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Problem Distribution 
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2 2.1, 2.3, 2.7, 2.8, 2.13, 2.15, 2.16 

3 3.4, 3.7, 3.10 

4 4.3, 4.4, 4.6, 4.8, 4.10, 4.11, 4.12 

5 5.6, 5.9 
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Problems 
◼ Chapter 1 – Nuclear Reactions 
Problem 1.6 
Consider the following nuclear and chemical reactions:  
(a) A uranium-235 nucleus fissions as a result of being bombarded by a slow 
neutron. If the energy of fission is 200 MeV, approximately what fraction of the 
reactant’s mass is converted to energy?  
(b) A carbon-12 atom undergoes combustion following collision with an oxygen-16 
molecule, forming carbon dioxide. If 4 eV of energy are released, approximately 
what fraction of the reactants’ mass is converted to energy?  

Problem 1.10 
In Eq. (1.28), the uranium-239 and neptunium-239 both undergo beta decay with 
half-lives of 23.4 months and 2.36 days, respectively. If neutron bombardment in a 
reactor causes uranium-239 to be produced at a constant rate, how long will it 
take plutonium-239 to reach (assume that plutonium-239 undergoes no further 
reactions) 
(a) 1/2 of its saturation activity? 
(b) 90% of its saturation activity? 
(c) 99% of its saturation activity?  

Problem 1.11 
Uranium-238 has a half-life of 4.51×109 yr, whereas the half-life of uranium-235 is 
only 7.13×108 yr. Thus, since the earth was formed 4.5 billion years ago, the 
isotopic abundance of uranium-235 has been steadily decreasing. At present, U-
235 makes up only 0.7% of natural uranium.  
(a) What was the enrichment of uranium when the earth was formed? 
(b) How long ago was the enrichment 4%?  

Problem 1.13 
Suppose that a specimen is placed in a reactor, and a neutron bombardment 
causes a radioisotope to be produced at a rate of 2×1012 nuclei/s. The 
radioisotope has a half-life of 2 weeks. How long should the specimen be 
irradiated to produce 25 Ci of the radioisotope?  
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Problem 1.14 
The decay constant for the radioactive antimony isotope Sb51

124  is 1.33×10-7 s-1. 
(a) What is its half-life in years? 
(b) How many years would it take for it to decay to 0.01% of its initial value? 
(c) If it were produced at a constant rate, how many years would it take to reach 
95% of its saturation value? 

Problem 1.15 
Approximately what mass of cobalt-60, which has a half-life of 5.26 yr, will have 
the same number of curies as 10 grams of strontium-90, which has a half-life of 
28.8 yr? 

Problem 1.17 
A fission product “A” with a half-life of two weeks is produced at the rate of 
5.0×108 nuclei/sec in a reactor.  
(a) What is the saturation activity in disintegrations/sec? 
(b) What is the saturation activity in curies? 
(c) How long after the startup of the reactor will 90 percent of the saturation 
activity be reached?  
(d) If the fission product undergoes decay A → B → C, where B also has a two-week 
half-life, what will be the activity of B after two weeks? 

Problem 1.19 
Polonium-210 decays to lead-206 by emitting an alpha particle with a half-life of 
138 days and an energy of 5.305 MeV. 
(a) How many curies are there in one gram of pure polonium?  
(b) How many watts of heat are produced by one gram of polonium?  

◼ Chapter 2 – Neutron Interactions 
Problem 2.1 
Neutrons impinge on a material with a cross-section of Σ = 0.8 cm-1. How thick 
must the material be if no more than 5.0% of the neutrons are to penetrate the 
material without making a collision? What fraction of the neutrons make their 
first collision within the first 2.0 cm of the material?  

Problem 2.3 
A material has a neutron cross-section of 3.50×10-24 cm2/nuclei, and contains 
4.20×1023 nuclei/cm3.  
(a) What is the macroscopic cross-section? 
(b) What is the mean free path? 
(c) If neutrons impinge perpendicularly on a slab of the material, which is 3.0 cm 
thick, what fraction of them will penetrate the slab without making a collision? 
(d) What fraction of the neutrons in part (c) will collide in the slab before 
penetrating a distance of 1.5 cm? 

Problem 2.7 
How many parts per million of boron must be dissolved in water at room 
temperature to double its absorption cross-section for thermal neutrons? 

Problem 2.8 
What is the total macroscopic thermal cross-section of uranium dioxide (UO2) that 
has been enriched to 4%? Assume 𝜎𝜎25 = 607.5 b, 𝜎𝜎28 = 11.8 b, 𝜎𝜎𝑂𝑂 = 3.8 b, and that 
UO2 has a density of 10.5 g/cm3. 

Problem 2.13 
Equal volumes of graphite and iron are mixed together. Fifteen percent of the 
volume of the resulting mixture is occupied by air pockets. Find the total 
macroscopic cross-section given the following data: 𝜎𝜎𝐶𝐶 = 4.75 b, 𝜎𝜎𝐹𝐹𝐹𝐹 = 10.9 b, 𝜌𝜌𝐶𝐶 = 
1.6 g/cm2, 𝜌𝜌Fe = 7.7 g/cm3. Is it reasonable to neglect the cross-section of air? 
Why?  

Problem 2.15 
What is the minimum number of elastic scattering collisions required to slow a 
neutron down from 1.0 MeV to 1.0 eV in 
(a) Deuterium; 
(b) Carbon-12; 
(c) Iron-56; and 
(d) Uranium-238? 
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Problem 2.16 
Using the macroscopic scattering cross-sections in Appendix Table II-3, calculate 
the slowing down decrement for UO2, where U is natural uranium. Does the 
presence of oxygen have a significant effect on the slowing down decrement? 

