Quiz EL2O2
$\rightarrow 1$

Diodes

Lucas Monteiro Nogueira

PROBLEM DISTRIBUTION

Problems	Subject
$1-11$	$p n$ junction diodes
$12-18$	Diode circuits
$19-23$	Half-wave and full-wave rectifiers

Refer to Table 3 for $p n$ junction data. Note that values provided in individual problems override those of Table 3.

PROBLEMS

Problem 1

Consider an ideal $p n$ junction diode at $T=300 \mathrm{~K}$ operating in the forward-bias region. Calculate the change in diode voltage that will cause a factor of 10 increase in current. Repeat for a factor of 100 increase in current.

N Problem 2 (Neamen, 2003, w/ permission)

Consider a GaAs pn junction with doping concentrations $N_{a}=5 \times 10^{16}$ cm^{-3} and $N_{d}=10^{16} \mathrm{~cm}^{-3}$. The junction cross-sectional area is $A=10^{-3} \mathrm{~cm}^{2}$ and the applied forward-bias voltage is $V_{a}=1.10 \mathrm{~V}$. Calculate:
Problem 2.1: The minority electron diffusion current at the edge of the space charge region.
Problem 2.2: The minority hole diffusion current at the edge of the space charge region.
Problem 2.3: The total current in the pn junction diode.
M Problem 3 (Neamen, 2003, w/ permission)
An ideal germanium diode at $T=300 \mathrm{~K}$ has the following parameters: $N_{a}=4 \times 10^{15} \mathrm{~cm}^{-3}, N_{d}=2 \times 10^{17} \mathrm{~cm}^{-3}, D_{p}=48 \mathrm{~cm}^{2} / \mathrm{s}, D_{n}=90 \mathrm{~cm}^{2} / \mathrm{s}, \tau_{p 0}=\tau_{n 0}=$ $2 \times 10^{-6} \mathrm{~s}$, and cross-sectional area $A=10^{-4} \mathrm{~cm}^{2}$. Determine the diode current for:
Problem 3.1: A forward-bias voltage of 0.25 V .
Problem 3.2: A reverse-biased voltage of 0.25 V .
N Problem 4 (Neamen, 2003, w/ permission)
An $n^{+} p$ silicon diode at $T=300 \mathrm{~K}$ has the following parameters: $N_{d}=10^{18}$ $\mathrm{cm}^{-3}, N_{a}=10^{16} \mathrm{~cm}^{-3}, D_{n}=25 \mathrm{~cm}^{2} / \mathrm{s}, D_{p}=10 \mathrm{~cm}^{2} / \mathrm{s}, \tau_{n 0}=\tau_{p 0}=1 \mu \mathrm{~s}$, and $A=10^{-4}$ cm^{2}. Determine the diode current for:
Problem 4.1: A forward-bias voltage of 0.5 V .
Problem 4.2: A reverse-biased voltage of 0.5 V .
M Problem 5 (Neamen, 2003, w/ permission)
A one-sided $p^{+} n$ silicon diode has doping concentrations of $N_{a}=5 \times 10^{17}$ cm^{-3} and $N_{d}=8 \times 10^{15} \mathrm{~cm}^{-3}$. The minority carrier lifetimes are $\tau_{n 0}=10^{-7} \mathrm{~s}$ and $\tau_{p 0}$ $=8 \times 10^{-8} \mathrm{~s}$. The cross-sectional area is $A=2 \times 10^{-4} \mathrm{~cm}^{2}$. Calculate:
Problem 5.1: The reverse-biased saturation current.
Problem 5.2: The forward-bias current at
$\rightarrow V_{a}=0.45 \mathrm{~V}$;
$\rightarrow V_{a}=0.55 \mathrm{~V}$;
$\rightarrow V_{a}=0.65 \mathrm{~V}$;

Problem 6 (Neamen, 2003, w/ permission)
Consider an ideal silicon $p n$ junction diode. What must be the ratio N_{d} / N_{a} so that 90 percent of the current in the depletion region is due to the flow of electrons?
M Problem 7 (Neamen, 2003, w/ permission)
A silicon pn junction diode is to be designed to operate at $T=300 \mathrm{~K}$ such that the diode current is $I=10 \mathrm{~mA}$ at a diode voltage of $V_{D}=0.65 \mathrm{~V}$. The ratio of electron current to total current is to be 0.10 and the maximum current density is to be no more than $20 \mathrm{~A} / \mathrm{cm}^{2}$. The semiconductor parameters are $D_{n}=25 \mathrm{~cm}^{2} / \mathrm{s}, D_{p}=10 \mathrm{~cm}^{2} / \mathrm{s}$, and $\tau_{n 0}=\tau_{p 0}=5 \times 10^{-7} \mathrm{~s}$.
Determine the doping concentrations N_{d} and N_{a}.
M Problem 8 (Neamen, 2003, w/ permission)
The cross-sectional area of a silicon $p n$ junction is $10^{-3} \mathrm{~cm}^{2}$. The temperature of the diode is $T=300 \mathrm{~K}$, and the doping concentrations are $N_{d}=$ $10^{16} \mathrm{~cm}^{-3}$ and $N_{a}=8 \times 10^{15} \mathrm{~cm}^{-3}$. Assume minority carrier lifetimes of $\tau_{n 0}=10^{-6} \mathrm{~s}$ and $\tau_{p 0}=10^{-7} \mathrm{~s}$. Calculate the total number of excess electrons in the p region and the total number of excess holes in the n region for voltages $V_{a}=0.3 \mathrm{~V}, V_{a}$ $=0.4 \mathrm{~V}$, and $V_{a}=0.5 \mathrm{~V}$.

- Problem 9 (Neamen, 2003, w/ permission)

Consider the ideal long silicon $p n$ junction illustrated to the side. The device temperature is $T=$ 300 K . The n region is doped with 10^{16} donor atoms per cm^{3} and the p region is doped with 5×10^{16} acceptor atoms per cm^{3}. The minority carrier lifetimes are $\tau_{n 0}=0.05 \mu$ s and $\tau_{p 0}=0.01 \mu \mathrm{~s}$. The minority carrier diffusion coefficients are $D_{n}=23$ $\mathrm{cm}^{2} / \mathrm{s}$ and $D_{p}=8 \mathrm{~cm}^{2} / \mathrm{s}$. The forward-bias voltage is
 $V_{a}=0.610 \mathrm{~V}$. Calculate:
Problem 9.1: The excess hole concentration as a function of x for $x \geq 0$.
Problem 9.2: The hole diffusion current density at $x=3 \times 10^{-4} \mathrm{~cm}$.
Problem 9.3: The electron current density at $x=3 \times 10^{-4} \mathrm{~cm}$.
N Problem 10 (Neamen, 2003, w/ permission)
Problem 10.1: The reverse-biased saturation current is a function of temperature. Assuming that I_{s} varies with temperature only from the intrinsic carrier concentration, show that we can write $I_{s}=C T^{3} \exp \left(-E_{g} / k T\right)$, where C is a constant and a function only of the diode parameters, T is temperature, E_{g} is the bandgap energy, and k is Boltzmann's constant.
Problem 10.2: Determine the increase in I_{s} as the temperature increases from $T=300 \mathrm{~K}$ to $T=400 \mathrm{~K}$ for (i) a germanium diode and (ii) a silicon diode. Use E_{g} $=0.66 \mathrm{eV}$ as the bandgap energy of germanium and $E_{g}=1.12 \mathrm{eV}$ as the bandgap energy of silicon.

Problem 11 (Neamen, 2003, w/ permission)

An ideal silicon $p n$ junction diode has a cross-sectional area $A=5 \times 10^{-4}$ cm^{2}. The doping concentrations are $N_{a}=4 \times 10^{15} \mathrm{~cm}^{-3}$ and $N_{d}=2 \times 10^{17} \mathrm{~cm}^{-3}$. Assume that the bandgap energy $E_{g}=1.12 \mathrm{eV}$ as well as the diffusion coefficients and lifetimes are independent of temperature. The ratio of the magnitude of forward- to reverse-biased currents is to be no less than 2×10^{4} with forward- and reverse-biased voltages of 0.50 V , and the maximum reverse-biased current is to be limited to $1.2 \mu \mathrm{~A}$. Determine the maximum temperature at which the diode will meet these specifications and state which specification is the limiting factor. Use $N_{c}=2.8 \times 10^{19} \mathrm{~cm}^{-3}$ and $N_{v}=$ $1.04 \times 10^{19} \mathrm{~cm}^{-3}$ as the effective density of states functions in the conduction and valence bands of silicon, respectively.

N Problem 12 (Neamen, 2000, w/ permission)

A pn junction diode is in series with a $10-\mathrm{M} \Omega$ resistor and a 1.5 V power supply. The reverse-saturation current of the diode is $I_{s}=30 \mathrm{nA}$. Determine the diode current and voltage if the diode is forward biased. Use $V_{T}=0.026 \mathrm{~V}$ as the thermal voltage.

I Problem 13 (Neamen, 2000, w/ permission)

The reverse-saturation current of each diode in the circuit illustrated below if reverse-saturation current $I_{s}=2 \times 10^{-13} \mathrm{~A}$. Also determine the input voltage V_{I} required to produce an output voltage of $V_{O}=0.60 \mathrm{~V}$.

