384}-\frac{L^{4}}{768}\right) \\
& \therefore \delta_{B}=\frac{w L^{4}}{768 E I}(4-2-1) \\
& \therefore \delta_{B}=+\frac{w L^{4}}{768 E I}
\end{aligned}
$$

The positive sign indicates that the deflection of point B is upward.
© The correct answer is \mathbf{C}.

P. $12 \rightarrow$ Solution

To begin, consider the free body diagram of the beam.

Taking moments about point B, we have

$$
\begin{gathered}
\Sigma M_{B}=0 \rightarrow \frac{w_{0} L}{4} \times \frac{5 L}{6}+\frac{w_{0} L}{4} \times \frac{L}{6}+A_{y} \times L=0 \\
\therefore \frac{5 w_{0} L^{2}}{24}+\frac{w_{0} L^{2}}{24}+A_{y} \times L=0 \\
\therefore\left|A_{y}\right|=\frac{w_{0} L}{4}
\end{gathered}
$$

Owing to symmetry, we have $B_{y}=A_{y}=w_{0} L / 4$. The first distributed load, labeled (1) in the free body diagram, can be described with the relation

$$
w_{1}(x)=w_{0}-\frac{2 w_{0}}{L} x
$$

Likewise, the second distributed load, labeled (2) in the free body diagram, can be represented with the relation

$$
w_{2}(x)=\frac{4 w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{1}
$$

The distributed load imparted on the beam is then

$$
w(x)=w_{1}(x)+w_{2}(x)=w_{0}-\frac{2 w_{0}}{L} x+\frac{4 w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{1}
$$

Now, knowing that $d V / d x=-w(x)$, the shear force $V(x)$ can be obtained by integration,

$$
\begin{gathered}
\frac{d V}{d x}=-w(x)=-w_{0}+\frac{2 w_{0}}{L} x-\frac{4 w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{1} \\
\therefore V(x)=-w_{0} x+\frac{w_{0}}{L} x^{2}-\frac{2 w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{2}
\end{gathered}
$$

Since the variation in moment $d M / d x$ is equal to the shear force $V(x)$, and

$$
E I \frac{d^{2} v}{d x^{2}}=M(x)
$$

it follows that

$$
\begin{gathered}
V(x)+A_{y}=\frac{w_{0} L}{4}-w_{0} x+\frac{w_{0}}{L} x^{2}-\frac{2 w_{0}}{L}\left\langle x-\frac{L}{2}\right\rangle^{2} \\
\therefore E I \frac{d^{2} v}{d x^{2}}=M(x)=\frac{w_{0} L}{4} x-\frac{w_{0}}{2} x^{2}+\frac{w_{0}}{3 L} x^{3}-\frac{2 w_{0}}{3 L}\left\langle x-\frac{L}{2}\right\rangle^{3}
\end{gathered}
$$

Integrating twice more gives

$$
\begin{gather*}
E I \frac{d^{2} v}{d x^{2}}=\frac{w_{0} L}{4} x-\frac{w_{0}}{2} x^{2}+\frac{w_{0}}{3 L} x^{3}-\frac{2 w_{0}}{3 L}\left\langle x-\frac{L}{2}\right\rangle^{3} \\
\therefore E I \frac{d v}{d x}=\frac{w_{0} L}{8} x^{2}-\frac{w_{0}}{6} x^{3}+\frac{w_{0}}{12 L} x^{4}-\frac{w_{0}}{6 L}\left\langle x-\frac{L}{2}\right\rangle^{4}+C_{1} \tag{I}\\
E I v=\frac{w_{0} L}{24} x^{3}-\frac{w_{0}}{24} x^{4}+\frac{w_{0}}{60 L} x^{5}-\frac{w_{0}}{30 L}\left\langle x-\frac{L}{2}\right\rangle^{5}+C_{1} x+C_{2} \tag{II}
\end{gather*}
$$

The available boundary conditions are $v(0)=0$ (the deflection at support A is zero) and $v(L)=0$ (the deflection at support B is zero). Applying the former to equation (II), it is clear that $C_{2}=0$. Applying the remaining boundary condition to equation (II), in turn, brings to

$$
\begin{gathered}
E I v=\frac{w_{0} L}{24} \times L^{3} \frac{w_{0}}{24} \times L^{4}
\end{gathered}+\frac{w_{0}}{60 L} \times L^{5}-\frac{w_{0}}{30 L}\left\langle L-\frac{L}{2}\right\rangle^{5}+C_{1} L+0=0
$$

The beam's elastic curve is determined to be

$$
\begin{aligned}
& E I v=\frac{w_{0} L}{24} x^{3}-\frac{w_{0}}{24} x^{4}+\frac{w_{0}}{60 L} x^{5}-\frac{w_{0}}{30 L}\left\langle x-\frac{L}{2}\right\rangle^{5}-\frac{w_{0} L^{3}}{64} x \\
& \therefore v=\frac{w_{0}}{E I}\left[\frac{L}{24} x^{3}-\frac{1}{24} x^{4}+\frac{1}{60 L} x^{5}-\frac{1}{30 L}\left\langle x-\frac{L}{2}\right\rangle^{5}-\frac{L^{3}}{64} x\right]
\end{aligned}
$$