◼ Chapter 3 – Neutron Distributions in Energy 
Problem 3.4 
For thermal neutrons calculate 𝜂̅𝜂 as a function of uranium enrichment and plot 
your results. Use the uranium data from the following table:  

 𝜈𝜈 𝜎𝜎𝑓𝑓 (b) 𝜎𝜎𝑎𝑎 (b) 
Uranium-235 2.43 505 591 

Plutonium-239 2.90 698 973 
Uranium-238 − 0 2.42 

 

Problem 3.7 
Lethargy defined as u = ln(E0/E) is often used in neutron slowing down problems. 
Lethargy increases as energy decreases. Note the following transformations: 
𝜑𝜑(E)dE = −𝜑𝜑(u)du, p(E → E’)dE’ = −p(u → u’)du’, and Σ𝑥𝑥(E) = Σ𝑥𝑥(u). 
(a) Show that p(E → E’) given by Eq. (2.47) becomes 

( ) ( ) ( )1 exp , ln 1
1
0 , otherwise

u u u u u
p u u

α
α

 ′ ′− ≤ ≤ +′→ = −


 

(b) Express Eq. (3.22) in terms of u. The equation is repeated below for 
convenience.  

( ) ( ) ( ) ( ) ( )1
1

E

Es sE E E E dE
E

α
ϕ ϕ

α
′ ′ ′Σ = Σ

′−∫  

Problem 3.10 [Parts (a) and (c) only] 
A power reactor is cooled by heavy water (D2O) but a leak causes a 1.0 atom % 
contamination of the coolant with light water (H2O). Determine the resulting 
percentage increase or decrease in the following characteristics of the of the 
coolant: 
(a) Slowing down decrement. 
(c) Slowing down ratio.  

◼ Chapter 4 – The Power Reactor Core 
Problem 4.3 
A sodium-cooled fast reactor is fueled with PuO2, mixed with depleted UO2. The 
structural material is iron. Averaged over the spectrum of fast neutrons, the 
microscopic cross-sections and densities are as follows:  

 

 

 

 

The fuel is 15% PuO2 and 85% UO2 by volume. The volumetric composition of the 
core is 30% fuel, 50% coolant, and 20% structural material. Calculate 𝑘𝑘∞, 
assuming that the values of 𝜈𝜈 for plutonium and uranium in the fast spectrum are 
2.98 and 2.47, respectively, and that the cross-sections of oxygen can be 
neglected. What fraction of the mass of the core does the fuel account for?  

Problem 4.4 
Suppose the nonleakage probability for a sodium-cooled fast reactor specified in 
Problem 4.3 is 0.90. Using the data from Problem 4.3, adjust the volume fractions 
of PuO2 and UO2 in the fuel so that k = 1.0. What is the % PuO2 in the fuel by 
volume? 

 

 

 

 𝜎𝜎𝑓𝑓 (b) 𝜎𝜎𝑎𝑎 (b) 𝜎𝜎𝑡𝑡 (b) 𝜌𝜌 (g/cm3) 
PuO2 1.95 2.40 8.6 11.0 
UO2 0.05 0.404 8.2 11.0 
Na − 0.0018 3.7 0.97 
Fe − 0.0087 3.6 7.87 
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Problem 4.6 
A pressurized water reactor has 3% enriched UO2 fuel pins that are 1.0 cm in 
diameter and have a density of 11.0 gm/cm3. The moderator to fuel volume ratio 
is 2:1. Calculate 𝜂𝜂𝑇𝑇, p, f, and 𝑘𝑘∞ at room temperature under the assumptions that 
𝜀𝜀 = 1.24, the thermal disadvantage factor is 𝜍𝜍 = 1.16, and the Dancoff correction 
increases the fuel diameter for the resonance integral calculation by 10%. 

Problem 4.8 
A reactor lattice consists of uranium rods in a heavy water moderator. The heavy 
water is replaced by light water.  
(a) Would the resonance escape probability increase or decrease? Why?  
(b) Would the thermal utilization increase or decrease? Why? 
(c) What would you expect the net effect on 𝑘𝑘∞ to be? Why?  

Problem 4.10 
Using the data from Problem 4.6, vary the coolant/fuel volume ratio between 0.5 
and 2.5 and plot the following vs 𝑉𝑉𝑚𝑚/𝑉𝑉𝑓𝑓: 
(a) The resonance escape probability.  
(b) The thermal utilization.  
(c) 𝑘𝑘∞. 
(d) Determine the moderator-to-fuel volume ratio that yields the largest 𝑘𝑘∞. 
(e) What is the largest value of 𝑘𝑘∞? 
You may assume that changes in the fast fission factor and the thermal 
disadvantage factor are negligible. 

Problem 4.11 
A reactor designer decides to replace uranium with UO2 fuel in a water cooled 
reactor, keeping the enrichment, fuel diameter and water to fuel volume ratios 
the same.  
(a) Will the resonance escape probability p increase, decrease or remain 
unchanged? Why?  
(b) Will the thermal utilization f increase, decrease or remain unchanged? Why?  
(c) Will 𝜂𝜂𝑇𝑇 increase, decrease or remain unchanged? Why? 

Problem 4.12 
The fuel for a thermal reactor has the following composition by atom ratio: 2% 
uranium-235, 1% plutonium-239, and 97% uranium-238. Calculate the value of 𝜂𝜂𝑇𝑇 
to be used for this fuel in the four-factor formula. (Use the data given for Problem 
3.4).  