1 Problem 14 (Neamen, 2000, w/ permission)
Problem 14.1: In the circuit illustrated below, find the diode voltage V_{D} and the supply voltage V such that the current in the loop is $I=0.50 \mathrm{~mA}$. Assume the reverse-saturation current is $I_{s}=5 \times 10^{-12} \mathrm{~A}$. Also determine the power dissipated in the diode.
Problem 14.2: Reconsider the circuit introduced in Problem 14.1. If the voltage V is $V=1.7 \mathrm{~V}$ and the cut-in voltage of the diode is $V_{\gamma}=0.65 \mathrm{~V}$, determine the new value of R required to limit the power dissipation in the diode to no more than 0.20 mW .

N Problem 15 (Neamen, 2000, w/ permission)
The cut-in voltage for each voltage in the circuits shown below is $V_{\gamma}=$ 0.6 V . For each circuit, determine the diode current I_{D} and the voltage V_{o} (measured with respect to ground potential).
(a)

(b)
(c)

Problem 16 (Neamen, 2000, w/ permission)
The cut-in voltage of the diode in the circuit illustrated below is $V_{\gamma}=$ 0.7 V . The diode is to remain biased "on" for a power supply voltage in the range $5 \leq V_{P S} \leq 10 \mathrm{~V}$. The minimum diode current is to be $I_{D, \min }=2 \mathrm{~mA}$. The maximum power dissipated in the diode is to be no more than 10 mW . Determine the appropriate values of R_{1} and R_{2}.

1 Problem 17 (Neamen, 2000, w/ permission)

Assume each diode in the circuit illustrated below has a cut-in voltage of $V_{\gamma}=0.65 \mathrm{~V}$. The input voltage is $V_{I}=5 \mathrm{~V}$. Determine the value of R_{1} required such that current $I_{D 1}$ is one-half the value of $I_{D 2}$. What are the values of $I_{D 1}$ and $I_{D 2}$?

M Problem 18

Beginning with a cut-in voltage $V_{\gamma} \approx 800 \mathrm{mV}$ for each diode, determine the change in $V_{\text {out }}$ if $V_{\text {in }}$ changes from +2.4 V to +2.5 V for the circuits illustrated below. Use the small-signal model.

(a)

(b)

(d)

- Problem 19 (Boylestad and Nashelsky, 2013, w/ permission)

Problem 19.1: Assuming an ideal diode, sketch the input voltage v_{i}, the diode voltage v_{d}, and the diode current i_{d} for the half-wave rectifier illustrated below if the input is a sinusoidal waveform with a frequency of 60 Hz .

Problem 19.2: Repeat the previous problem if the ideal diode is replaced with a silicon diode, which has a "turn-on" voltage $V_{K}=0.7 \mathrm{~V}$.
Problem 19.3: Repeat Problem 19.1 if a $10-k \Omega$ load is applied, as shown below. Sketch the input voltage v_{i}, the diode current i_{d}, the load voltage v_{L} and the load currentil.

Problem 20 (Boylestad and Nashelsky, 2013, w/ permission)
For the network illustrated below, sketch the voltage v_{o} and current i_{R}.

- Problem 21 (Boylestad and Nashelsky, 2013, w/ permission)

Problem 21.1: Given the maximum power rating $P_{\max }=14 \mathrm{~mW}$ for each diode in the following circuit, determine the maximum current rating of each diode (using the approximate equivalent model).
Problem 21.2: Determine current $I_{\text {max }}$.
Problem 21.3: Determine the current through each diode at maximum input voltage $V_{i, \text { max }}$ using the results of Problem 21.2. If only one diode were present, what would be the expected result?

N Problem 22 (Boylestad and Nashelsky, 2013, w/ permission)
A full-wave bridge rectifier with a $120-\mathrm{V}$ rms sinusoidal input has a load resistor of $1 \mathrm{k} \Omega$.
Problem 22.1: If silicon diodes are employed, what is the dc voltage available at the load?
Problem 22.2: Determine the required peak inverse voltage (PIV) rating of each diode.
Problem 22.3: Find the maximum current through each diode during
conduction.
Problem 22.4: What is the required power rating of each diode?
N Problem 23 (Boylestad and Nashelsky, 2013, w/ permission)
Determine v_{o} and the required peak inverse voltage (PIV) rating of each diode for the full-wave rectifier illustrated below. In addition, determine the maximum current through each diode.

ADDITIONAL INFORMATION

Table 1 Concentration variables

Variable	Meaning
I_{S}	Reverse-saturation current in a diode
$V_{T}=k T / e$	Thermal voltage in a diode; (k is Boltzmann's constant, T is temperature, and e is elementary charge)
J	Current density
A	Cross-sectional area
D_{n}	Diffusion coefficient of electrons in a $p n$ diode
junction	

Table $\mathbf{2}$ More variables related to $p n$ junction diodes

Variable	Meaning
$N a$	Acceptor concentration in the p region of the $p n$ junction
N_{d}	Donor concentration in the n region of the $p n$ junction
n_{i}	Intrinsic carrier concentration
$n_{n 0}=N_{d}$	Thermal-equilibrium majority carrier hole concentration in the n region
$p_{p 0}=N_{a}$	Thermal-equilibrium majority carrier hole concentration in the p region
$n_{p 0}=n_{i}^{2} / N_{a}$	Thermal-equilibrium minority carrier electron concentration in the p region
$p_{\text {no }}=n_{i}^{2} / N_{d}$	Thermal-equilibrium minority carrier hole concentration in the p region
n_{p}	Total minority carrier electron concentration in the p region
p_{n}	Total minority carrier
$n_{p}\left(-x_{p}\right)$	Minority carrier electron concentration in the p region at the space charge edge
$p_{n}\left(x_{n}\right)$	Minority carrier hole concentration in the n region at the space charge edge
$\delta n_{p}=n_{p}-n_{p 0}$	Excess minority carrier electron concentration in the p region
$\delta p_{n}=p_{n}-p_{n 0}$	Excess minority carrier hole concentration in the n region

Table 3 Silicon, and gallium arsenide $p n$ junction properties* ($T=300 \mathrm{~K}$)

Property	Si	GaAs
$\begin{array}{c}\text { Intrinsic carrier } \\ \text { concentration }\left(\mathrm{cm}^{-3}\right)\end{array}$	1.5×10^{10}	1.8×10^{6}
$\begin{array}{c}\text { Electron diffusion } \\ \text { coefficient, } D_{n}\left(\mathrm{~cm}^{2} / \mathrm{s}\right)\end{array}$	25	205
$\begin{array}{c}\text { Hole diffusion } \\ \text { coefficient, } D_{p}\left(\mathrm{~cm}^{2} / \mathrm{s}\right)\end{array}$	10	9.8
Electron lifetime, $\tau_{n 0}(\mathrm{sec})$	5×10^{-7}	5×10^{-8}
Hole lifetime, $\tau_{p 0}(\mathrm{sec})$		

Equations

$1 \rightarrow$ Basic pn junction diode equation

$$
I_{D}=I_{S}\left[\exp \left(\frac{e V}{k T}\right)-1\right]
$$

where I_{D} is diode current, I_{S} is reverse-saturation current, e is elementary charge, V is the applied voltage. Note that factor $k T / e$ can be replaced with the so-called thermal voltage V_{T}.
Some problems use the approximation

$$
I_{D} \approx I_{S} \exp \left(\frac{e V}{k T}\right)
$$

$\mathbf{2} \rightarrow$ Electron current density in a pn junction diode

$$
J_{n}\left(-x_{p}\right)=\frac{e D_{n} n_{p o}}{L_{n}} \exp \left(\frac{V_{a}}{V_{T}}\right)
$$

where J_{n} is electron current density, x_{p} is the horizontal coordinate of one of the edges of the $p n$ junction, e is elementary charge, L_{n} is electron diffusion length, V_{a} is applied voltage, and V_{T} is thermal voltage. Concentration variables are as defined in Table 1. The equation can be restated as

$$
J_{n}\left(-x_{p}\right)=\frac{e n_{i}^{2}}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}} \exp \left(\frac{V_{a}}{V_{T}}\right)
$$

where D_{n} is electron diffusion coefficient and $\tau_{n 0}$ is the lifetime of electrons. Concentration variables are as defined in Table 1.
$\mathbf{3} \rightarrow$ Hole current density in a pn junction diode

$$
J_{p}\left(x_{n}\right)=\frac{e D_{p} p_{n o}}{L_{p}} \exp \left(\frac{V_{a}}{V_{T}}\right)
$$

where J_{p} is hole current density, x_{n} is the horizontal coordinate of one of the edges of the $p n$ junction, e is elementary charge, L_{p} is hole diffusion length, V_{a} is applied voltage, and V_{T} is thermal voltage. Concentration variables are as defined in Table 1. The equation can be restated as

$$
J_{p}\left(x_{n}\right)=\frac{e n_{i}^{2}}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}} \exp \left(\frac{V_{a}}{V_{T}}\right)
$$

where D_{p} is hole diffusion coefficient and $\tau_{p 0}$ is the lifetime of electrons.
Concentration variables are as defined in Table 1.
$4 \rightarrow$ Reverse-saturation current density

$$
J_{s}=\frac{e D_{n} n_{p 0}}{L_{n}}+\frac{e D_{p} p_{n 0}}{L_{p}}
$$

where e is the elementary charge, D_{n} is the diffusion coefficient of electrons, D_{p} is the diffusion coefficient of holes, L_{n} is the electron diffusion length, and L_{p} is the hole diffusion length. Concentration variables are as defined in Table 1. Replacing the concentration variables and using the definition of diffusion length ($L_{n}^{2}=D_{n} \tau_{n 0}, L_{p}^{2}=D_{n} \tau_{p 0}$), we obtain the more convenient form

$$
J_{s}=e n_{i}^{2}\left(\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}\right)
$$

where n_{i} is the intrinsic carrier concentration, $\tau_{n 0}$ is the electron lifetime, and $\tau_{p 0}$ is hole lifetime. Concentration variables are as defined in Table 1.
$5 \rightarrow$ Distribution of excess electron concentration in a pn junction

$$
\delta n_{p}=n_{p}-n_{p 0}=n_{p 0}\left[\exp \left(\frac{V_{a}}{V_{T}}\right)-1\right] \exp \left(\frac{-x}{L_{n}}\right)
$$

where V_{a} is applied voltage, V_{T} is thermal voltage, x is distance from the center of the $p n$ junction, and L_{n} is electron diffusion length. Concentration variables are as defined in Table 1.
$6 \rightarrow$ Distribution of excess hole concentration in a pn junction

$$
\delta p_{n}=p_{n}-p_{n 0}=p_{n 0}\left[\exp \left(\frac{V_{a}}{V_{T}}\right)-1\right] \exp \left(\frac{-x}{L_{p}}\right)
$$

where V_{a} is applied voltage, V_{T} is thermal voltage, x is distance from the center of the $p n$ junction, and L_{p} is hole diffusion length.

