Quiz EL104 Economic Dispatch

Lucas Monteiro Nogueira

M Problem 1 (Saadat, 1999, w/ permission)
Problem 1.1: The fuel-cost functions in $\$ / \mathrm{h}$ for two 800 MW thermal plants are given by

$$
\left\{\begin{array}{l}
C_{1}=400+6.0 P_{1}+0.004 P_{1}^{2} \\
C_{2}=500+\beta P_{2}+\gamma P_{2}^{2}
\end{array}\right.
$$

The incremental cost of power λ is $\$ 8 / \mathrm{MWh}$ when the total power demand is 550 MW . Neglecting losses, determine the optimal generation of each plant.
Problem 1.2: The incremental cost of power λ is $\$ 10 / \mathrm{MWh}$ when the total power demand is 1300 MW . Neglecting losses, determine the optimal generation of each plant.
Problem 1.3: From the results of Parts 1 and 2, find the fuel-cost coefficients β and γ of the second plant.
M Problem 2 (Saadat, 1999, w/ permission)
The fuel-cost functions in $\$ / \mathrm{h}$ for three thermal plants are given by

$$
\left\{\begin{array}{l}
C_{1}=350+7.20 P_{1}+0.0040 P_{1}^{2} \\
C_{2}=500+7.30 P_{2}+0.0025 P_{2}^{2} \\
C_{3}=600+6.74 P_{3}+0.0030 P_{3}^{2}
\end{array}\right.
$$

where P_{1}, P_{2}, and P_{3} are in MW. The governors are set such that generators share the load equally. Neglecting line losses and generator limits, find the total cost in $\$ / h$ when the total load is
Problem 2.1: $P_{D}=450 \mathrm{MW}$.
Problem 2.2: $P_{D}=750 \mathrm{MW}$.

- Problem 3 (Saadat, 1999, w/ permission)

Neglecting line losses and generator limits, determine the optimal scheduling of generation for each loading condition of Problem 2
Problem 3.1: using the analytical technique described in Chapter 7 of Saadat (1999).

Problem 3.2: using the iterative method described in Saadat's textbook.
M Problem 4 (Saadat, 1999, w/ permission)
The fuel-cost function in $\$ / h$ of two thermal plants are

$$
\left\{\begin{array}{l}
C_{1}=320+6.2 P_{1}+0.004 P_{1}^{2} \\
C_{2}=200+6.0 P_{2}+0.003 P_{2}^{2}
\end{array}\right.
$$

where P_{1} and P_{2} are in MW. Plant outputs are subject to the following limits (in MW):

$$
\binom{50 \leq P_{1} \leq 250 \mathrm{MW}}{50 \leq P_{2} \leq 350 \mathrm{MW}}
$$

The per-unit system real power loss with generation expressed in per unit on a $100-\mathrm{MVA}$ base is given by

$$
P_{L,(\mathrm{pu})}=0.0125 P_{1,(\mathrm{pu})}^{2}+0.00625 P_{2,(\mathrm{pu})}^{2}
$$

The total load is 412.35 MW . Determine the optimal dispatch of generation. Start with an initial estimate of incremental cost of power $\lambda=7$ \$/MWh.

Problem 5 (Grainger and Stevenson, Jr., 1994)
Problem 5.1: The incremental fuel costs in $\$ / M W h$ for four units of a plant are specified below.

$$
\left\{\begin{array}{l}
\lambda_{1}=0.012 P_{1}+9.0 \\
\lambda_{2}=0.0096 P_{2}+6.0 \\
\lambda_{3}=0.008 P_{3}+8.0 \\
\lambda_{4}=0.0068 P_{4}+10.0
\end{array}\right.
$$

Assuming that all four units operate to meet the total plant load of 800 MW , find the incremental fuel cost λ of the plant and the required output of each unit for economic dispatch.
Problem 5.2: Assume that maximum loads on each of the four units described in Problem 5.1 are $200 \mathrm{MW}, 400 \mathrm{MW}, 270 \mathrm{MW}$, and 300 MW , respectively, and that minimum load on each unit is $50 \mathrm{MW}, 100 \mathrm{MW}, 80$ MW , and 110 MW , respectively. With these maximum and minimum output limits, find the incremental fuel cost λ and MW output of each unit for economic dispatch.
Problem 5.3: Solve the previous problem if the minimum load on unit 4 is 50 MW rather than 110 MW .

- Problem 6 (Grainger and Stevenson, Jr., 1994)

The incremental fuel costs for two units of a plant are

$$
\left\{\begin{array}{l}
\lambda_{1}=0.012 P_{1}+8.0 \\
\lambda_{2}=0.008 P_{2}+9.6
\end{array}\right.
$$

where λ 's are in dollars per hour and P 's are in MW. If both units operate at all times and maximum and minimum loads on each unit are 550 MW and 100 MW , plot the incremental fuel cost λ of the plant in $\$ / \mathrm{MWh}$ versus plant output in MW for economic dispatch as total load varies from 200 to 1100 MW.
$>$ SOLUTIONS