◼ Chapter 5 – Reactor Kinetics 
Problem 5.6 
A thermal reactor fueled with uranium operates at 1.0 W. The operator is to 
increase the power to 1.0 kW over a two-hour span of time.  
(a) What reactor period would we put the reactor on? 
(b) How many cents of reactivity must be present to achieve the period in part 
(a)? 

Problem 5.9 
Find the periods for reactors fueled by uranium-235, plutonium-239, and uranium-
233 if 
(a) One cent of reactivity is added to the critical systems.  
(b) One cent of reactivity is withdrawn from the critical systems.  

◼ Chapter 6 – Spatial Diffusion of Neutrons 
Problem 6.6 
Neutrons impinge uniformly over the surface of a sphere made of graphite that 
has a diameter of 1.0 m. For the graphite D = 0.84 cm and Σ𝑎𝑎 = 2.1×10-4 cm-1.  
(a) Determine the albedo of the graphite sphere.  
(b) Determine the fraction of the impinging neutrons that are absorbed in the 
sphere.  

Problem 6.10 
A thin spherical shell of radius R emits 𝑠𝑠𝑝𝑝𝑝𝑝′′  neutrons/cm2/s in an infinite 
nonmultiplying medium with properties D and Σ𝑎𝑎.  
(a) Determine the flux 𝜙𝜙(r) for 0 ≤ r ≤ ∞. 
(b) Determine the flux ratio 𝜙𝜙(0)/𝜙𝜙(R).  
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Problem 6.14 
Show that Eqs. (6.95) and (6.103) agree in the limit of 𝑘𝑘∞ → 1. 

Problem 6.15 
Suppose that the material in Problem 6.9 is fissionable with 𝑘𝑘∞ < 1. Find the flux 
distribution in the sphere.  

Problem 6.16 
Suppose the material in Problem 6.9 is fissionable with 𝑘𝑘∞ > 1: 
(a) Find the flux distribution in the sphere.  
(b) Show that the criticality condition is the same as Eq. (6.105). 

Problem 6.17 
Equations (6.95) and (6.103) give the flux distributions for a subcritical sphere 
with a uniform source for 𝑘𝑘∞ < 1 and 𝑘𝑘∞ > 1, respectively. Find the equivalent 
expression for 𝑘𝑘∞ = 1.  

Problem 6.18 
Using Eqs. (6.95) and (6.103),  
(a) Find expressions for the flux 𝜙𝜙(0) at the center of the subcritical sphere.  
(b) Using your results from part (a) make a plot of 𝜙𝜙(0) for 0 ≤ 𝑘𝑘∞ < 1.154 with 
𝑅𝑅�/L = 8.  
(c) Using your results from part (a) make a plot of 𝜙𝜙(0) for 0 < 𝑅𝑅�/L < 8 with 𝑘𝑘∞ = 
1.154.  
(d) Compare the two curves and discuss their significance. [Normalize plots to 
𝑆𝑆𝑜𝑜′′′/Σ𝑎𝑎] 

◼ Chapter 7 – Neutron Distributions in Reactors  
Problem 7.2 
Determine the height-to-diameter ratio of a bare cylindrical reactor that will lead 
to the smallest critical mass.  

Problem 7.3 
Critical assemblies for studying the 
properties of fast reactors are 
sometimes built in halves as shown in 
the figure. The two halves are 
maintained in subcritical states by 
separating them with a sufficient 
distance that neutronic coupling 
between the two is negligible; they are 
then brought together to form a critical assembly. Suppose the core composition 
under investigation has an infinite medium multiplication of 1.36 and a migration 
length of 18.0 cm. The assembly is configured with a height-to-diameter ratio of 
one (H = D). Neglecting extrapolation distances,  
(a) Determine the dimensions required to make the assembly exactly critical when 
the two halves are brought into contact.  
(b) Determine the value of k for each of the halves when they are isolated from 
each other.  

Problem 7.6 
Consider a critical reactor that is a cube with extrapolated side length a: 
(a) With the origin at the center, apply separation of variables in three-
dimensional Cartesian geometry to show that the flux distribution is 

( ), , cos cos cosx y zx y z C
a a a
π π πφ      =      
     

 

(b) Find C in terms of the reactor power, volume, and 𝛾𝛾Σ𝑓𝑓.  
(c) Determine the reactor’s buckling.  
(d) Suppose that a = 2.0 m and M = 20 cm. Determine the value of 𝑘𝑘∞ required to 
obtain criticality (i.e., k = 1.0).  

Problem 7.12 
Consider the situation when the spherical system discussed in Chapter 6.7 is 
critical. Determine the ratio of maximum to average flux in the sphere.  

Problem 7.13 
A spherical reactor of radius R is surrounded by a reflector that extends to r = ∞. L 
and D are the same for core and reflector. Find the criticality condition relating 
𝑘𝑘∞, R, L, and D.  
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Problem 7.14 [Part (a) only] 
A spherical reactor is constructed with an internal reflector with parameters D and 
Σ𝑎𝑎𝑟𝑟  and extending 0 ≤ r ≤ R. The annular core, with parameters D, Σ𝑎𝑎, and 𝑘𝑘∞ (>1), 
extends R ≤ r  ≤ 2R. Find the criticality condition (neglecting the extrapolation 
distance).  