$>$ SOLUTIONS

P. $1 \rightarrow$ Solution

In the forward bias region, the forward-bias current flowing through a $p n$ junction diode is approximated as

$$
I_{f} \approx I_{S} \exp \left(\frac{e V}{k T}\right)
$$

where I_{s} is the saturation current, $e=1.60 \times 10^{-19} \mathrm{C}$ is the charge of an electron, V is diode voltage, $k=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ is Boltzmann's constant, and T is the junction temperature. k, e and T can be condensed in the so-called thermal voltage V_{T}, which at 300 K amounts to

$$
V_{T}=\frac{k T}{e}=\frac{\left(1.38 \times 10^{-23}\right) \times 300}{1.60 \times 10^{-19}}=0.0259 \mathrm{~V} \approx 0.026 \mathrm{~V}
$$

This is the approximation used in future problems. Now, letting subscripts 1 and 2 denote variables under two different conditions, we have the ratio

$$
\frac{I_{f, 2}}{I_{f, 1}}=\frac{I_{S} \exp \left(V_{2} / V_{T}\right)}{I_{S} \exp \left(V_{1} / V_{T}\right)}=\exp \left[\frac{1}{V_{T}}\left(V_{2}-V_{1}\right)\right]
$$

or, solving for voltage difference,

$$
\frac{I_{f, 2}}{I_{f, 1}}=\exp \left[\frac{1}{V_{T}}\left(V_{2}-V_{1}\right)\right] \rightarrow \Delta V=V_{T} \ln \left(\frac{I_{f, 2}}{I_{f, 1}}\right)
$$

For a 10 -fold increase in current, we require a change in diode voltage such that

$$
\Delta V=0.026 \times \ln (10)=59.9 \times 10^{-3} \mathrm{~V} \approx 60 \mathrm{mV}
$$

while for a 100-fold increase,

$$
\Delta V=0.026 \times \ln (100)=120 \times 10^{-3} \mathrm{~V} \approx 120 \mathrm{mV}
$$

P. $2 \Rightarrow$ Solution

Problem 2.1: The electron diffusion current can be obtained by multiplying the corresponding current density $J_{n}\left(-x_{p}\right)$ by the cross-sectional area of the junction; that is,

$$
I_{n}=A J_{n}\left(-x_{p}\right)(\mathrm{I})
$$

where A is cross-sectional area. J_{n} is given by

$$
J_{n}\left(-x_{p}\right)=\frac{e D_{n} n_{p o}}{L_{n}} \exp \left(\frac{V_{a}}{V_{T}}\right)
$$

which can be restated as

$$
\begin{gathered}
J_{n}\left(-x_{p}\right)=\frac{e n_{i}^{2}}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}} \exp \left(\frac{V_{a}}{V_{T}}\right) \\
\therefore J_{n}\left(-x_{p}\right)=\frac{\left(1.6 \times 10^{-19}\right) \times\left(1.8 \times 10^{6}\right)^{2}}{5 \times 10^{16}} \times \sqrt{\frac{205}{5 \times 10^{-8}}} \times \exp \left(\frac{1.10}{0.026}\right)=1.57 \mathrm{~A} / \mathrm{cm}^{2}
\end{gathered}
$$

Substituting in (I) brings to

$$
I_{n}=A J_{n}\left(-x_{p}\right)=10^{-3} \times 1.57=1.57 \mathrm{~mA}
$$

Problem 2.2: To find the minority hole diffusion current, we write

$$
J_{p}\left(x_{n}\right)=\frac{e D_{p} p_{n o}}{L_{p}} \exp \left(\frac{V_{a}}{V_{T}}\right)
$$

which can be restated as

$$
\begin{gathered}
J_{p}\left(x_{n}\right)=\frac{e n_{i}^{2}}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}} \exp \left(\frac{V_{a}}{V_{T}}\right) \\
\therefore J_{p}\left(x_{n}\right)=\frac{\left(1.6 \times 10^{-19}\right) \times\left(1.8 \times 10^{6}\right)^{2}}{10^{16}} \times \sqrt{\frac{9.80}{10^{-8}}} \times \exp \left(\frac{1.10}{0.026}\right)=3.84 \mathrm{~A} / \mathrm{cm}^{2}
\end{gathered}
$$

so that

$$
I_{p}=A J_{p}\left(x_{n}\right)=10^{-3} \times 3.84=3.84 \mathrm{~mA}
$$

Problem 2.3: To find the total current, simply add I_{n} and I_{p},

$$
I=I_{n}+I_{p}=1.57+3.84=5.41 \mathrm{~mA}
$$

P. $3 \rightarrow$ Solution

Problem 3.1: The current can be obtained by multiplying the ideal current density by the cross-sectional area of the junction,

$$
I=A J
$$

Using the ideal-diode equation, the product above can be restated as

$$
I=A J_{s} \exp \left(\frac{V_{a}}{V_{T}}\right)
$$

All but one of the variables in the equation above are given; the missing one is the ideal reverse-saturation current density J_{s}, which is given by equation 4 ,

$$
J_{s}=\frac{e D_{n} n_{p 0}}{L_{n}}+\frac{e D_{p} p_{n 0}}{L_{p}}
$$

This can be restated as

$$
\begin{gathered}
J_{s}=e n_{i}^{2}\left(\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}\right) \\
\therefore J_{s}=\left(1.6 \times 10^{-19}\right) \times\left(2.4 \times 10^{13}\right)^{2} \times\left[\frac{1}{4 \times 10^{15}} \sqrt{\frac{90}{2.0 \times 10^{-6}}}+\frac{1}{2 \times 10^{17}} \sqrt{\frac{48}{2.0 \times 10^{-6}}}\right]=1.57 \times 10^{-4} \mathrm{~A} / \mathrm{cm}^{2}
\end{gathered}
$$

so that, substituting in (I),

$$
I=10^{-4} \times\left(1.57 \times 10^{-4}\right) \times \exp \left(\frac{0.25}{0.026}\right)=2.35 \times 10^{-4} \mathrm{~A}=0.235 \mathrm{~mA}
$$

Problem 3.2: In this case, the diode would yield a current given by its reverse-bias saturation value, which, using $J_{s}=1.57 \times 10^{-4} \mathrm{~A} / \mathrm{cm}^{2}$ determined above,

$$
\begin{gathered}
I \approx-I_{s}=-A J_{s}=-10^{-4} \times\left(1.57 \times 10^{-4}\right)=-1.57 \times 10^{-8} \mathrm{~A} \\
\therefore I=-15.7 \mathrm{nA}
\end{gathered}
$$

P. $4 \Rightarrow$ Solution

Problem 4.1: The current can be determined with equation (I) of the previous problem,

$$
I=A J_{s} \exp \left(\frac{V_{a}}{V_{T}}\right)
$$

where J_{s} is given by, as before (equation 4)

$$
J_{s}=\frac{e D_{n} n_{p 0}}{L_{n}}+\frac{e D_{p} p_{n 0}}{L_{p}}
$$

Since this is an $n^{+} p$ diode, however, the n-side is more heavily doped and the p-side contributes little to the saturation current; thus, we may write

$$
J_{s}=\frac{e D_{n} n_{p 0}}{L_{n}}+\frac{\sum D_{p} p / n 0}{L_{p}} \approx \frac{e D_{n} n_{p 0}}{L_{n}}
$$

or, equivalently,

$$
\begin{gathered}
J_{s}=\frac{e D_{n} n_{p 0}}{L_{n}}=e n_{i}^{2} \frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}} \\
\therefore J_{s}=\left(1.6 \times 10^{-19}\right) \times\left(1.5 \times 10^{10}\right)^{2} \times \frac{1}{10^{16}} \sqrt{\frac{25}{10^{-6}}}=1.8 \times 10^{-11} \mathrm{~A} / \mathrm{cm}^{2}
\end{gathered}
$$

so that

$$
\begin{gathered}
I=A J_{s} \exp \left(\frac{V_{a}}{V_{T}}\right)=10^{-4} \times\left(1.8 \times 10^{-11}\right) \times \exp \left(\frac{0.5}{0.026}\right)=4.05 \times 10^{-7} \mathrm{~A} \\
\therefore I=0.405 \mu \mathrm{~A}
\end{gathered}
$$

Problem 4.2: When reverse-biased, the diode will yield a current equal to its reverse-saturation value I_{s},

$$
\begin{gathered}
I \approx-I_{s}=-A J_{s}=-10^{-4} \times\left(1.8 \times 10^{-11}\right)=-1.8 \times 10^{-15} \mathrm{~A} \\
\therefore I=-1.8 \mathrm{fA}
\end{gathered}
$$