P. $1 \Rightarrow$ Solution

Problem 1.1: We begin by finding the fuel-cost coefficients β and γ of the second plant. Differentiating C_{1} with respect to P_{1} and C_{2} with respect to P_{2} brings to

$$
\begin{gathered}
\frac{d C_{1}}{d P_{1}}=6.0+0.008 P_{1}=\lambda \\
\frac{d C_{2}}{d P_{2}}=\beta+2 \gamma P_{2}=\lambda
\end{gathered}
$$

With $\lambda=8$ and $P_{D}=550 \mathrm{MW}$, we have

$$
6.0+0.008 P_{1}=8 \rightarrow P_{1}=\frac{8-6.0}{0.008}=250 \mathrm{MW}
$$

and

$$
P_{2}=P_{D}-P_{1}=550-250=300 \mathrm{MW}
$$

Problem 1.2: The same formulas used in the previous part apply here, namely

$$
P_{1}=\frac{10-6.0}{0.008}=500 \mathrm{MW}
$$

and

$$
P_{2}=P_{D}-P_{1}=1300-500=800 \mathrm{MW}
$$

Problem 1.3: Using the two data points given in parts 1 and 2 , we have, for the incremental cost of plant 2,

$$
\begin{gathered}
\beta+2 \gamma P_{2}=\lambda \rightarrow \beta+2 \gamma \times 300=8 \\
\therefore \beta+600 \gamma=8 \text { (I) } \\
\beta+2 \gamma P_{2}=\lambda \rightarrow \beta+2 \gamma \times 800=10 \\
\therefore \beta+1600 \gamma=10 \text { (II) }
\end{gathered}
$$

Manipulating equation (II) brings to

$$
\begin{gathered}
\beta+1600 \gamma=\underbrace{\beta+600 \gamma}_{=8}+1000 \gamma=10 \\
\therefore 8+1000 \gamma=10 \\
\therefore \gamma=\frac{10-8}{1000}=0.002
\end{gathered}
$$

Substituting γ in equation (I),

$$
\begin{aligned}
& \beta+600 \gamma=\beta+600 \times 0.002=8 \\
& \therefore \beta+1.2=8 \\
& \therefore \beta=6.8
\end{aligned}
$$

P. $2 \Rightarrow$ Solution

Problem 2.1: Since the governors are to share the load equally, $P_{1}=P_{2}=$ $P_{3}=450 / 3=150 \mathrm{MW}$. The total fuel cost is

$$
\begin{aligned}
C_{t}=(350 & \left.+7.20 \times 150+0.004 \times 150^{2}\right)+\left(500+7.3 \times 150+0.0025 \times 150^{2}\right) \\
& +\left(600+6.74 \times 150+0.003 \times 150^{2}\right)=4,849.75 \mathrm{~S} / \mathrm{h}
\end{aligned}
$$

Problem 2.2: With $P_{D}=750 \mathrm{MW}$, we have $P_{1}=P_{2}=P_{3}=750 / 3=250 \mathrm{MW}$.
The total fuel cost is

$$
\begin{aligned}
C_{t}=(350 & \left.+7.20 \times 250+0.004 \times 250^{2}\right)+\left(500+7.3 \times 250+0.0025 \times 250^{2}\right) \\
& +\left(600+6.74 \times 250+0.003 \times 250^{2}\right)=7,353.75 \$ / \mathrm{h}
\end{aligned}
$$

P. $3 \Rightarrow$ Solution

Problem 3.1: The optimum incremental cost λ for n plants with fuelcost functions of the form $C_{i}=c+\beta P_{i}+\gamma P_{i}^{2}$ is given by

$$
\begin{gathered}
\lambda=\frac{P_{D}+\sum_{i=1}^{n} \frac{\beta_{i}}{2 \gamma_{i}}}{\sum_{i=1}^{n} \frac{1}{2 \gamma_{i}}} \\
\therefore \lambda=\frac{450+\frac{7.20}{2 \times 0.004}+\frac{7.30}{2 \times 0.0025}+\frac{6.74}{2 \times 0.0030}}{\frac{1}{2 \times 0.004}+\frac{1}{2 \times 0.0025}+\frac{1}{2 \times 0.0030}}=8 \$ / \mathrm{MWh}
\end{gathered}
$$

Substituting λ in the coordination equations gives the optimal dispatch

$$
\begin{gathered}
P_{i}=\frac{\lambda-\beta_{i}}{2 \gamma_{i}} \\
P_{1}=\frac{8-7.20}{2 \times 0.0040}=100 \mathrm{MW} \\
P_{2}=\frac{8-7.30}{2 \times 0.0025}=140 \mathrm{MW} \\
P_{3}=\frac{8-6.74}{2 \times 0.0030}=210 \mathrm{MW}
\end{gathered}
$$

The optimized total cost is

$$
\begin{aligned}
C_{t}=(350 & \left.+7.20 \times 100+0.004 \times 100^{2}\right)+\left(500+7.3 \times 140+0.0025 \times 140^{2}\right) \\
& +\left(600+6.74 \times 210+0.003 \times 210^{2}\right)=4,828.70 \$ / \mathrm{h}
\end{aligned}
$$

which represents savings of $4,849.75-4,828.70=\$ 21.05$ relatively to the cost implied when the load is shared equally between the three generators.