Problem 7.16 [Part (a) only] 
An infinite slab reactor (extending to infinity in the y and z directions) has a 
thickness of 2a with vacuum on either side. The properties for material 1 
occupying 0 ≤ x ≤ a are 𝑘𝑘∞1  = 𝑘𝑘∞, D1 = D, and Σ𝑎𝑎1  = Σ𝑎𝑎 and those for material 2 
occupying a ≤ x ≤ 2a are 𝑘𝑘∞2  = 𝑘𝑘∞, D2 = D, and Σ𝑎𝑎2 = 0. Neglecting extrapolation 
distances, find a criticality equation relating a, 𝑘𝑘∞, D, and Σ𝑎𝑎.  

◼ Chapter 8 – Energy Transport  
Problem 8.1 
The leakage probability of a power reactor is 0.0065. As a first approximation to a 
new reactor an engineer estimates that the same power density can be achieved if 
the power is to be increased by 20%. Assuming the height-to-diameter ratio of the 
cylindrical core remains the same:  
(a) What will the leakage probability be in the new reactor with the power 
increased by 20%?  
(b) If 𝑘𝑘∞ is proportional to the fuel enrichment, by what percent will the 
enrichment of the core need to be changed to accommodate the 20% increase in 
power?  

Problem 8.2 
A sodium-cooled fast reactor lattice is designed to have a migration length of 20 
cm and a maximum power density of 500 W/cm3. Three bare cylindrical cores with 
height-to-diameter ratios of one are to be built, with power ratings of 300 MW(t), 
1000 MW(t), and 3000 MW(t). For each of the three cores determine the 
following:  
(a) The core height, H. 
(b) The buckling B2. 
(c) The nonleakage probability PNL.  

Problem 8.6 
You are to design a 3000 MW(t) pressurized water reactor. The reactor is a 
uniform bare cylinder with a height-to-diameter ratio of one. The coolant to fuel 
volume ratio is 2:1 in a square lattice. The volumes occupied by control and 
structural materials, as well as the extrapolation distances, can be neglected. The 
core inlet temperature is 290oC. The reactor must operate under three thermal 
constraints: (1) maximum power density = 250 W/cm3, (2) maximum cladding 
surface heat flux = 125 W/cm2; and (3) maximum core outlet temperature = 
330oC. Determine the following:  
(a) The reactor dimensions and volume.  
(b) The fuel element diameter and lattice pitch.  
(c) The approximate number of fuel elements.  
(d) The mass flow rate and average coolant velocity. 

Problem 8.10 
Consider the PWR design at the end of Section 8.3. Suppose that by varying the 
enrichment in the fuel assemblies and distributing the control poisons in a non-
uniform pattern the designers are able to reduce the radial and axial peaking 
factors to Fr = 1.30 and Fz = 1.46. Redesign the reactor by solving parts c through 
g of the pressurized water reactor example using these peaking factors. 

Problem 8.11 
An unachievable ideal would be a reactor with a perfectly flat flux distributions: Fr 
= 1.00 and Fz = 1.00. Repeat problem 8.10 for such an idealized reactor.  

Problem 8.12 
Suppose that the designers of the pressurized water reactor treated in Section 8.3 
conclude that the thermal-hydraulic design must have larger safety margins by 
reducing the coolant flow velocity by 10% and the maximum coolant temperature 
by 5oC. The reactor physicists are asked to accommodate those changes by 
reducing the radial peaking factor. What percentage reduction would be required? 
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Problem 8.13 
A reactor initially operating at a power Po is put on a period T such that the power 
can be approximated as P(t) = Poexp(t/T). Assuming that the coolant temperature 
is maintained at its initial value of Tc(0), solve equation (8.48) and show that the 
fuel temperature will be 

( ) ( ) ( ) ( ) ( )0 exp exp
1

o f
f c

P R
T t T t T T t

T
τ τ

τ
= +  + −  +

 

◼ Chapter 9 – Reactivity Feedback 
Problem 9.4 
At full power 1000 MW(t) sodium-cooled fast reactor has coolant inlet and outlet 
temperatures of 350 and 500oC, and an average fuel temperature of 1,150oC. The 
fuel and coolant temperature coefficients are 𝛼𝛼𝑓𝑓 = −1.8×10-5/oC and 𝛼𝛼𝑐𝑐 = 
+0.45×10-5/oC.  
(a) Estimate the core thermal resistance and the mass flow rate, taking for sodium 
a specific heat capacity cP = 1250 J/kgoC.  
(b) Estimate the temperature and power defects, assuming a “cold” temperature 
of 180oC.  

Problem 9.5 
A 3000 MW(t) pressurized water reactor has the following specifications: core 
thermal resistance 0.45 oC/MW(t), coolant flow 68×106 kg/hr, coolant specific 
heat 6.4×103 J/kgoC. The fuel temperature coefficient is  

( )
4

11 7.2 10 º C
273f f

k
k T T

−
−∂ ×

= −
∂ +

 

and the coolant temperature coefficient is 

( ) ( ) 12 61 30 1.5 0.0010 10 º Cc c
c

k T T
k T

−−∂
= + − ⋅

∂
 

(a) Over what temperature range is the core overmoderated?  
(b) What is the value of the temperature defect? Assume a room temperature of 
21OC and an operating coolant inlet temperature of 290oC.  
(c) What is the value of the power defect?  

◼ Chapter 10 – Long-Term Core Behavior 
Problem 10.1 
Prove that for a reactor operating at a very high flux level, the maximum xenon-
135 concentration takes place at approximately 11.3 hours following shutdown.  

Problem 10.3 
A thermal reactor fueled with uranium has been operating at constant power for 
several days. Make a plot of concentration of xenon-135 to uranium-235 atoms in 
the reactor versus its average flux. Determine the maximum value that this ratio 
can take.  