P. $5 \Rightarrow$ Solution

Problem 5.1: To determine the reverse-biased saturation current, simply apply

$$
I_{s}=A J_{s}
$$

where (equation 4)

$$
J_{s}=e n_{i}^{2}\left(\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}\right)
$$

$\therefore J_{s}=\left(1.60 \times 10^{-19}\right) \times\left(1.5 \times 10^{-10}\right)^{2} \times\left(\frac{1}{5.0 \times 10^{17}} \sqrt{\frac{25}{10^{-7}}}+\frac{1}{8.0 \times 10^{-15}} \sqrt{\frac{10}{8.0 \times 10^{-8}}}\right)=5.14 \times 10^{-11} \mathrm{~A} / \mathrm{cm}^{2}$
so that

$$
\begin{gathered}
I_{s}=A J_{s}=\left(2 \times 10^{-4}\right) \times\left(5.14 \times 10^{-11}\right)=1.03 \times 10^{-14} \mathrm{~A} \\
I_{s}=10.3 \mathrm{fA}
\end{gathered}
$$

Problem 5.2: Using the ideal-diode equation, we have

$$
I=I_{s} \exp \left(\frac{V_{a}}{V_{T}}\right)=\left(1.03 \times 10^{-14}\right) \times \exp \left(\frac{V_{a}}{0.026}\right)
$$

Accordingly, with a bias voltage $V_{a}=0.45 \mathrm{~V}$,

$$
\begin{gathered}
I=\left(1.03 \times 10^{-14}\right) \times \exp \left(\frac{0.45}{0.026}\right)=3.38 \times 10^{-7} \mathrm{~A} \\
I=0.338 \mu \mathrm{~A}
\end{gathered}
$$

With a bias voltage $V_{a}=0.55 \mathrm{~V}$,

$$
\begin{gathered}
I=\left(1.03 \times 10^{-14}\right) \times \exp \left(\frac{0.55}{0.026}\right)=1.58 \times 10^{-5} \mathrm{~A} \\
I=15.8 \mu \mathrm{~A}
\end{gathered}
$$

Finally, with $V_{a}=0.65 \mathrm{~V}$,

$$
\begin{gathered}
I=\left(1.03 \times 10^{-14}\right) \times \exp \left(\frac{0.65}{0.026}\right)=7.42 \times 10^{-4} \mathrm{~A} \\
I=742 \mu \mathrm{~A}
\end{gathered}
$$

P. $6 \rightarrow$ Solution

If 90 percent of the current is to be due to the flow of electrons, we may write the ratio

$$
\frac{J_{n}}{J_{n}+J_{p}}=0.9 \rightarrow \frac{\frac{e D_{n} n_{p 0}}{L_{n}}}{\frac{e D_{n} n_{p 0}}{L_{n}}+\frac{e D_{p} p_{n 0}}{L_{p}}}=0.9
$$

Using the conversions we have been using in previous problems, namely

$$
\frac{e D_{n} n_{p 0}}{L_{n}}=\frac{e n_{i}^{2}}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}} ; \frac{e D_{p} p_{n 0}}{L_{p}}=\frac{e n_{i}^{2}}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}
$$

it follows that

$$
\begin{gathered}
\frac{J_{n}}{J_{n}+J_{p}}=\frac{\frac{e n x^{\prime}}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}}{\frac{e_{\lambda}^{2}}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{e n^{2}}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}}=0.9 \\
\therefore \frac{\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}}{\therefore \frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}}=0.9 \\
\therefore \frac{1}{\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}} \frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}}=0.9 \\
\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}
\end{gathered}
$$

$$
\therefore \frac{1}{1+\frac{N_{a}}{N_{d}} \sqrt{\frac{\tau_{n 0}}{\tau_{p 0}} \frac{D_{p}}{D_{n}}}}=0.9
$$

Denoting the ratio N_{a} / N_{d} by ζ and using the generic data for a silicon diode $\tau_{n 0}=5 \times 10^{-7} \mathrm{~s}, \tau_{p 0}=10^{-7} \mathrm{~s}, D_{n}=25 \mathrm{~cm}^{2} / \mathrm{s}$, and $D_{p}=10 \mathrm{~cm}^{2} / \mathrm{s}$, we obtain

$$
\begin{gathered}
\therefore \frac{1}{1+\zeta \sqrt{\frac{5.0 \times 10^{-7}}{10^{-7}} \times \frac{10}{25}}}=0.9 \\
\therefore \frac{1}{1+\zeta \times 1.41}=0.9 \\
\therefore 1=0.9 \times(1+1.41 \zeta) \\
\therefore 1=0.9+1.27 \zeta \\
\therefore \zeta=\frac{1-0.9}{1.27}=0.0787
\end{gathered}
$$

Finally,

$$
\frac{N_{d}}{N_{a}}=\zeta^{-1}=\frac{1}{0.0787}=12.7
$$

Thus, 90 percent of the current in the depletion region will be due to the flow of electrons insasmuch as the donor concentration in the n region is about 12.7 times greater than the acceptor concentration in the p region.

P. $7 \rightarrow$ Solution

If the ratio of electron current to total current must be 0.10 , we may write

$$
\begin{gathered}
\frac{J_{n}}{J_{n}+J_{p}}=0.1 \rightarrow \frac{\frac{e D_{n} n_{p 0}}{L_{n}}}{\frac{e D_{n} n_{p 0}}{L_{n}}+\frac{e D_{p} p_{n 0}}{L_{p}}}=0.1 \\
\therefore \frac{\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}}{\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}}=0.1
\end{gathered}
$$

Performing the same manipulations employed in Problem 6, we get

$$
\begin{gathered}
\frac{\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}}{\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}}=0.1 \rightarrow \frac{1}{1+\frac{N_{a}}{N_{d}} \sqrt{\frac{\tau_{n 0}}{\tau_{p 0}} \frac{D_{p}}{D_{n}}}}=0.1 \\
\therefore \frac{1}{1+\frac{N_{a}}{N_{d}} \sqrt{\frac{5.0 \times 10^{-7}}{5.0 \times 10^{-7}} \times \frac{10}{25}}}=0.1 \\
\therefore \frac{1}{1+\zeta \times 0.632}=0.1 \\
\therefore 1=0.1+0.0632 \zeta \\
\therefore \frac{N_{a}}{N_{d}}=\frac{1-0.1}{0.0632}=14.2
\end{gathered}
$$

Observing that the current density $J=20 \mathrm{~A} / \mathrm{cm}^{2}$, we can determine the reverse-saturation CD as

$$
J=J_{s} \exp \left(\frac{V_{D}}{V_{T}}\right) \rightarrow J_{s}=\frac{J}{\exp \left(V_{D} / V_{T}\right)}
$$

$$
\therefore J_{s}=\frac{20}{\exp (0.65 / 0.026)}=2.78 \times 10^{-10} \mathrm{~A} / \mathrm{cm}^{2}
$$

Recalling another expression for J_{s} (equation 4), we obtain

$$
\begin{gathered}
J_{s}=e n_{i}^{2}\left(\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}\right)=2.78 \times 10^{-10} \\
\therefore\left(1.60 \times 10^{-19}\right) \times\left(1.5 \times 10^{10}\right)^{2} \times\left(\frac{1}{N_{a}} \sqrt{\frac{25}{5.0 \times 10^{-7}}}+\frac{1}{N_{d}} \sqrt{\frac{10}{5.0 \times 10^{-7}}}\right)=2.78 \times 10^{-10} \\
\therefore \frac{1}{N_{a}} \sqrt{\frac{25}{5.0 \times 10^{-7}}}+\frac{1}{N_{d}} \sqrt{\frac{10}{5.0 \times 10^{-7}}}=\frac{2.78 \times 10^{-10}}{\left(1.60 \times 10^{-19}\right) \times\left(1.5 \times 10^{10}\right)^{2}} \\
\therefore \frac{7.07 \times 10^{3}}{N_{a}}+\frac{4.47 \times 10^{3}}{N_{d}}=7.72 \times 10^{-12}
\end{gathered}
$$

From (I), $N_{a}=14.2 N_{d}$; it follows that

$$
\begin{gathered}
\frac{7.07 \times 10^{3}}{14.2 N_{d}}+\frac{4.47 \times 10^{3}}{N_{d}}=7.72 \times 10^{-12} \rightarrow \frac{498}{N_{d}}+\frac{4.47 \times 10^{3}}{N_{d}}=7.72 \times 10^{-12} \\
\therefore N_{d}=\frac{\left(498+4.47 \times 10^{3}\right)}{7.72 \times 10^{-12}}=6.44 \times 10^{14} \mathrm{~cm}^{-3}
\end{gathered}
$$

and

$$
N_{a}=14.2 \times\left(6.44 \times 10^{14}\right)=9.15 \times 10^{15} \mathrm{~cm}^{-3}
$$