Repeating the procedure above with $P_{D}=750 \mathrm{MW}$, the optimum incremental cost λ is

$$
\lambda=\frac{750+\frac{7.20}{2 \times 0.004}+\frac{7.30}{2 \times 0.0025}+\frac{6.74}{2 \times 0.0030}}{\frac{1}{2 \times 0.004}+\frac{1}{2 \times 0.0025}+\frac{1}{2 \times 0.0030}}=8.61 \$ / \mathrm{MWh}
$$

so that

$$
\begin{aligned}
& P_{1}=\frac{8.61-7.20}{2 \times 0.0040}=176.3 \mathrm{MW} \\
& P_{2}=\frac{8.61-7.30}{2 \times 0.0025}=262 \mathrm{MW} \\
& P_{3}=\frac{8.61-6.74}{2 \times 0.0030}=311.7 \mathrm{MW}
\end{aligned}
$$

The optimized total cost is

$$
\begin{aligned}
C_{t}=(350 & \left.+7.20 \times 176.3+0.004 \times 176.3^{2}\right)+\left(500+7.3 \times 262+0.0025 \times 262^{2}\right) \\
& +\left(600+6.74 \times 311.7+0.003 \times 311.7^{2}\right)=7,320.23 \$ / \mathrm{h}
\end{aligned}
$$

which represents savings of $\$ 33.52$ relatively to the cost implied when the load is shared equally between the three generators.

Problem 3.2: For the numerical solution using the gradient method, we assume an initial value $\lambda^{(1)}=6$. From the coordination equations,

$$
\begin{aligned}
& P_{1}^{(1)}=\frac{6-7.20}{2 \times 0.0040}=-150 \\
& P_{2}^{(1)}=\frac{6-7.30}{2 \times 0.0025}=-260 \\
& P_{3}^{(1)}=\frac{6-6.74}{2 \times 0.0030}=-123.3
\end{aligned}
$$

The error ΔP, noting that $P_{D}=450 \mathrm{MW}$,

$$
\Delta P^{(1)}=450-(-150-260-123.3)=933.3
$$

The value of $\Delta \lambda^{(1)}$ is

$$
\begin{gathered}
\Delta \lambda^{(k)}=\frac{\Delta P^{(k)}}{\sum \frac{1}{2 \gamma_{i}}} \rightarrow \Delta \lambda^{(1)}=\frac{\Delta P^{(1)}}{\sum \frac{1}{2 \gamma_{i}}} \\
\therefore \Delta \lambda^{(1)}=\frac{933.3}{\frac{1}{2 \times 0.0040}+\frac{1}{2 \times 0.0025}+\frac{1}{2 \times 0.0030}}=1.898
\end{gathered}
$$

Thus, in the next iteration we shall use

$$
\lambda^{(2)}=\lambda^{(1)}+\Delta \lambda^{(1)}=6.0+1.898=7.898
$$

Accordingly,

$$
\begin{aligned}
P_{1}^{(2)} & =\frac{7.898-7.20}{2 \times 0.0040}=87.25 \\
P_{2}^{(2)} & =\frac{7.898-7.30}{2 \times 0.0025}=119.6 \\
P_{3}^{(2)} & =\frac{7.898-6.74}{2 \times 0.0030}=193
\end{aligned}
$$

The error ΔP is updated as

$$
\Delta P^{(2)}=450-(87.25+119.6+193)=50.15
$$

The value of $\Delta \lambda^{(2)}$ is

$$
\Delta \lambda^{(2)}=\frac{50.15}{\frac{1}{2 \times 0.0040}+\frac{1}{2 \times 0.0025}+\frac{1}{2 \times 0.0030}}=0.102
$$

The value of λ for the next iteration is then

$$
\lambda^{(3)}=\lambda^{(2)}+\Delta \lambda^{(2)}=7.898+0.102=8.000
$$

Accordingly,

$$
P_{1}^{(3)}=\frac{8.0-7.20}{2 \times 0.0040}=100
$$

$$
\begin{aligned}
P_{2}^{(3)} & =\frac{8.0-7.30}{2 \times 0.0025}=140 \\
P_{3}^{(3)} & =\frac{8.0-6.74}{2 \times 0.0030}=210
\end{aligned}
$$

The error ΔP is updated as

$$
\Delta P^{(2)}=450-(100+140+210)=0
$$

The error has been reduced to zero; convergence has been attained, and $P_{1}^{(3)}=100, P_{2}^{(3)}=140, P_{3}^{(3)}=210 \mathrm{MW}$ are the final optimized loads. Optimizing Problem 2.2 iteratively is no different from the previous situation. In the numerical analysis of Problem 2.1, we began with $\lambda=6.0$, an underestimate relatively to the true value $\lambda=8.0$. To make things a little different, let's start by overestimating λ relatively to the true value $\lambda=8.61$; take $\lambda^{(1)}=10$.

$$
\begin{gathered}
P_{1}^{(1)}=\frac{10-7.20}{2 \times 0.0040}=350 \\
P_{2}^{(1)}=\frac{10-7.30}{2 \times 0.0025}=540 \\
P_{3}^{(1)}=\frac{10-6.74}{2 \times 0.0030}=543.333
\end{gathered}
$$