Problem 10.4 
A pressurized water reactor at full power has an average power density of 𝑃𝑃�′′′ = 80 
MW/m3 and a peaking factor of Fq = 2.0. After the reactor has operated for several 
days and assuming a fission cross-section of Σ�𝑓𝑓 = 0.203 cm-1:  
(a) What is the average xenon concentration?  
(b) What is the maximum xenon concentration?  
(c) What is the average samarium concentration?  
(d) What is the maximum samarium concentration?  

Problem 10.6 
Samarium-157 is produced at a rate of 7.0×10-5 atoms/fission. It then undergoes 
decay:  

157 157157
62 63 640.5 min 15.2 hrSm Eu Gdβ β→ →  

While the absorption cross-section of samarium and europium are negligible, the 
thermal absorption cross-section of samarium and europium are negligible, the 
thermal absorption cross-section of gadolinium is 240,000 b. Suppose that a 
reactor operates at a power density of 100 MW/m3 and a flux level of 8.0×1012 
n/cm2/s.  
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(a) Solve the decay equations for G(t), the atom density of gadolinium, at a time t 
following reactor startup.  
(b) Evaluate G(∞). 
(c) If the reactor has been operated for several weeks and then is shut down, what 
is the concentration of gadolinium after the reactor has been shut down for 
several weeks? (Assume that the energy produced per fission is 3.1×10-11 W∙s).  

Problem 10.9 
Under load following conditions a reactor operates each day at full power for 12 
hours, followed by a shutdown of 12 hours. Calculate the iodine concentration, 
I(t), over a 24 hour time span. Use periodic boundary conditions 𝐼𝐼(24 hr) = 𝐼𝐼(0).  

Problem 10.13 
Consider uranium fuel in a thermal reactor with an initial enrichment of 4%.  
(a) What is the conversion ratio (CR) at the beginning of life.  
(b) After 50% of the uranium-235 has been burned, what is the conversion ratio?  
(c) After 50% of the uranium-235 has been burned, what fraction of the power is 
being produced from plutonium-239?  

Solutions 
◼ P1.6 
Part (a): Since one atomic mass unit is equivalent to 931.5 MeV, the energy 
equivalent of the reactants is 236 × 931.5 = 219,800 MeV. The fraction 𝜒𝜒 of 
energy converted is then 

200 100% 0.091%
219,800

χ = × ≈  

Part (b): The energy of the reactants is (12 + 2 × 16) × 931.5 = 40,990 MeV = 
4.099×1010 eV. Accordingly, the fraction 𝜒𝜒 of energy converted is  

9
10

4 100% 9.8 10 %
4.099 10

χ −= × ≈ ×
×  

The point of this simple exercise is to show that even a mild nuclear reaction 
greatly outstrips a chemical reaction in terms of the fraction of reactant mass 
converted to energy. 
◼ P1.10 
Parts (a,b,c): Since the half-life of uranium-239 is very small compared to that of 
neptunium-239, we can assume that the uranium decay is instantaneous. The 
decay rate of neptunium is 𝜆𝜆 = 0.693/t1/2 = 0.693/2.36 = 0.294 d-1. We can proceed 
to compute the time required to reach the specified saturation intensities: 

 

( ) ( )11 exp 0.5 ln 0.5t tλ
λ

 − −  = → = −   

( )1 ln 0.5 2.36 days
0.294

t∴ = − =  

(As expected, the time required to reach 50% of the saturation activity is simply 
the half-life of the isotope.) Proceeding similarly for (b),  

( ) ( )11 exp 0.9 ln 0.1t tλ
λ

 − −  = → = −   

( )1 ln 0.1 7.83 days
0.294

t∴ = − =  

Then, for (c),  

( ) ( )11 exp 0.99 ln 0.01t tλ
λ

 − −  = → = −   

( )1 ln 0.01 15.7 days
0.294

t∴ = − =  

◼ P1.11 
Part (a): At any time, we may define atom enrichment as  
 

( ) ( )
( )

28

25

1 (I.1)
1

e t
N t
N t

=
+

  
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Solving for the ratio of isotopes,  

( )
( ) ( )

28

25
1 1 (I.2)

N t
tN e t

 
= − 
 

 

We can use the decay properties to restate the equation above as 

( ) ( )
( ) ( ) ( )

28 28

25 25

0 exp 1 1
0 exp

N t
e tN t

λ

λ

−  
= − 

−  
 

( )
( ) ( ) ( )

28
25 28

25

0 1 1 exp (II)
0

N
t

N e t
λ λ

 
 ∴ = − − −   

 
 

Taking time in billions of years, we have the decay constants 

28 1

1 2

0.693 0.693 0.154 Gyear
4.51t

λ −= = =  

25 1

1 2

0.693 0.693 0.972 Gyear
0.713t

λ −= = =  

Substituting into (II), 

( )
( ) ( ) ( ) ( ) ( )

28

25

0 1 11 exp 0.972 0.154 1 exp 0.818 (III)
0

N
t t

N e t e t
   

= − − −  = − −    
    

 

The present-day enrichment is 0.007 (0.7%); substituting t = 4.5 Gyr into the 
equation above, 

( )
( ) ( )

28

25

0 1 1 exp 0.818 4.5 3.57
0 0.007

N
N

 = − × − × =  
 

Finally, the enrichment at the time the earth was formed is given by (I.1), 

( ) ( )
( )