The deflection at the midpoint is then

$$
\begin{gathered}
\delta_{C}=v\left(\frac{L}{2}\right)=\frac{w_{0}}{E I}[\frac{L}{24} \times\left(\frac{L}{2}\right)^{3}-\frac{1}{24} \times\left(\frac{L}{2}\right)^{4}+\frac{1}{60 L} \times\left(\frac{L}{2}\right)^{5}-\frac{1}{30 L} \underbrace{\left\langle\frac{L}{2}-\frac{L}{2}\right)^{5}}_{=0}-\frac{L^{3}}{64} \times\left(\frac{L}{2}\right)] \\
\therefore \delta_{C}=\frac{w_{0}}{E I}\left(\frac{L^{4}}{192}-\frac{L^{4}}{384}+\frac{L^{4}}{1920}-0-\frac{L^{4}}{128}\right) \\
\therefore \delta_{C}=\frac{w_{0} L^{4}}{1920 E I} \times(10-5+1-15) \\
\therefore \delta_{C}=-\frac{3 w_{0} L^{4}}{640 E I}
\end{gathered}
$$

C The correct answer is B.

P. $13 \rightarrow$ Solution

The free body diagram for the beam is illustrated below.

From statics, we have $\left|A_{y}\right|=88$ kip and $\left|B_{y}\right|=4$ kip. We shall replace the system of loads on the beam with the following equivalent configuration.

Using discontinuity functions, the bending moment $M(x)$ is written as

$$
\begin{aligned}
M(x)= & -\frac{1}{2} \times 8\langle x-0\rangle^{2}-\frac{1}{6} \times\left(-\frac{8}{9}\right)\langle x-6\rangle^{3}-(-88)\langle x-6\rangle \\
& \therefore M(x)=-4 x^{2}+\frac{4}{27}\langle x-6\rangle^{3}+88\langle x-6\rangle
\end{aligned}
$$

Knowing that $E I\left(d^{2} v / d x^{2}\right)=M(x)$, the beam deflection can be determined by integrating this relation twice,

$$
\begin{gathered}
E I \frac{d^{2} v}{d x^{2}}=-4 x^{2}+\frac{4}{27}\langle x-6\rangle^{3}+88\langle x-6\rangle \\
\therefore E I \frac{d v}{d x}=-\frac{4}{3} x^{3}+\frac{1}{27}\langle x-6\rangle^{4}+44\langle x-6\rangle^{2}+C_{1} \quad \text { (I) } \\
\therefore E I v=-\frac{1}{3} x^{4}+\frac{1}{135}\langle x-6\rangle^{5}+\frac{44}{3}\langle x-6\rangle^{3}+C_{1} x+C_{2} \text { (II) }
\end{gathered}
$$

The available boundary conditions are $v(6)=0$ (the deflection at support A is zero) and $v(15)=0$ (the deflection at support B is zero). Substituting the former into equation (II), we have

$$
\begin{gathered}
E I v=-\frac{1}{3} \times 6^{4}+\frac{1}{135}\langle 6-6\rangle^{5}+\frac{44}{3}\langle 6-6\rangle^{3}+C_{1} \times 6+C_{2}=0 \\
\therefore-432+0+0+6 C_{1}+C_{2}=0 \\
\therefore 6 C_{1}+C_{2}=432 \text { (III) }
\end{gathered}
$$

Substituting the remaining boundary condition into equation (II), we have

$$
\begin{gathered}
-\frac{1}{3} \times 15^{4}+\frac{1}{135} \times\langle 15-6\rangle^{5}+\frac{44}{3} \times\langle 15-6\rangle^{3}+C_{1} \times 15+C_{2}=0 \\
\therefore-16,875+437.4+10,692+15 C_{1}+C_{2}=0 \\
\therefore 15 C_{1}+C_{2}=5476 \text { (IV) }
\end{gathered}
$$

Equations (III) and (IV) can be solved simultaneously to yield $C_{1}=560.4$ and C_{2} $=-3110$. Substituting these quantities into equation (II), the elastic curve is given by

$$
\begin{gathered}
E I v=-\frac{1}{3} x^{4}+\frac{1}{135}\langle x-6\rangle^{5}+\frac{44}{3}\langle x-6\rangle^{3}+560.4 x-3110 \\
\therefore v=\frac{1}{E I}\left[-\frac{1}{3} x^{4}+\frac{1}{135}\langle x-6\rangle^{5}+\frac{44}{3}\langle x-6\rangle^{3}+560.4 x-3110\right]
\end{gathered}
$$

The deflection at point C is then

$$
\begin{aligned}
& \delta_{C}=v(0)=\frac{1}{E I}\left[-\frac{1}{3} \times 0^{4}+\frac{1}{135} \times\langle 0-6\rangle^{5}+\frac{44}{3}\langle 0-6\rangle^{3}+560.4 \times 0-3110\right] \\
& \therefore \delta_{C}=\frac{1}{E I}(-0+0+0+0-3110) \\
& \therefore \delta_{C}=-\frac{3110}{E I} \\
& \\
& \text { O The correct answer is } \mathbf{C} .
\end{aligned}
$$

P. $14 \Rightarrow$ Solution

The free body diagram for the beam is provided in continuation.