With $P_{D}=750 \mathrm{~W}$, error ΔP is calculated as

$$
\Delta P^{(1)}=750-(350+540+543.333)=-683.333
$$

The value of $\Delta \lambda^{(1)}$ is

$$
\Delta \lambda^{(1)}=\frac{-683.333}{\frac{1}{2 \times 0.0040}+\frac{1}{2 \times 0.0025}+\frac{1}{2 \times 0.0030}}=-3.431
$$

Thus, in the next iteration we shall use

$$
\lambda^{(2)}=\lambda^{(1)}+\Delta \lambda^{(1)}=10.0-3.431=6.569
$$

Accordingly,

$$
\begin{aligned}
P_{1}^{(2)} & =\frac{6.569-7.20}{2 \times 0.0040}=-78.875 \\
P_{2}^{(2)} & =\frac{6.569-7.30}{2 \times 0.0025}=-146.2 \\
P_{3}^{(2)} & =\frac{6.569-6.74}{2 \times 0.0030}=-28.5
\end{aligned}
$$

The error ΔP is updated as

$$
\Delta P^{(2)}=750-(-78.875-146.2-28.5)=1003.58
$$

The value of $\Delta \lambda^{(1)}$ is

$$
\Delta \lambda^{(2)}=\frac{1003.58}{\frac{1}{2 \times 0.0040}+\frac{1}{2 \times 0.0025}+\frac{1}{2 \times 0.0030}}=2.041
$$

For the next iteration,

$$
\lambda^{(3)}=\lambda^{(2)}+\Delta \lambda^{(2)}=6.569+2.041=8.610
$$

Accordingly,

$$
\begin{aligned}
P_{1}^{(3)} & =\frac{8.610-7.20}{2 \times 0.0040}=176.3 \\
P_{2}^{(3)} & =\frac{8.610-7.30}{2 \times 0.0025}=262 \\
P_{3}^{(3)} & =\frac{8.610-6.74}{2 \times 0.0030}=311.7
\end{aligned}
$$

The error ΔP is calculated as

$$
\Delta P^{(3)}=750-(176.3+262+311.7)=0
$$

Convergence is reached, and $P_{1}^{(3)}=176.3, P_{2}^{(3)}=262, P_{3}^{(3)}=311.7 \mathrm{MW}$ are taken as the final optimized loads.

P. $4 \rightarrow$ Solution

The coordination equations for a situation including losses are slightly more complicated than the ones used in the previous problem. The equations have general form

$$
P_{i}^{(k)}=\frac{\lambda^{(k)}-\beta_{i}}{2\left(\gamma_{i}+\lambda^{(k)} B_{i i}\right)}
$$

so that

$$
\begin{gathered}
P_{1}^{(1)}=\frac{\lambda^{(1)}-\beta_{1}}{2\left(\gamma_{1}+\lambda^{(1)} B_{11}\right)}=\frac{7-6.2}{2 \times(0.004+7 \times 0.000125)}=82.0513 \mathrm{MW} \\
P_{2}^{(1)}=\frac{\lambda^{(1)}-\beta_{2}}{2\left(\gamma_{2}+\lambda^{(1)} B_{22}\right)}=\frac{7-6.0}{2 \times(0.003+7 \times 0.0000625)}=145.4545 \mathrm{MW}
\end{gathered}
$$

Note that we have amped up the number of decimal places to four in order to better account for the effect of losses. The real power loss is

$$
P_{L}^{(1)}=0.000125\left[P_{1}^{(1)}\right]^{2}+0.0000625\left[P_{2}^{(1)}\right]^{2}=0.000125 \times 82.0513^{2}+0.0000625 \times 145.4545^{2}
$$

$$
\therefore P_{L}^{(1)}=2.1638 \mathrm{MW}
$$

Since $P_{D}=412.35 \mathrm{MW}$, the error $\Delta P^{(1)}$ is given by

$$
\begin{gathered}
\Delta P^{(k)}=P_{D}+P_{L}^{(k)}-\sum_{i=1}^{n} P_{i}^{(k)} \\
\therefore \Delta P^{(1)}=P_{D}+P_{L}^{(1)}-\sum_{i=1}^{2} P_{i}^{(1)}=412.35+2.1638-(82.0513+145.4545)=187.0080 \mathrm{MW}
\end{gathered}
$$

The change in incremental power cost for iteration k is given by

$$
\Delta \lambda^{(k)}=\frac{\Delta P^{(k)}}{\sum\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(k)}}
$$

where

$$
\sum_{i=1}^{n}\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(k)}=\sum_{i=1}^{n} \frac{\gamma_{i}+B_{i i} \beta_{i}}{2\left(\gamma_{i}+\lambda^{(k)} B_{i i}\right)^{2}}
$$

so that

$$
\sum_{i=1}^{2}\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(1)}=\frac{0.004+0.000125 \times 6.2}{2(0.0004+7.0 \times 0.000125)^{2}}+\frac{0.003+0.0000625 \times 6.0}{2(0.003+7.0 \times 0.0000625)^{2}}=243.2701
$$

and

$$
\Delta \lambda^{(1)}=\frac{\Delta P^{(1)}}{\sum\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(1)}}=\frac{187.008}{243.2701}=0.7687
$$