P. $8 \Rightarrow$ Solution

First, note that the excess electron concentration is given by equation 5 ,

$$
\delta n_{p}=n_{p}-n_{p 0}=n_{p 0}\left[\exp \left(\frac{V_{a}}{V_{T}}\right)-1\right] \exp \left(\frac{-x}{L_{n}}\right)
$$

where x is the distance from the center of the $p n$ junction. To establish the number of excess electrons, we integrate δn_{p} from $x=0$ to $x \rightarrow \infty$ and multiply the result by the cross-sectional area A of the junction,

$$
N_{p}=A \int_{0}^{\infty} \delta n_{p} d x
$$

The improper integral in question is easy to evaluate,

$$
\int_{0}^{\infty} \delta n_{p} d x=n_{p 0}\left[\exp \left(\frac{V_{a}}{V_{T}}\right)-1\right] \underbrace{\int_{0}^{\infty} \exp \left(\frac{-x}{L_{n}}\right)}_{=L_{n}} d x=n_{p 0} L_{n}\left[\exp \left(\frac{V_{a}}{V_{T}}\right)-1\right]
$$

so that

$$
\begin{aligned}
& N_{p}=A n_{p 0} L_{n}\left[\exp \left(\frac{V_{a}}{V_{T}}\right)-1\right]=\frac{A n_{i}^{2} \sqrt{D_{n} \tau_{n 0}}}{N_{a}}\left[\exp \left(\frac{V_{a}}{V_{T}}\right)-1\right] \\
&\therefore N_{p}=\underbrace{\frac{10^{-3} \times\left(1.5 \times 10^{10}\right)^{2} \times \sqrt{25 \times\left(1.0 \times 10^{-6}\right)}}{8.0 \times 10^{15}}}_{=0.141} \times \exp \left(\frac{0.3}{0.026}\right)-1] \\
& \therefore N_{p}=15,100 e^{-}
\end{aligned}
$$

Repeating for a voltage of 0.4 V , the number of excess electrons is

$$
N_{p}=0.141\left[\exp \left(\frac{0.4}{0.026}\right)-1\right]=677,000 e^{-}
$$

With $V_{a}=0.5 \mathrm{~V}$, the number of excess electrons is

$$
N_{p}=0.141\left[\exp \left(\frac{0.5}{0.026}\right)-1\right]=31.7 \text { million } e^{-}
$$

P. $9 \Rightarrow$ Solution

Problem 9.1: The excess hole concentration is expressed as (equation 6)

$$
\delta p_{n}=p_{n}-p_{n 0}=p_{n 0}\left[\exp \left(\frac{V_{a}}{V_{T}}\right)-1\right] \exp \left(-\frac{x}{L_{p}}\right)
$$

Here, $p_{n 0}$, the thermal-equilibrium minority carrier hole concentration in the n region, is given by

$$
p_{n 0}=\frac{n_{i}^{2}}{N_{d}}=\frac{\left(1.5 \times 10^{10}\right)^{2}}{10^{16}}=2.25 \times 10^{4} \mathrm{~cm}^{-3}
$$

while the diffusion length L_{p} is determined as

$$
L_{p}=\sqrt{D_{p} \tau_{p 0}}=\sqrt{8 \times\left(0.01 \times 10^{-6}\right)}=2.83 \times 10^{-4} \mathrm{~cm}
$$

so that

$$
\begin{aligned}
\delta p_{n} & =\left(2.25 \times 10^{4}\right) \times\left[\exp \left(\frac{0.610}{0.026}\right)-1\right] \times \exp \left(-\frac{x}{2.83 \times 10^{-4}}\right) \\
& \therefore \delta p_{n}(x)=3.48 \times 10^{14} \exp \left(\frac{-x}{2.83 \times 10^{-4}}\right)\left[\mathrm{cm}^{-3}\right]
\end{aligned}
$$

Problem 9.2: The hole diffusion current density J_{p} at a distance x from the center of the device is

$$
\begin{gathered}
J_{p}(x)=-e D_{p} \frac{d\left(\delta p_{n}\right)}{d x}=-e D_{p} \frac{d}{d x}\left[3.48 \times 10^{14} \exp \left(\frac{-x}{2.83 \times 10^{-4}}\right)\right] \\
\therefore J_{p}(x)=-e D_{p} \times 3.48 \times 10^{14} \times\left(-\frac{1}{2.83 \times 10^{-4}}\right) \times \exp \left(\frac{-x}{2.83 \times 10^{-4}}\right) \\
\therefore J_{p}(x)=1.57 \exp \left(\frac{-x}{2.83 \times 10^{-4}}\right)
\end{gathered}
$$

so that, at $x=3 \times 10^{-4} \mathrm{~cm}$,

$$
J_{p}\left(3 \times 10^{-4}\right)=1.57 \exp \left(\frac{-3 \times 10^{-4}}{2.83 \times 10^{-4}}\right)=0.544 \mathrm{~A} / \mathrm{cm}^{2}
$$

Problem 9.3: For an ideal pn junction, the sum of electron and hole current densities at a distance x from the center of the junction must be constant. Accordingly, we may write

$$
J_{p}(x)+J_{n}(x)=J_{p 0}+J_{n 0}
$$

where $J_{n}(x)$ is the current density of electrons at a distance x from the center of the junction and $J_{p 0}$ and $J_{n 0}$ are the current densities at $x=0$. Solving for $J_{n}(x)$,

$$
J_{n}(x)=J_{p 0}+J_{n 0}-J_{p}(x)
$$

We already have $J_{p}(x) . J_{p o}$ is given by

$$
\begin{gathered}
J_{p 0}=\frac{e D_{p} p_{n 0}}{L_{p}} \exp \left(\frac{V_{a}}{V_{T}}\right) \\
J_{p 0}=\frac{\left(1.6 \times 10^{-19}\right) \times 8 \times\left(2.25 \times 10^{4}\right)}{2.83 \times 10^{-4}} \exp \left(\frac{0.610}{0.026}\right)=1.57 \mathrm{~A} / \mathrm{cm}^{2}
\end{gathered}
$$

Likewise, the electron current density at the origin, $J_{n 0}$, is stated as

$$
J_{n 0}=\frac{e D_{n} n_{p 0}}{L_{n}} \exp \left(\frac{V_{a}}{V_{T}}\right)
$$

where $n_{p 0}$, the thermal-equilibrium minority carrier electron concentration in the p region, is given by

$$
n_{p 0}=\frac{n_{i}^{2}}{N_{d}}=\frac{\left(1.5 \times 10^{10}\right)^{2}}{5 \times 10^{16}}=4.5 \times 10^{3} \mathrm{~cm}^{-3}
$$

while the diffusion length L_{n} is determined as

$$
L_{n}=\sqrt{D_{n} \tau_{n 0}}=\sqrt{23 \times\left(0.05 \times 10^{-6}\right)}=1.07 \times 10^{-3} \mathrm{~cm}
$$

giving

$$
J_{n 0}=\frac{\left(1.6 \times 10^{-19}\right) \times 23 \times\left(4.5 \times 10^{3}\right)}{1.07 \times 10^{-3}} \exp \left(\frac{0.610}{0.026}\right)=0.239 \mathrm{~A} / \mathrm{cm}^{2}
$$

Substituting our results into (I), we have, with $x=3 \times 10^{-4} \mathrm{~cm}$,

$$
\begin{gathered}
J_{n}\left(3 \times 10^{-4}\right)=J_{p 0}+J_{n 0}-J_{p}\left(3 \times 10^{-4}\right) \\
\therefore J_{n}\left(3 \times 10^{-4}\right)=1.57+0.239-0.544=1.27 \mathrm{~A} / \mathrm{cm}^{2}
\end{gathered}
$$

P. $10 \Rightarrow$ Solution

Problem 10.1: The reverse-saturation current is given by a modified form of equation 4,

$$
I_{s}=\operatorname{Aen}_{i}^{2}\left[\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}\right]
$$

Here, we may take the term in brackets and the $A e$ product as constants, but the intrinsic carrier concentration n_{i} varies sensibly with temperature. We thus restate I_{s} as

$$
I_{s}=\operatorname{Aen}_{i}^{2}\left[\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}\right]=C_{1} n_{i}^{2}
$$

Recall that n_{i} is expressed as

$$
n_{i}^{2}=N_{c} N_{v} \exp \left(-\frac{E_{g}}{k T}\right)
$$

where N_{c} is the effective density of states function in the conduction band, N_{v} is the effective density of states function in the valence band, E_{g} is the bandgap energy, k is Boltzmann's constant, and T is temperature. N_{c} and N_{v} may be taken as functions of $T^{3 / 2}$, so their product must be a function of the cube of temperature; thus, writing $N_{c o}$ and $N_{v o}$ as the density of states functions at the reference temperature of 300 K , we have

$$
\begin{gathered}
I_{s}=C_{1} n_{i}^{2}=C_{1} N_{c 0} N_{v 0}\left(\frac{T}{300}\right)^{3} \exp \left(-\frac{E_{g}}{k T}\right)=C_{1} \times \frac{N_{c 0} N_{v 0}}{300^{3}} \times T^{3} \exp \left(-E_{g} / k T\right) \\
\therefore I_{s}=C_{1} C_{2} T^{3} \exp \left(-E_{g} / k T\right) \\
\therefore I_{s}=C T^{3} \exp \left(-\frac{E_{g}}{k T}\right)
\end{gathered}
$$

Problem 10.2: Let $I_{s, 1}$ denote the reverse-saturation current at the initial temperature $T_{1}=300 \mathrm{~K}$ and $\mathrm{I}_{s, 2}$ denote the RSC at the final temperature $T_{2}=$ 400 K . Using the relation derived above, we have the ratio

$$
\frac{I_{s, 2}}{I_{s, 1}}=\frac{\not T_{2}^{3} \exp \left(-\frac{E_{g}}{k T_{2}}\right)}{\nless T_{1}^{3} \exp \left(-\frac{E_{g}}{k T_{1}}\right)}=\left(\frac{T_{2}}{T_{1}}\right)^{3} \exp \left[-\frac{E_{g}}{k T_{2}}-\left(-\frac{E_{g}}{k T_{1}}\right)\right]=\left(\frac{T_{2}}{T_{1}}\right)^{3} \exp \left[E_{g}\left(\frac{1}{k T_{1}}-\frac{1}{k T_{2}}\right)\right]
$$