From statics, we have $\left|A_{y}\right|=0.3 \mathrm{k}$ and $\left|B_{y}\right|=5.4 \mathrm{k}$. We shall replace the beam's loading configuration with the equivalent pattern shown below.

In this case, the bending moment $M(x)$ is given by

$$
\begin{gathered}
M(x)=-0.3\langle x-0\rangle-\frac{1}{6} \times \frac{1.6}{18}\langle x-0\rangle^{3}-(-5.4)\langle x-9\rangle-\left(-\frac{0.8}{2}\right)\langle x-9\rangle^{2}-\frac{1}{6}\left(-\frac{0.8}{9}\right)\langle x-9\rangle^{3} \\
\therefore M(x)=-0.3 x-0.0148 x^{3}+5.4\langle x-9\rangle+0.4\langle x-9\rangle^{2}
\end{gathered}
$$

Knowing that $E I\left(d^{2} v / d x^{2}\right)=M(x)$, the beam deflection can be
determined by integrating the foregoing equation twice.

$$
\begin{gather*}
E I \frac{d^{2} v}{d x^{2}}=-0.3 x-0.0148 x^{3}+5.4\langle x-9\rangle+0.4\langle x-9\rangle^{2}+0.0148\langle x-9\rangle^{3} \\
\therefore E I \frac{d v}{d x}=-0.15 x^{2}-0.0037 x^{4}+2.7\langle x-9\rangle^{2}+0.13\langle x-9\rangle^{3}+0.0037\langle x-9\rangle^{4}+C_{1} \tag{I}
\end{gather*}
$$

$\therefore E I v=-0.05 x^{3}-0.00074 x^{5}+0.9\langle x-9\rangle^{3}+0.033\langle x-9\rangle^{4}+0.00074\langle x-9\rangle^{5}+C_{1} x+C_{2}$
The available boundary conditions are $v(0)=0$ (the deflection at support A is zero) and $v(9)=0$ (the deflection at support B is zero). Substituting the first condition into equation (II), it is easily seen that $C_{2}=0$. Substituting the remaining condition into equation (II), in turn, we have

$$
\begin{gathered}
E I v=0.05 \times 9^{3}-0.00074 \times 9^{5}+0.033\langle 9-9\rangle^{4}+0.00074\langle 9-9\rangle^{5}+C_{1} \times 9=0 \\
\therefore-36.5-43.7+0+0+9 C_{1}=0 \\
\therefore C_{1}=8.91
\end{gathered}
$$

Consequently, the elastic curve is given by

$$
v=\frac{1}{E I}\left[-0.05 x^{3}-0.00074 x^{5}+0.9\langle x-9\rangle^{3}+0.033\langle x-9\rangle^{4}+0.00074\langle x-9\rangle^{5}+8.91 x\right] \mathrm{kip}-\mathrm{ft}^{3}
$$

We are looking for the deflection at end C, for which $x=18 \mathrm{ft}$. Therefore,

$$
\begin{gathered}
\delta_{C}=v(18)=\frac{1}{E I}\left[\begin{array}{c}
-0.05 \times 18^{3}-0.00074 \times 18^{5}+0.9(18-9)^{3} \\
+0.033 \times\langle 18-9\rangle^{4}+0.00074\langle 18-9\rangle^{5}+8.91 \times 18
\end{array}\right]{\mathrm{kip}-\mathrm{ft}^{3}}^{\therefore \delta_{C}=-\frac{613.2}{E I} \mathrm{kip}-\mathrm{ft}^{3}} \mathrm{l}
\end{gathered}
$$

Since $E=1.6 \times 10^{3} \mathrm{ksi}$ and $I=6 \times 12^{3} / 12=864 \mathrm{in}^{4}$, we ultimately have

$$
\delta_{C}=-\frac{613.2}{\left(1.6 \times 10^{3}\right) \times 864} \times 12^{3}=-0.767 \mathrm{in} .
$$

or approximately 19.5 mm .
C The correct answer is \mathbf{D}.

() ANSWER SUMMARY

Problem 1	C
Problem 2	B
Problem 3	D
Problem 4	A
Problem 5	D
Problem 6	B
Problem 7	A
Problem 8	B
Problem 9	C
Problem 10	D
Problem 11	C
Problem 12	B
Problem 13	C
Problem 14	D

() REFERENCES

- BEER, F., JOHNSTON, E., DEWOLF, J., and MAZUREK, D. (2012). Mechanics of Materials. 6th edition. New York: McGraw-Hill.
- HIBBELER, R. (2014). Mechanics of Materials. 9th edition. Upper Saddle River Pearson
- PHILPOT, T. (2013). Mechanics of Materials. 3rd edition. Hoboken: John Wiley and Sons.

$?$
Got any questions related to this quiz? We can help! Send a message to contact@montogue.com and we'll
answer your question as soon as possible.