Updating the value of λ, we find that

$$
\lambda^{(2)}=\lambda^{(1)}+\Delta \lambda^{(1)}=7.0+0.7687=7.7687
$$

Moving on to the second iteration, we compute

$$
\begin{aligned}
& P_{1}^{(2)}=\frac{\lambda^{(2)}-\beta_{1}}{2\left(\gamma_{1}+\lambda^{(2)} B_{11}\right)}=\frac{7.7687-6.2}{2 \times(0.004+7.7687 \times 0.000125)}=157.7824 \\
& P_{2}^{(2)}=\frac{\lambda^{(2)}-\beta_{2}}{2\left(\gamma_{2}+\lambda^{(2)} B_{22}\right)}=\frac{7.7687-6.0}{2 \times(0.003+7.7687 \times 0.0000625)}=253.7194
\end{aligned}
$$

Updating the losses $P_{\llcorner }$,

$$
\begin{gathered}
P_{L}^{(2)}=0.000125\left[P_{1}^{(2)}\right]^{2}+0.0000625\left[P_{2}^{(2)}\right]^{2} \\
=0.000125 \times 157.7824^{2}+0.0000625 \times 253.7194^{2}=7.1353
\end{gathered}
$$

and the error ΔP,
$\Delta P^{(2)}=P_{D}+P_{L}^{(2)}-\sum_{i=1}^{2} P_{i}^{(2)}=412.35+7.1353-(157.7824+253.7194)=7.9835$
Also,
$\sum_{i=1}^{2}\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(2)}=\frac{0.004+0.000125 \times 6.2}{2(0.004+7.7687 \times 0.000125)^{2}}+\frac{0.003+0.0000625 \times 6.0}{2(0.003+7.7687 \times 0.0000625)^{2}}=235.5143$
so that

$$
\Delta \lambda^{(2)}=\frac{\Delta P^{(2)}}{\sum\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(2)}}=\frac{7.9835}{235.5143}=0.03390
$$

Updating the value of λ,

$$
\lambda^{(3)}=\lambda^{(2)}+\Delta \lambda^{(2)}=7.7687+0.0339=7.8026
$$

The fact that $\Delta \lambda^{(2)}$ is quite small indicates that we are close to convergence. Proceeding with the third iteration, we have

$$
\begin{gathered}
P_{1}^{(3)}=\frac{\lambda^{(3)}-\beta_{1}}{2\left(\gamma_{1}+\lambda^{(3)} B_{11}\right)}=\frac{7.8026-6.2}{2 \times(0.004+7.8026 \times 0.000125)}=161.0548 \\
P_{2}^{(3)}=\frac{\lambda^{(3)}-\beta_{2}}{2\left(\gamma_{2}+\lambda^{(3)} B_{22}\right)}=\frac{7.8026-6.0}{2 \times(0.003+7.8026 \times 0.0000625)}=258.4252
\end{gathered}
$$

Updating the losses $P_{\llcorner }$,

$$
P_{L}^{(3)}=0.000125\left[P_{1}^{(3)}\right]^{2}+0.0000625\left[P_{2}^{(3)}\right]^{2}
$$

$$
=0.000125 \times 161.0548^{2}+0.0000625 \times 258.4252^{2}=7.4163
$$

and the error ΔP,
$P^{(3)}=P_{D}+P_{L}^{(3)}-\sum_{i=1}^{2} P_{i}^{(3)}=412.35+7.4163-(161.0548+258.4252)=0.2863$
Further,
$\sum_{i=1}^{2}\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(3)}=\frac{0.004+0.000125 \times 6.2}{2(0.004+7.8026 \times 0.000125)^{2}}+\frac{0.003+0.0000625 \times 6.0}{2(0.003+7.8026 \times 0.0000625)^{2}}=235.1810$ giving

$$
\Delta \lambda^{(3)}=\frac{\Delta P^{(3)}}{\sum\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(3)}}=\frac{0.2863}{235.1810}=0.0012
$$

The new value of λ is

$$
\lambda^{(4)}=\lambda^{(3)}+\Delta \lambda^{(3)}=7.8026+0.0012=7.8038
$$

Proceeding with the fourth iteration, we have

$$
\begin{aligned}
& P_{1}^{(4)}=\frac{\lambda^{(4)}-\beta_{1}}{2\left(\gamma_{1}+\lambda^{(4)} B_{11}\right)}=\frac{7.8038-6.2}{2 \times(0.004+7.8038 \times 0.000125)}=161.1705 \\
& P_{2}^{(4)}=\frac{\lambda^{(4)}-\beta_{2}}{2\left(\gamma_{2}+\lambda^{(4)} B_{22}\right)}=\frac{7.8038-6.0}{2 \times(0.003+7.8038 \times 0.0000625)}=258.5917
\end{aligned}
$$