Taking $k=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$ as Boltzmann's constant, we have

$$
\begin{aligned}
& \frac{1}{k T_{1}}=\frac{1}{\left(8.63 \times 10^{-5}\right) \times 300}=38.6 \\
& \frac{1}{k T_{2}}=\frac{1}{\left(8.63 \times 10^{-5}\right) \times 400}=29.0
\end{aligned}
$$

so that, for germanium ($E_{g}=0.66 \mathrm{eV}$),

$$
\frac{I_{s, 2}}{I_{s, 1}}=\left(\frac{400}{300}\right)^{3} \exp [0.66 \times(38.6-29.0)]=1340
$$

while for silicon ($E_{g}=1.12 \mathrm{eV}$),

$$
\frac{I_{s, 2}}{I_{s, 1}}=\left(\frac{400}{300}\right)^{3} \exp [1.12 \times(38.6-29.0)]=117,000
$$

P. $11 \Rightarrow$ Solution

Evoking the ideal-diode equation and noting that the ratio of I_{f} to I_{s} is to be no greater than 20,000, we see that the thermal voltage is limited to

$$
\begin{gathered}
I_{f}=I_{s} \exp \left(\frac{V_{a}}{V_{T}}\right) \rightarrow\left|\frac{I_{f}}{I_{s}}\right|=\exp \left(\frac{V_{a}}{V_{T}}\right) \\
\therefore V_{T}=\frac{V_{a}}{\ln \left|I_{f} / I_{s}\right|} \\
\therefore V_{T}=\frac{0.50}{\ln |20,000|}=0.0505 \mathrm{~V}
\end{gathered}
$$

If a thermal voltage of 0.026 V corresponds to a temperature of 300 K , a V_{T} of 0.0505 V pertains to a temperature T_{1} such that

$$
\frac{0.026}{300}=\frac{0.0505}{T_{1}} \rightarrow T_{1}=\frac{300 \times 0.0505}{0.026}=583 \mathrm{~K}
$$

As an additional restriction, the reverse-biased current I_{s} is to be no greater than $1.2 \mu \mathrm{~A}$. We first evoke the equation for I_{s} and solve for the squared intrinsic carrier concentration n_{i}^{2},

$$
\begin{gathered}
I_{s}=\operatorname{Aen}_{i}^{2}\left[\frac{1}{N_{a}} \sqrt{\frac{D_{n}}{\tau_{n 0}}}+\frac{1}{N_{d}} \sqrt{\frac{D_{p}}{\tau_{p 0}}}\right] \\
\therefore 1.2 \times 10^{-6}=\left(5.0 \times 10^{-4}\right) \times\left(1.60 \times 10^{-19}\right) \times n_{i}^{2} \times\left[\frac{1}{4.0 \times 10^{15}} \sqrt{\frac{25}{5.0 \times 10^{-7}}}+\frac{1}{2.0 \times 10^{17}} \sqrt{\frac{10}{10^{-7}}}\right] \\
\therefore 1.2 \times 10^{-6}=1.45 \times 10^{-34} n_{i}^{2} \\
\therefore n_{i}^{2}=\frac{1.2 \times 10^{-6}}{1.45 \times 10^{-34}}=8.28 \times 10^{27}
\end{gathered}
$$

Now, using the definition of n_{i}^{2} and recalling that the product of density of states functions varies with the cube of temperature, we may write

$$
\begin{gathered}
n_{i}^{2}=N_{c} N_{v} \exp \left(-\frac{E_{g}}{k T}\right)=N_{c 0} N_{v 0}\left(\frac{T}{300}\right)^{3} \exp \left(-\frac{E_{g}}{k T}\right)=8.28 \times 10^{27} \\
\therefore n_{i}^{2}=\left(2.8 \times 10^{19}\right) \times\left(1.04 \times 10^{19}\right) \times\left(\frac{T}{300}\right)^{3} \exp \left[-\frac{1.12}{\left(8.62 \times 10^{-5}\right) \times T}\right]=8.28 \times 10^{27} \\
\therefore n_{i}^{2}=1.08 \times 10^{31} T^{3} \exp \left(-1.30 \times 10^{4} T^{-1}\right)=8.28 \times 10^{27}
\end{gathered}
$$

The equation above is transcendental in nature and requires numerical methods to be solved. One way to go is to apply MATLAB's fzero function:

```
function y = intrinsic(T)
y = 1.08E31*T^3*exp (-1.3E4*T^-1)-8.28E27;
>> fun = @intrinsic;
x0 = 400;
z = fzero(fun,x0)
```

This returns $T_{2} \approx 503 \mathrm{~K}$. Gleaning our results, observe that the first specification limits the temperature of the diode to $T_{1}=583 \mathrm{~K}$, while the second specification limits the temperature of the device to $T_{2}=503 \mathrm{~K}$. The lower temperature governs, therefore the reverse-bias current limit of $1.2 \mu \mathrm{~A}$ is the limiting factor and the diode is to operate at a temperature no greater than 503 K .

P. $12 \rightarrow$ Solution

The diode voltage V_{D} and current I_{D} are related by the ideal diode equation as

$$
\begin{equation*}
I_{D}=I_{S}\left[e^{\left(\frac{V_{D}}{V_{T}}\right)}-1\right] \rightarrow I_{D}=\left(30 \times 10^{-9}\right) \times\left[e^{\left(\frac{V_{D}}{0.026}\right)}-1\right] \tag{I}
\end{equation*}
$$

If a dc voltage $V_{\text {PS }}=1.5 \mathrm{~V}$ is applied to the circuit with resistance $R=10$ $M \Omega$, we can write Kirchhoff's voltage law for the diode voltage V_{D} and current I_{D},

$$
\begin{equation*}
V_{P S}=I_{D} R+V_{D} \rightarrow 1.5=\left(10 \times 10^{6}\right) I_{D}+V_{D} \tag{II}
\end{equation*}
$$

Equations (I) and (II) constitute a system of two nonlinear equations with two unknowns, I_{D} and V_{D}. Substituting (I) in (II) brings to

$$
1.5=\left(10 \times 10^{6}\right) \times\left\{\left(30 \times 10^{-9}\right) \times\left[e^{\left(\frac{V_{D}}{0.026}\right)}-1\right]\right\}+V_{D}
$$

This equation can be solved with MATLAB's fzero command,

```
function y = diode(VD)
y = 1.5 - 10E6*30E-9*(exp (VD/0.026)-1) - VD;
>> fun = @diode;
x0 = 0.01;
z = fzero(fun,x0)
```

This returns $V_{D}=0.0459 \mathrm{~V}$. Substituting in (I) yields the diode current I_{D},

$$
I_{D}=\left(30 \times 10^{-9}\right) \times\left[e^{(0.0459 / 0.026)}-1\right]=1.45 \times 10^{-7} \mathrm{~A}=0.145 \mu \mathrm{~A}
$$

P. $13 \rightarrow$ Solution

Refer to the figure below.

Noting that the diode below the output node is subjected to a potential difference V_{0}, which we prescribe as 0.6 V , current I_{2} is calculated as

$$
I_{2}=I_{S} \exp \left(\frac{V_{o}}{V_{T}}\right)=\left(2 \times 10^{-13}\right) \times \exp \left(\frac{0.6}{0.026}\right)=0.0021 \mathrm{~A}=2.1 \mathrm{~mA}
$$

The $1-k \Omega$ resistor is subjected to the same voltage V_{o} and conducts a current I_{R} such that

$$
I_{R}=\frac{V_{o}}{1 \mathrm{k} \Omega}=\frac{0.6}{10^{3}}=0.6 \mathrm{~mA}
$$

Using Kirchhoff's current law, the current I_{1} flowing through the two in-series diodes is

$$
I_{1}=I_{R}+I_{2}=0.6+2.1=2.7 \mathrm{~mA}
$$

The voltage V_{D} in either of these two diodes is then

$$
V_{D}=V_{T} \ln \left(\frac{I_{1}}{I_{S}}\right)=0.026 \times \ln \left(\frac{2.7 \times 10^{-3}}{2 \times 10^{-13}}\right)=0.606 \mathrm{~V}
$$

Using Kirchhoff's voltage law, the input voltage V_{l} is calculated to be

$$
\begin{aligned}
& V_{I}-V_{D}-V_{D}=V_{o} \rightarrow V_{I}=V_{o}+2 V_{D} \\
& \therefore V_{I}=0.6+2 \times 0.606=1.81 \mathrm{~V}
\end{aligned}
$$

P. $14 \rightarrow$ Solution

Problem 14.1: If the current flowing through the diode is $I=0.5 \mathrm{~mA}$, the diode voltage V_{D} is determined to be

$$
V_{D}=V_{T} \ln \left(\frac{I}{I_{S}}\right)=0.026 \times \ln \left(\frac{0.5 \times 10^{-3}}{5 \times 10^{-12}}\right)=0.479 \mathrm{~V}
$$

Applying Kirchhoff's voltage law, we can determine the supply voltage V,

$$
\begin{gathered}
5-R I-V_{D}-V=0 \rightarrow V=5-R I-V_{D} \\
\therefore V=5-\left(4.7 \times 10^{3}\right) \times\left(0.5 \times 10^{-3}\right)-0.479=2.17 \mathrm{~V}
\end{gathered}
$$

Finally, the power dissipated in the diode is

$$
P_{D}=V_{D} I=0.479 \times\left(0.5 \times 10^{-3}\right)=0.240 \mathrm{~mW}
$$