28

25

1 10 0.219 21.9%
0 1 3.57

1
0

e
N
N

= = = =
+

+
  

At the time the earth was formed, the enrichment of uranium was greater than 
20%.  
Part (b): Suppose we now let t = 0 correspond not to the formation of the earth 
but to the time when the enrichment was 4%. Combining equations (I.2) and (III), 
we find that 

( ) ( ) ( )1 11 1 exp 0.818
0

t
e e t
   

− = − −   
    

 

( )1 11 1 exp 0.818
0.04 0.007

t   ∴ − = − × −      
 

( )24.0 142 exp 0.818t∴ = × −  

( )0.169 exp 0.818t∴ = −  

ln 0.169 0.818t∴− =  

ln 0.169 2.17 Gyr
0.818

t∴ = − =  

The enrichment approximately 2.17 billion years ago was 4%.  
◼ P1.13 
To produce 25 Ci, we must have 𝜆𝜆N(t) = 25 × (3.7×1010) = 9.25×1011 decays/s. 
Referring to equation (1.42),  

( ) ( )1 expoN t A tλ λ=  − −    
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( )11 12 0.6939.25 10 2 10 1 exp
2.0

t  × = × × − − ×    
 

We can easily solve this equation with logarithms; alternatively, we speed things 
up with MATLAB’s fsolve command: 

>> fun = @(t) 9.25e11 - 2e12*(1-exp(-0.693/2*t)); 
t0 = 10; 
fsolve(fun, t0) 

ans = 

    1.7917 

That is, t = 1.79 weeks, or 12.5 days.  
◼ P1.14 
Part (a): The half-life of this antimony isotope is 

6
1 2 7

0.693 0.693 5.21 10 s
1.33 10

t
λ −= = = ×

×
 

Noting that 1 year = 365 × 86,400 sec, we have 

6

1 2
5.21 10 0.165 yr

365 86,400
t ×

= =
×

 

Part (b): We first convert the decay constant,  

( ) ( )7 11.33 10 86,400 365 4.19 yrλ − −= × × × =  

The time t required for the isotope to reduce to 0.01% of its initial value is  

( )20.01 10 exp 4.19t−× = −  

( )2ln 0.01 10 4.19t−∴ × = −  

( )2ln 0.01 10
2.20 yr

4.19
t

−− ×
∴ = =  

Part (c): Appealing to equation (1.42), we write 

( ) ( )1 expoN t A tλ λ=  − −    

( )0.95 1 exp 4.19t∴ = − −  

( )ln 0.05
0.715 yr 8.58 months

4.19
t∴ = − = =  

◼ P1.15 
Let subscripts c and s denote cobalt and strontium, respectively. Assuming an 
equal number of curies, we may write that 

(I)c c s sN Nλ λ=  

But 
N V N ′′′= ×  

where V is volume and N’’’ is atom density. Atom density can be expressed as 

oNN
A

ρ′′′ =  

so that, substituting in (I), 

( ) ( )c c c o s s s

c

o

s

V N V N
A A

λ ρ λ ρ
=  

Finally, noting that the product of density and volume equals mass, we substitute 
the given data to obtain 
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c c o s

c

s s s c
c s

s c s

m N m N Am m
A A A

λ λ λ
λ

= → =  

5.26 60 10 1.22 g
28.8 90cm ×

∴ = × =
×

 

◼ P1.17 
Part (a): At saturation, the rate of production equals the rate of disintegration. 
Thus, the saturation activity is 5.0×108 nuclei/sec.  
Part (b): Noting that 1 Ci = 3.7×1010 disintegrations per second, we may write 

8

10
5.0 10 0.0135 Ci
3.7 10

SA ×
= =

×
 

Part (c): This is a straightforward application of equation (1.42) in the textbook:  

( ) ( )1 expoN t A tλ λ=  − −    

( )0.90 1 exp tλ∴ = − −  

The decay constant is 𝜆𝜆 = 0.693/2.0 = 0.347 week-1, so that  

( ) ( )ln 0.10 ln 0.10
6.64 weeks

0.347
t

λ
= − = − =  

Part (d): The equation that describes the decay of isotope A is (1.42). The 
differential equation governing B, in turn, is 

( ) ( ) ( )B A B
d N t N t N t
dt

λ λ= −  

Combining this with equation (1.42) yields 

( ) ( ) ( )0 1 expB B
d N t A t N t
dt

λ λ=  − −  −   

Multiplying both sides by exp(𝜆𝜆t), 

( ) ( ) ( )0exp exp 1B
d N t t A t
dt

λ λ  =  −      

Integrating between 0 and t, 

( ) ( ) ( ) ( ) ( ) ( )0
1exp 0 exp 0 exp exp 0B BN t t N A t tλ λ λ λ
λ

 − × =  − ×  −   
 

But NB(0) = 0 and exp(𝜆𝜆 × 0) = 1, so that 

( ) ( ) ( )0 1 1 expBN t A t tλ λ λ=  − + −    

After 2 weeks, 𝜆𝜆 × t = (0.693/2) × 2 = 0.693, giving 

( ) ( ) ( ) ( )8 72 5.0 10 1 1 0.693 exp 0.693 7.67 10 dis./sBNλ = × ×  − + −  = ×   

or equivalently,  

( )
7

10
7.67 102 = 0.00207 Ci
3.7 10BNλ ×

=
×

 

◼ P1.19 
Part (a): The number of atoms in one gram of an isotope is N0/A, and therefore 
the number of Ci in one gram is  