Updating the losses $P_{\llcorner }$,

$$
\begin{gathered}
P_{L}^{(4)}=0.000125\left[P_{1}^{(4)}\right]^{2}+0.0000625\left[P_{2}^{(4)}\right]^{2} \\
=0.000125 \times 161.1705^{2}+0.0000625 \times 258.5917^{2}=7.4263
\end{gathered}
$$

and the error ΔP,
$\Delta P^{(4)}=P_{D}+P_{L}^{(4)}-\sum_{i=1}^{2} P_{i}^{(4)}=412.35+7.4263-(161.1705+258.5917)=0.0141$
Further,
$\sum_{i=1}^{2}\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(4)}=\frac{0.004+0.000125 \times 6.2}{2(0.004+7.8038 \times 0.000125)^{2}}+\frac{0.003+0.0000625 \times 6.0}{2(0.003+7.8038 \times 0.0000625)^{2}}=235.1693$
giving

$$
\Delta \lambda^{(4)}=\frac{\Delta P^{(4)}}{\sum\left(\frac{\partial P_{i}}{\partial \lambda}\right)^{(4)}}=\frac{0.0141}{235.1693}=0.0001
$$

At this point, $\Delta \lambda$ is quite small and proceeding with a fifth iteration wouldn't improve the accuracy of the solution significantly. Thus, we take the fourth-iteration quantities as our final results:

$$
\begin{array}{|l|}
\hline P_{1}=161.1705 \mathrm{MW} \\
P_{2}=258.5917 \mathrm{MW} \\
\lambda=7.8038 \$ / \mathrm{MWh} \\
\hline
\end{array}
$$

Note that P_{1} and P_{2} are within the specified limits. The power losses are $P_{L}=7.4263 \mathrm{MW}$. The optimal costs associated with plants 1 and 2 are, respectively,

$$
\begin{aligned}
& C_{1}=320+6.2 \times 161.1705+0.004 \times 161.1705^{2}=1423.16 \$ / \mathrm{h} \\
& C_{2}=200+6.0 \times 258.5917+0.003 \times 258.5917^{2}=1952.16 \$ / \mathrm{h}
\end{aligned}
$$

P. $5 \Rightarrow$ Solution

Problem 5.1: The incremental fuel cost for all four units follows the general form $\lambda_{i}=a_{i} P_{i}+b_{i}$. Thus, the IFC of the plant is to be given by

$$
\lambda=a_{T} P_{T}+b_{T}
$$

where

$$
a_{T}=\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}+\frac{1}{a_{4}}\right)^{-1}=\left(\frac{1}{0.012}+\frac{1}{0.0096}+\frac{1}{0.008}+\frac{1}{0.0068}\right)^{-1}=0.002176
$$

and
$b_{T}=a_{T}\left(\frac{b_{1}}{a_{1}}+\frac{b_{2}}{a_{2}}+\frac{b_{3}}{a_{3}}+\frac{b_{4}}{a_{4}}\right)^{-1}=0.002176 \times\left(\frac{9.0}{0.012}+\frac{6.0}{0.0096}+\frac{8.0}{0.008}+\frac{10.0}{0.0068}\right)=8.368$
with $P_{T}=800 \mathrm{MW}$, giving

$$
\lambda=a_{T} P_{T}+b_{T}=0.002176 \times 800+8.368=10.109 \$ / \mathrm{MWh}
$$

The loads assigned to each unit are

$$
\begin{aligned}
& P_{1}=\frac{\lambda-b_{1}}{a_{1}}=\frac{10.109-9.0}{0.012}=92.42 \mathrm{MW} \\
& P_{2}=\frac{\lambda-b_{2}}{a_{2}}=\frac{10.109-6}{0.0096}=428.02 \mathrm{MW} \\
& P_{3}=\frac{\lambda-b_{3}}{a_{3}}=\frac{10.109-8}{0.008}=265.63 \mathrm{MW} \\
& P_{4}=\frac{\lambda-b_{4}}{a_{4}}=\frac{10.109-10}{0.0068}=16.03 \mathrm{MW}
\end{aligned}
$$

Problem 5.2: The solution to the previous problem shows that the loads attributed to each unit are $P_{1}=92.42 \mathrm{MW}, P_{2}=428.02 \mathrm{MW}, P_{3}=265.63$ MW , and $P_{4}=16.03 \mathrm{MW}$. We see that P_{2} is above the prescribed maximum of 400 MW , and P_{3} violates the prescribed minimum of 110 MW ; corrections for these two limits are in order. First, assume that unit 2 is operating at its upper limit of 400 MW . We recalculate the plant λ as follows,

$$
\begin{gathered}
a_{T}=\left(\frac{1}{a_{1}}+\frac{1}{a_{3}}+\frac{1}{a_{4}}\right)^{-1}=\left(\frac{1}{0.012}+\frac{1}{0.008}+\frac{1}{0.0068}\right)^{-1}=0.00281379 \\
b_{T}=a_{T}\left(\frac{b_{1}}{a_{1}}+\frac{b_{3}}{a_{3}}+\frac{b_{4}}{a_{4}}\right)=0.002814 \times\left(\frac{9.0}{0.012}+\frac{8.0}{0.008}+\frac{10.0}{0.0068}\right)=9.06273529
\end{gathered}
$$