Problem 14.2: If the cut-in voltage of the diode is 0.65 V and the power dissipated is to be no greater than 0.20 mW , current I_{0} flowing through the loop is restricted to

$$
P_{D}=V_{\gamma} I_{D} \rightarrow I_{D}=\frac{P_{D}}{V_{\gamma}}=\frac{0.20 \times 10^{-3}}{0.65}=0.308 \mathrm{~mA}
$$

Applying Kirchhoff's voltage law to the loop yields

$$
5-R I-0.65-1.7=0 \rightarrow R=\frac{5-0.65-1.7}{0.308 \times 10^{-3}}=8600 \Omega=8.60 \mathrm{k} \Omega
$$

P. $15 \Rightarrow$ Solution

In circuit (a), the diode is conducting and contributes to the loop with an amount equal to the cut-in voltage V_{γ}. Applying KVL, we obtain

$$
\begin{gathered}
5-10,000 I_{D}-V_{\gamma}+5=0 \rightarrow I_{D}=\frac{10-V_{\gamma}}{10 \mathrm{k}} \\
\therefore I_{D}=\frac{10-0.7}{10 \mathrm{k}}=0.94 \mathrm{~mA}
\end{gathered}
$$

Voltage V_{0} is then

$$
0-5+V_{\gamma}=V_{o} \rightarrow V_{o}=-5+0.6=-4.4 \mathrm{~V}
$$

Circuit (b) is simply a rearrangement of circuit (a). Current I_{0} continues to be 0.94 mA and, using KVL, voltage V_{o} is determined to be

$$
0+5-V_{\gamma}=V_{O} \rightarrow V_{o}=5-0.6=+4.4 \mathrm{~V}
$$

In circuit (c), notice the orientation of the power supplies relatively to the diode; the diode is reverse biased, hence $I_{D}=0$ and $V_{D}=-10 \mathrm{~V}$.

P. $16 \rightarrow$ Solution

In the mildest configuration for this circuit, a voltage equal to the cut-in value $V_{\gamma}=0.7 \mathrm{~V}$ appears in the diode and the diode conducts a current $I_{D, \min }=2 \mathrm{~mA}$. The current flowing through resistance R_{2}, which is in parallel to the diode, is

$$
I_{2}=\frac{0.7}{R_{2}}
$$

With the voltage supply set to its minimum value of 5 V , the current through resistor R_{1} is determined as

$$
I_{1}=\frac{5-0.7}{R_{1}}
$$

From Kirchhoff's current law,

$$
I_{1}=I_{2}+I_{D} \rightarrow \frac{4.3}{R_{1}}=\frac{0.7}{R_{2}}+2 \text { (I) }
$$

Now, when the circuit is set to its most extreme conditions, the voltage supply feeds 10 V to the circuit and the diode, which is to dissipate a power no greater than 10 mW , conducts a current $I_{D, \text { max }}$ such that

$$
P_{\max }=I_{D, \max } V_{D} \rightarrow I_{D, \max }=\frac{P_{\max }}{V_{D}}=\frac{10}{0.7}=14.3 \mathrm{~mA}
$$

Resistor R_{2} conducts a current $I_{2}=0.7 / R_{2}$, while R_{1} receives $I_{1}=(10-$ $0.7) / R_{1}$. Applying KCL a second time and substituting from (I), we find that

$$
\begin{gathered}
I_{1}=I_{2}+I_{D} \rightarrow \frac{9.3}{R_{1}}=\frac{0.7}{R_{2}}+14.3 \\
\therefore \frac{9.3}{R_{1}}=\left(\frac{4.3}{R_{1}}-2\right)+14.3 \\
\therefore \frac{5}{R_{1}}=12.3 \\
\therefore R_{1}=\frac{5}{12.3}=0.407 \mathrm{k} \Omega=407 \Omega
\end{gathered}
$$

Substituting in (I) and solving for R_{2}, we get

$$
\begin{gathered}
\frac{4.3}{R_{1}}=\frac{0.7}{R_{2}}+2 \rightarrow \frac{4.3}{0.407}=\frac{0.7}{R_{2}}+2 \\
\therefore 10.6-2=\frac{0.7}{R_{2}} \\
\therefore R_{2}=\frac{0.7}{8.6}=0.0814 \mathrm{k} \Omega=81.4 \Omega
\end{gathered}
$$

Resistances R_{1} and R_{2} have been specified.

P. $17 \rightarrow$ Solution

Let I_{R} denote the current flowing through resistor R_{2}. Applying Kirchhoff's current law and noting that $I_{D 1}=I_{D 2} / 2$ as prescribed, we get

$$
\begin{gathered}
I_{D 2}=I_{R}+I_{D 1} \rightarrow 2 I_{D 1}=I_{R}+I_{D 1} \\
\therefore I_{D 1}=I_{R} \text { (I) }
\end{gathered}
$$

Resistor R_{2} is in series with diode D_{1} and hence withstands a potential difference $V_{\gamma}=0.65 \mathrm{~V}$. The corresponding current is

$$
I_{R}=\frac{0.65}{R_{2}}=\frac{0.65}{10^{3}}=0.65 \mathrm{~mA}
$$

so that, using (I),

$$
I_{D 1}=I_{R}=0.65 \mathrm{~mA}
$$

Then, recalling that $I_{D 2}=2 I_{D 1}$,

$$
I_{D 2}=2 \times 0.65=1.3 \mathrm{~mA}
$$

If 1.3 milliamperes flow through resistor R_{1}, the corresponding resistance must be, accounting for the voltages that appear in all three diodes,

$$
R_{\mathrm{l}}=\frac{5-0.65-0.65-0.65}{1.3 \times 10^{-3}}=2350 \Omega=2.35 \mathrm{k} \Omega
$$

P. $18 \rightarrow$ Solution

Circuit (a): The current flowing through diode D_{1} is initially given by

$$
I_{D 1}=\frac{V_{i n}-V_{\gamma}}{R_{1}}=\frac{2.4-0.8}{10^{3}}=1.6 \mathrm{~mA}
$$

Now, for calculation of voltage changes in the small-signal model, diode D_{1} can be replaced with a linear resistor r_{d} given by the ratio of the device's thermal voltage V_{T} to the current flowing through it; mathematically,

$$
r_{d}=\frac{V_{T}}{I_{D 1}}=\frac{0.026}{1.6 \times 10^{-3}}=16.3 \Omega
$$

Finally, using the voltage divider rule,

$$
\Delta V_{\text {out }}=\frac{R_{1}}{r_{d}+R_{1}} \Delta V_{\text {in }}=\frac{1000}{16.3+1000} \times(2500-2400)=98.4 \mathrm{mV}
$$

Circuit (b): Firstly, the current flowing through either diode is given by

$$
I_{D 1}=I_{D 2}=\frac{V_{i n}-2 V_{\gamma}}{R_{1}}=\frac{2.4-2 \times 0.8}{10^{3}}=0.8 \mathrm{~mA}
$$

For voltage change calculation purposes, the diodes can be replaced with linear resistors $r_{d 1}$ and $r_{d 2}$ such that

$$
r_{d 1}=r_{d 2}=\frac{V_{T}}{I_{D 1}}=\frac{V_{T}}{I_{D 2}}=\frac{0.026}{0.8 \times 10^{-3}}=32.5 \Omega
$$

Lastly,

$$
\Delta V_{\text {out }}=\frac{r_{d 2}+R_{1}}{r_{d 1}+r_{d 2}+R_{1}} \Delta V_{\text {in }}=\frac{1032.5}{32.5+32.5+1000} \times(2500-2400)=96.9 \mathrm{mV}
$$

Circuit (c): This is a slightly modified version of circuit (c). The current flowing through either diode continues to be

$$
I_{D 1}=I_{D 2}=0.8 \mathrm{~mA}
$$

while resistances $r_{d 1}$ and $r_{d 2}$ remain

$$
r_{d 1}=r_{d 2}=32.5 \Omega
$$

Now, noting that resistor R_{1} has been displaced from the lower branch of the circuit to the segment that joins the $V_{\text {in }}$ node to the $V_{\text {out }}$ node, it no longer appears in the numerator of the voltage divider rule,

$$
\Delta V_{\text {out }}=\frac{r_{d 2}}{r_{d 1}+r_{d 2}+R_{1}} \Delta V_{\text {in }}=\frac{32.5}{32.5+32.5+1000} \times(2500-2400)=3.05 \mathrm{mV}
$$

Circuit (d): In this case, the current flowing through diode D_{2} equals the current stemming directly from the $V_{\text {in }}$ node minus the amount deviated to resistor R_{2},

$$
I_{D 2}=\frac{V_{i n}-V_{D}}{R_{1}}-\frac{V_{D}}{R_{2}}=\frac{2.4-0.8}{10^{3}}-\frac{0.8}{2.0 \times 10^{3}}=1.2 \mathrm{~mA}
$$

The diode can be replaced with a resistance $r_{d 2}$ given by

$$
r_{d 2}=\frac{V_{T}}{I_{D 2}}=\frac{0.026}{1.2 \times 10^{-3}}=21.7 \Omega
$$

Finally, we apply the voltage divider rule to obtain

$$
\Delta V_{\text {out }}=\frac{R_{2} \| r_{d 2}}{R_{1}+R_{2} \| r_{d 2}} \Delta V_{\text {in }}=\frac{\frac{2000 \times 21.7}{2000+21.7}}{1000+\frac{2000 \times 21.7}{2000+21.7}} \times(2500-2400)=2.10 \mathrm{mV}
$$

P. $19 \rightarrow$ Solution

Problem 19.1: Per the problem statement, the input voltage is a sinusoidal waveform with $60-\mathrm{Hz}$ frequency; from the circuit diagram, we see that the diode is supplied with a dc voltage $V_{d c}=2 \mathrm{~V}$. It follows that the input sine wave will peak at a voltage V_{m} such that

$$
\begin{gathered}
V_{d c}=0.318 V_{m} \rightarrow V_{m}=\frac{V_{d c}}{0.318} \\
\therefore V_{m}=\frac{2.0}{0.318}=6.28 \mathrm{~V}
\end{gathered}
$$

The input v_{i} is sketched below.