( ) ( )0 1 20
10 10

0.693
3.7 10 3.7 10

N t AN Aλ
χ = =

× ×
 

The half-life expressed in seconds is 138 × 86,400 = 1.19×107 sec; substituting 
above brings to 
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( )
( )

23

7

10

0.693 6.02 10
1.19 10 210

4512 Ci
3.7 10

χ

× ×

× ×
= =

×
 

Part (b): The number of disintegrations per second is 4512 × (3.7×1010) = 
1.67×1014 dis./sec. Each alpha particle dissipates 5.305 MeV, and 1 MeV = 
1.6×10-13 J. The heat produced by one gram of Po-210 then becomes 

( ) ( )14 131.67 10 5.305 1.6 10 141.8 J/s 141.8 WQ −= × × × × = =  

◼ P2.1 
The equation to use is (2.4) on the textbook,  

( ) ( ) ( )0 expI x I x= −Σ  

so that, solving for x,  

( )ln 0.05
3.745 cm

0.8
x = − =  

The fraction colliding is one minus the fraction penetrating without making a 
collision, 

( )1 exp 0.8 2.0 0.798− − × =  

Approximately 80% of the neutrons make their first collision within the first 2 cm 
of the material.  
◼ P2.3 
Part (a): The macroscopic cross-section Σ is given by the product 

( ) ( )24 23 13.50 10 4.20 10 1.47 cmNσ − −′′′Σ = = × × × =  

Part (b): The mean free path 𝜆𝜆 is the reciprocal of the macro cross-section:  

1 1 0.680 cm
1.47

λ = = =
Σ

 

Part (c): The fraction 𝜒𝜒 of neutrons that will penetrate a 3.0-cm slab without 
making a collision is 

( ) ( )exp 3 exp 3 1.47 0.0122 1.22%χ = − Σ = − × = =  

Part (d): The fraction of neutrons that will collide in the slab before penetrating a 
distance of 1.5 cm is 

( ) ( )1 exp 1.5 1 exp 1.5 1.47 0.890 89.0%χ = − − ×Σ = − − × = =  

◼ P2.7 
If the absorption cross-section for thermal neutrons in water is to be doubled, we 
may write 

2 2 2 22H O H O H O H OB B
a a aN N Nσ σ σ+ =  

This can be restated as 
2

2

H OB
a

H O B
a

N
N

σ
σ

=  

Using the absorption cross-section data from Appendix E, we obtain 

2
4

2

0.2948 3.84 10
767

H OB
a

H O B
a

N
N

σ
σ

−= = = ×  

or, equivalently, 384×10-6, which amounts to 384 ppma, or parts per million by 
atom. However, ppm is normally measured as a mass ratio. Accordingly, if boron 
weighs 10.811 amu and water has 18 amu, we may write 

4
2

10.8113.84 10 230.6 231 ppm
18

B

H O
m

m
−= × × = ≈  
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◼ P2.8 
We first use equation (2.26) to compute the composite microscopic cross-section 
of the uranium:  

( ) ( )25 281 0.04 607.5 1 0.04 11.8 35.6 bU e eσ σ σ= + − = × + − × =   

The microscopic cross-section of UO2 is then 

2 2 35.6 2 3.8 43.2 bUO U Oσ σ σ= + = + × =  

The macroscopic cross-section of UO2 follows as 

( ) ( )
23

24 12 2
10.5 6.02 10

43.2 10 1.01 cm
238 2 16

UO UOoN
A

ρ σ − −
× ×

Σ = = × × =
+ ×

 

Note that we have rounded the molar mass of the enriched uranium to 238.  
◼ P2.13 
The density of air is too small to contribute significantly to the cross-section. 
Given that 85% of the mixture is occupied by graphite and iron, we may write 

Fe 0.85CV V
V
+

=  

But VFe = VC , hence  

Fe C 0.425V V
V V

= =  

The macroscopic cross-section is then 

Fe Fe o C C o
Fe C

Fe C

V N V N
V A V A

ρ ρσ σΣ = +  

( ) ( ) ( ) ( )
23 23

24 24
7.87 6.02 10 1.6 6.02 10

0.425 10.9 10 0.425 4.75 10
55.85 12.01

− −
× × × ×

∴Σ = × × × + × × ×  

10.555 cm−∴ Σ =  

◼ P2.15 
Part (a): The minimum number of collisions will result if the neutron loses the 
maximum amount of energy in each collision; thus, appealing to equation (2.46),  

21
1

AE E E
A

α

α

=

−  ′ ′= = + 
 

Accordingly, we have 1.0 eV = 𝛼𝛼𝑁𝑁 × 106 eV, where N is the minimum number of 
collisions. Solving for N,  

( )
( )

6ln 10
ln

N
α

= −  

For deuterium, 
22 1 0.111

2 1
α − = = + 

 

so that  

( )
( )

6ln 10
6.28

ln 0.111
N = − =  

6.28 7N∴ = =        

For deuterium, the minimum number of collisions required to slow down a 
neutron by the desired amount is 7.  
Part (b): Proceeding similarly with carbon-12,  

212 1 0.716
12 1

α − = = + 
 

( )
( )

6ln 10
41.4

ln 0.716
N∴ = − =  
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41.4 42N∴ = =        

For carbon-12, the minimum number of collisions required to slow down a neutron 
by the desired amount is 42.  
Part (c): Proceeding similarly with iron-56,  

256 1 0.931
56 1

α − = = + 
 

( )
( )

6ln 10
193.2

ln 0.931
N∴ = − =  

193.2 194N∴ = =        

For iron-56, the minimum number of collisions required to slow down a neutron by 
the desired amount is 194. 
Part (d): Finally, for uranium-238, we write 