Since $P_{2}=400 \mathrm{MW}$, the total output of units 1, 3 and 4 should be 400
MW. It follows that

$$
\lambda=a_{T} P_{T}+b_{T}=0.00281379 \times 400+9.06273529=10.18825 \$ / \mathrm{MWh}
$$

Using this plant λ, the output in each unit is calculated to be

$$
\begin{gathered}
P_{1}=\frac{\lambda-b_{1}}{a_{1}}=\frac{10.18825-9.0}{0.012}=99.0208 \mathrm{MW} \\
P_{3}=\frac{\lambda-b_{3}}{a_{3}}=\frac{10.18825-8}{0.008}=273.5313 \mathrm{MW} \\
P_{4}=\frac{\lambda-b_{4}}{a_{4}}=\frac{10.18825-10}{0.0068}=27.6838 \mathrm{MW} \\
P_{2}=400 \mathrm{MW}
\end{gathered}
$$

It is seen that the outputs of units 3 and 4 violate their respective upper and lower limits. Consequently, it is concluded that other units besides unit 2 must be operating at their limits if the output of unit 2 is specified to be 400 MW . This time assume that unit 4 is operating at its lower limit of 110 MW. Using units 1,2 and 3 only, the incremental fuel cost is recalculated as follows.

$$
\begin{gathered}
a_{T}=\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)^{-1}=\left(\frac{1}{0.012}+\frac{1}{0.0096}+\frac{1}{0.008}\right)^{-1}=0.00320 \\
b_{T}=a_{T}\left(\frac{b_{1}}{a_{1}}+\frac{b_{2}}{a_{2}}+\frac{b_{3}}{a_{3}}\right)=0.00320 \times\left(\frac{9}{0.012}+\frac{6}{0.0096}+\frac{8}{0.008}\right)=7.60
\end{gathered}
$$

Since $P_{4}=110 \mathrm{MW}$, the total output of units 1,2 and 3 should be 690 MW. Thus,

$$
\lambda=a_{T} P_{T}+b_{T}=0.0032 \times 690+7.60=9.8080 \$ / \mathrm{MWh}
$$

and

$$
\begin{gathered}
P_{1}=\frac{\lambda-b_{1}}{a_{1}}=\frac{9.8080-9.0}{0.012}=67.3333 \mathrm{MW} \\
P_{2}=\frac{\lambda-b_{2}}{a_{2}}=\frac{9.8080-6}{0.0096}=396.6667 \mathrm{MW} \\
P_{3}=\frac{\lambda-b_{3}}{a_{3}}=\frac{9.8080-8}{0.008}=226.0 \mathrm{MW} \\
P_{4}=110 \mathrm{MW}
\end{gathered}
$$

Notice that $P_{1} \in[50,200], P_{2} \in[100,400], P_{3} \in[80,270]$, and $P_{4} \in[110$, 300] MW. This is a valid configuration, and we conclude that economic dispatch requires that the output of unit 4 be set to its lower limit of 110 MW and the loads of units 1,2 and 3 be set to the values above.

$$
\begin{array}{|c|}
\hline P_{1}=67.3 \mathrm{MW} \\
P_{2}=396.7 \mathrm{MW} \\
P_{3}=226.0 \mathrm{MW} \\
P_{4}=110 \mathrm{MW} \\
\hline
\end{array}
$$

Problem 5.3: It was shown in the previous problem that if the output of unit 2 is set to its maximum limit of 400 MW , some other units will also have to be operating at their limits. We now examine whether load limit constraints will be violated if unit 4 is set to its new lower limit of 50 MW . Using units 1,2 and 3 , the plant λ is calculated as follows,

$$
\begin{gathered}
a_{T}=\left(\frac{1}{a_{1}}+\frac{1}{a_{2}}+\frac{1}{a_{3}}\right)^{-1}=\left(\frac{1}{0.012}+\frac{1}{0.0096}+\frac{1}{0.008}\right)^{-1}=0.0032 \\
b_{T}=a_{T}\left(\frac{b_{1}}{a_{1}}+\frac{b_{2}}{a_{2}}+\frac{b_{3}}{a_{3}}\right)^{-1}=0.00320 \times\left(\frac{9}{0.012}+\frac{6}{0.0096}+\frac{8}{0.008}\right)=7.6 \\
\lambda=a_{T} P_{T}+b_{T}=0.0032 \times(800-50)+7.60=10 \$ / \mathrm{MWh}
\end{gathered}
$$

The unit outputs are calculated to be

$$
\begin{gathered}
P_{1}=\frac{10-9.0}{0.012}=83.333 \mathrm{MW} \\
P_{2}=\frac{10-6}{0.0096}=416.667 \mathrm{MW} \\
P_{3}=\frac{10.0-8}{0.008}=250.0 \mathrm{MW} \\
P_{4}=50 \mathrm{MW}
\end{gathered}
$$