Now, as the diode is functioning as a half-wave rectifier, it will respond to v_{i} by suppressing the first half-period of the input sine wave and reproducing the second.

The average current crossing the diode is

$$
I_{m}=\frac{V_{m}}{R}=\frac{6.28}{2000}=3.14 \mathrm{~mA}
$$

The diode conducts for the positive half-cycle, leading to the following current profile,

Problem 19.2: In this case, the input voltage will peak at a new value V_{m}^{\prime} such that

$$
\begin{gathered}
V_{\mathrm{dc}} \approx 0.318\left(V_{m}^{\prime}-V_{K}\right) \rightarrow 2=0.318\left(V_{m}^{\prime}-0.7\right) \\
\therefore 2=0.318 V_{m}^{\prime}-0.223 \\
\therefore V_{m}^{\prime}=\frac{2+0.223}{0.318}=6.98 \mathrm{~V}
\end{gathered}
$$

The input voltage is sketched below.

The voltage output profile is similar to the one obtained for the ideal diode, but differs from it in that the positive half-cycle will retain a positive plateau of $V_{K}=0.7 \mathrm{~V}$ that the rectifier cannot suppress.

Lastly, the current profile will peak at an updated average value i_{m}^{\prime} given by

$$
i_{m}^{\prime}=\frac{V_{m}^{\prime}}{R}=\frac{6.99}{2000}=3.50 \mathrm{~mA}
$$

The waveform is sketched below.

Problem 19.3: The input waveform v_{i} remains unchanged relative to Problem 19.1.

The load R_{L} sees a voltage waveform with a positive half-cycle only, as illustrated below.

The peak current flowing through R_{L} is

$$
i_{L, \max }=\frac{6.28 \mathrm{~V}}{10 \mathrm{k} \Omega}=0.628 \mathrm{~mA}
$$

The i_{L}, waveform is shown in continuation.

Now, noting that the maximum current through the $2-k \Omega$ resistor is $i_{2, \text { max }}=6.28 / 2000=3.14 \mathrm{~mA}$, the maximum current $i_{d, \text { max }}$ flowing in the diode follows as

$$
i_{D, \max }=i_{L, \max }+i_{2, \max }=0.628+3.14=3.77 \mathrm{~mA}
$$

The pertaining waveform is shown below.

P. $20 \Rightarrow$ Solution

A silicon diode will conduct when $v_{o}=0.7 \mathrm{~V}$. Using the voltage divider rule and solving for input voltage v_{i}, we obtain

$$
v_{o}=0.7=\frac{1.0 \times v_{i}}{1.0+1.0} \rightarrow v_{i}=1.4 \mathrm{~V}
$$

Accordingly, for $v_{i} \geq 1.4 \mathrm{~V}$ the diode is "on" and $v_{o}=0.7 \mathrm{~V}$; if $v_{i} \leq 1.4 \mathrm{~V}$, the diode is open and the level of v_{o} is determined by the voltage divider rule,

$$
v_{o}=\frac{1.0 \times v_{i}}{1.0+1.0}=0.5 v_{i}
$$

With $v_{i}=-10 \mathrm{~V}$, the peak output voltage is then

$$
v_{o}=0.5 \times(-10)=-5.0 \mathrm{~V}
$$

The v_{o} waveform is sketched below.

When $v_{o}=0.7 \mathrm{~V}$, the maximum voltage across the resistor that receives current i_{R} is

$$
v_{R_{\max }}=v_{i_{\max }}-0.7 \rightarrow v_{R_{\max }}=10-0.7=9.3 \mathrm{~V}
$$

and corresponds to a peak current $i_{R_{\max }}$ such that

$$
I_{R_{\max }}=\frac{9.3}{1 \mathrm{k} \Omega}=9.3 \mathrm{~mA}
$$

The maximum reverse current is, in turn,

$$
I_{\max }(\text { reverse })=\frac{-10}{1 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=-5 \mathrm{~mA}
$$

The i_{R} waveform is sketched below.

P. $21 \Rightarrow$ Solution

Problem 21.1: Noting that "turn-on" voltage of a silicon diode is 0.7 V and the specified power rating is 14 mW , current I_{D} is determined as

$$
I_{D}=\frac{14 \times 10^{-3}}{0.7}=20 \mathrm{~mA}
$$

Problem 21.2: If each of the two diodes is conducting a current of 20 mA , the maximum current $I_{\max }$ is found as

$$
I_{\max }=2 I_{D}=2 \times 20=40 \mathrm{~mA}
$$

Problem 21.3: We aim to determine the largest current through each diode, which should occur when the input voltage waveform reaches its peak value of 160 V . The two resistances of $4.7 \mathrm{k} \Omega$ and $68 \mathrm{k} \Omega$ can be replaced with an equivalent resistance R given by

$$
R=\left(4.7 \times 10^{3}\right) \|\left(68 \times 10^{3}\right)=4.40 \mathrm{k} \Omega
$$

The maximum voltage across this equivalent resistance equals 160 V minus the 0.7 V that appears in the two-diode arrangement; that is,

$$
v_{\max }=160-0.7=159.3 \mathrm{~V}
$$

The corresponding current is

$$
I_{\max }=\frac{159.3}{4400}=0.0362 \mathrm{~A}=36.2 \mathrm{~mA}
$$

Because the two diodes are identical and in parallel, each one receives a current I_{d} given by

$$
I_{d}=\frac{36.2}{2}=18.1 \mathrm{~mA}
$$

Note that this current is lower than the $20-\mathrm{mA}$ current rating obtained in Part 1, which indicates that the two diodes would operate safely even at the peak value of the input voltage waveform.

Operating the circuit with a single diode will cause one of the diodes to conduct a current of 36.2 mA at the peak of the input voltage waveform; since this current far exceeds the $20-\mathrm{mA}$ current rating obtained in Part 1 , the diode would be damaged.

P. $22 \Rightarrow$ Solution

Problem 22.1: Using the amplitude of the rms sinusoidal input, we obtain the average voltage

$$
V_{m}=\sqrt{2} V(\mathrm{rms})=\sqrt{2} \times 120=169.7 \mathrm{~V}
$$

The voltage across the load, accounting for the silicon $\left(V_{K}=0.7 \mathrm{~V}\right)$ diodes, is

$$
V_{L_{m}}=V_{m}-2 V_{K}=169.7-2 \times 0.7=168.3 \mathrm{~V}
$$

Converting this result to a dc quantity,

$$
V_{d c} \approx 0.636 V_{L_{m}}=0.636 \times 168.3=107.04 \mathrm{~V}
$$

Problem 22.2: The peak inverse voltage is given by

$$
\mathrm{PIV}=V_{L_{m}}+V_{K}=168.3+0.7=169.0 \mathrm{~V}
$$

Problem 22.3: To find the maximum current through the diodes, divide the load voltage $V_{L_{m}}$ by the load resistance,

$$
I_{D, \max }=\frac{V_{L_{m}}}{R_{L}}=\frac{168.3}{1000}=0.168 \mathrm{~A}=168 \mathrm{~mA}
$$

Problem 22.4: To find the power rating of each diode, use $V_{K}=0.7 \mathrm{~V}$ and the maximum current obtained just now,

$$
P_{D}=V_{K} I_{D, \max }=0.7 \times 0.168=0.118 \mathrm{~W}=118 \mathrm{~mW}
$$

P. $23 \Rightarrow$ Solution

Let the four diodes be numbered as follows.

For the positive half-cycle of the input, diodes D_{1} and D_{3} are forward biased, whereas diodes D_{2} and D_{4} are reverse biased, as shown. It follows that, for the positive half-cycle, the output voltage is $v_{o}=-v_{i}$.

For the negative half-cycle of the input, diodes D_{2} and D_{4} are forward biased, whereas diodes D_{1} and D_{3} are reverse biased, as shown. It follows that, for the positive half-cycle, the output voltage is $v_{o}=v_{i}$.

With the two previous observations in mind, we can sketch the output voltage v_{o} :

The peak inverse voltage of the diodes is

$$
P I V=100 \mathrm{~V}
$$

To establish the maximum current through each diode, apply Ohm's law with $\left|v_{o, \text { max }}\right|=100 \mathrm{~V}$ as the voltage,

$$
i_{D, \text { max }}=\frac{\left|v_{o, \text { max }}\right|}{R_{L}}=\frac{100}{2200}=0.0455 \mathrm{~A}=45.5 \mathrm{~mA}
$$

REFERENCES

- BOYLESTAD, R.L. and NASHELSKY, L. (2013). Electronic Devices and Circuit Theory. 11th edition. Upper Saddle River: Pearson.
- NEAMEN, D.A. (2000). Electronic Circuit Analysis and Design. 2nd edition. New York: McGraw-Hill.
- NEAMEN, D.A. (2003). Semiconductor Physics and Devices. 4th edition. New York: McGraw-Hill.

Was this material helpful to you? If so, please consider donating a small amount to our project at www.montoguequiz.com/donate so we can keep posting free, high-quality materials like this one on a regular basis.