It is observed that the output of unit 2 exceeds the upper limit of 400 MW. Consequently, having unit 4 operate at its lower limit would lead to an unfeasible combination of loads; another configuration is in order. The above analysis suggests that units 2 and 4 should be operating at their upper and lower limits, respectively. Letting $P_{2}=400 \mathrm{MW}$ and $P_{4}=50 \mathrm{MW}$, the plant λ is updated as

$$
\begin{gathered}
a_{T}=\left(\frac{1}{a_{1}}+\frac{1}{a_{3}}\right)^{-1}=\left(\frac{1}{0.012}+\frac{1}{0.008}\right)^{-1}=0.0048 \\
b_{T}=a_{T}\left(\frac{b_{1}}{a_{1}}+\frac{b_{3}}{a_{3}}\right)=0.0048 \times\left(\frac{9}{0.012}+\frac{8}{0.008}\right)=8.40 \\
\lambda=a_{T} P_{T}+b_{T}=0.0048 \times(800-400-50)+8.40=10.08 \$ / \mathrm{MWh}
\end{gathered}
$$

The unit outputs are determined to be

$$
\begin{gathered}
P_{1}=\frac{10.08-9.0}{0.012}=90.0 \mathrm{MW} \\
P_{2}=400 \mathrm{MW} \\
P_{3}=\frac{10.08-8}{0.008}=260.0 \mathrm{MW} \\
P_{4}=50 \mathrm{MW}
\end{gathered}
$$

Notice that $P_{1} \in[50,200]$ and $P_{3} \in[80,270]$. This is a valid combination of powers, and we conclude that units 2 and 4 should function at upper and lower limit, respectively, while the other two units should supply the outputs calculated above.

$$
\begin{array}{|l|}
\hline P_{1}=90 \mathrm{MW} \\
P_{2}=400 \mathrm{MW} \\
P_{3}=260 \mathrm{MW} \\
P_{4}=50 \mathrm{MW} \\
\hline
\end{array}
$$

P. $6 \Rightarrow$ Solution

At their lower limit of 100 MW , the incremental costs of the units are

$$
\begin{aligned}
& \lambda_{1}=0.012 \times 100+8.0=9.20 \\
& \lambda_{2}=0.008 \times 100+9.6=10.4
\end{aligned}
$$

As the plant output exceeds 200 MW , initially the incremental fuel $\operatorname{cost} \lambda$ of the plant is determined by unit 1 alone and the additional power should come from unit 1 . This will continue until the incremental fuel cost of unit 1 becomes $10.4 \$ / \mathrm{MWh}$ (i.e., $0.012 P_{1}+8.0=10.4$), from which the value of $P_{1}=200 \mathrm{MW}$. Therefore, for $200 \leq P_{T} \leq 300$,

$$
\lambda=0.012 P_{1}+8.0=0.012\left(P_{1}-100\right)+8.0=0.012 P_{1}+6.80
$$

For $P_{T}>300$, both units will increase their outputs simultaneously. To determine which unit will reach its upper limit first, we calculate the incremental costs at the upper limit of 550 MW as follows,

$$
\begin{aligned}
& \left.\lambda_{1}\right|_{P_{1}=550}=0.012 P_{1}+8.0=0.012 \times 550+8.0=14.6 \\
& \left.\lambda_{2}\right|_{P_{2}=550}=0.008 P_{2}+9.6=0.008 \times 550+9.6=14.0
\end{aligned}
$$

The result shows that unit 2 will reach its maximum load limit earlier than unit 1. The value of P_{1} for which the incremental cost becomes $\$ 14.0 / \mathrm{MWh}$ is computed from $0.012 P_{1}+8.0=14.0$, which yields $P_{1}=500 \mathrm{MW}$.

For $300 \leq P_{T} \leq 1050$, the plant λ is calculated. Since the incremental fuel costs of units 1 and 2 should be the same, we may write

$$
\begin{gathered}
0.012 P_{1}+8.0=0.008 P_{2}+9.6 \\
\therefore P_{2}=1.5 P_{1}-200
\end{gathered}
$$

Since $P_{1}+P_{2}=P_{T}, P_{1}$ can be represented in terms of P_{T} as $P_{1}+\left(1.5 P_{1}-\right.$ 200) $=P_{T}$, from which $P_{1}=0.4 P_{T}+80$. The plant λ is then given by

$$
\lambda=0.012 P_{1}+8.0=0.012\left(0.4 P_{T}+80\right)+8.0=0.0048 P_{T}+8.96
$$

For $P_{T}>1050$, only unit 1 will have an excess capacity, and the plant λ is determined by unit 1 alone as

$$
\lambda=0.012 P_{1}+8.0=0.012\left(P_{T}-550\right)+8.0=0.012 P_{T}+1.40
$$

The results are summarized as follows,

$$
\text { For } 200 \leq P_{T} \leq 300, \lambda=0.012 P_{T}+6.8
$$

$$
\text { For } 300 \leq P_{T} \leq 1050, \lambda=0.0048 P_{T}+8.96
$$

$$
\text { For } 1050 \leq P_{T} \leq 1100, \lambda=0.012 P_{T}+1.4
$$

The ICF is plotted as a function of P_{T} below.

REFERENCES

- GRAINGER, J.J. and STEVENSON JR., W.D. (1994). Power System Analysis. New York: McGraw-Hill.
- SAADAT, H. (1999). Power System Analysis. New York: McGraw-Hill.

Was this material helpful to you? If so, please consider donating a small amount to our project at www.montoguequiz.com/donate so we can keep posting free, high-quality materials like this one on a regular basis.