2238 1 0.983
238 1

α − = = + 
 

( )
( )

6ln 10
805.8

ln 0.983
N∴ = − =  

805.8 806N∴ = =        

For uranium-238, the minimum number of collisions required to slow down a 
neutron by the desired amount is 806.  
◼ P2.16 
We first compute the alpha values for both uranium isotopes:  

2
25 235 1 0.98312

235 1
α − = = + 

 

2
28 238 1 0.98333

238 1
α − = = + 

 

Assuming the 𝛼𝛼 for the uranium isotopes is that of uranium-238, we compute the 
slowing down decrement for uranium (eq. (2.56)):  

( )
28

28
28

0.98331 ln 1 ln 0.9833 0.00840
1 1 0.9833U
αξ α
α

= + = + × =
− −

 

Proceeding similarly with oxygen,  

216 1 0.7785
16 1

Oα − = = + 
 

( )0.77851 ln 0.7785 0.120
1 0.7785Oξ∴ = + × =
−

 

The average slowing down decrement for uranium dioxide can be established with 
equation (2.61),  

2

U O
U U S O O S

UO U O
U S O S

N N
N N

ξ σ ξ σξ
σ σ

+
=

+
 

Here, NO = 2NU; also, 𝜎𝜎𝑠𝑠𝑈𝑈 = 9.146 b and 𝜎𝜎𝑠𝑠𝑂𝑂 = 3.761 b can be read from Appendix 
Table II-3. It follows that 

2

2 0.0084 9.146 2 0.120 3.761 0.0588
2 9.146 2 3.761

U O
U S O S

UO U O
S S

ξ σ ξ σξ
σ σ

+ × + × ×
= = =

+ + ×
 

Clearly, 𝜉𝜉𝑈𝑈𝑂𝑂2 = 0.0588 > 𝜉𝜉𝑈𝑈 = 0.00840, hence the oxygen atoms have an 
appreciable effect on the slowing down decrement.  
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◼ P3.4 
The eta value is given by 

( )
( ) ( )

25

25 28
f

a a

vN

N N

σ
η

σ σ
=

+
 

This can be restated as 
25 25

25 2828

28 25

1

1

f

a a

a

v
N
N

σ
η

σ σ
σ

=
 

+  
 

 

But, given the enrichment 𝑒̃𝑒 = N25/(N25 + N28), we have  

( )

25 25

2825
1

25

1

1 1

f

aa

a

v

e

σ
η

σσ
σ

−

=
+ −

 

Substituting values from the given table, 

( )1

2.43 505 1
2.42591 1 1
591

e
η

−

×
= ×

+ − ×

 

( )1

12.076
1 0.00409 1e

η
−

∴ =
+ −

 

This equation is plotted below as a function of enrichment 𝑒̃𝑒. As can be seen, 𝜂𝜂 
rises rapidly for enrichments ranging from 0 to ∼6%; enrichments greater than 6% 
or so yield only marginal improvements in 𝜂𝜂.  

 

◼ P3.7 
Part (a): Note first that E = Eoexp(−u) and thus dE/du = −Eoexp(−u), so that  
 

( ) ( ) ( ) ( )expop u u p E E dE du p E E E u′ ′ ′ ′ ′ ′→ = − → = → −  

But, from equation (2.47),  

( ) ( )
1 ;

1
Ep u u dE E E

E
α

α
′ ′ ′→ = ≤ ≤

−
 

giving  

( ) ( ) ( ) ( ) ( )0 0
1 1 1exp exp

1 1 expo

p u u E u E u
E E uα α

′ ′ ′→ = − = × × −
− − −

 

( ) ( )1 exp
1

p u u u u
α

′ ′∴ → = −
−

 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

Percent enrichment

0

0.5

1

1.5

2

2.5

(x
)
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To find the integration bounds, note that when E’ = E, we have u’ = u. In turn, 
when E’ = 𝛼𝛼E, we have 

( )0 0 1ln ln ln lnE Eu u
E E

α
α α
     ′ = = − = +     

    
 

In summary, we have shown that 

( ) ( ) ( )1 exp , ln 1
1
0 , otherwise

u u u u u
p u u

α
α

 ′ ′− ≤ ≤ +′→ = −


 

Part (b): First note that  

( ) ( ) ( ) ( )
0

1 expE u du dE u u
E

ϕ ϕ ϕ= − =  

Then, equation (3.22) may be written as 

( ) ( ) ( ) ( ) ( )
0

1 1 1exp
1

E

Es su u E E dEu
E E

α
ϕ ϕ

α
′ ′ ′Σ = Σ

′− ∫  

( ) ( ) ( ) ( ) ( ) ( )
1ln

0 0

exp1 1exp
1

u

us s
u

u u u u duu
E E

αϕ ϕ
α

 −  
 

′
′ ′ ′∴Σ = − Σ

− ∫  

( ) ( ) ( ) ( ) ( ) ( )1ln
0

1 1exp exp
1

u

us su u u u u u duu
E α

ϕ ϕ
α  −  

 

′ ′ ′ ′∴Σ = − Σ
− ∫  

◼ P3.10 
Parts (a) and (c): All the needed data is in Table 3.1, provided we take Σ𝑠𝑠𝑠𝑠 = 
(𝜉𝜉𝑖𝑖Σ𝑠𝑠𝑠𝑠)/𝜉𝜉𝑖𝑖, yielding 

D O2 0.18 0.353
0.51sΣ = =  

H O2 1.28 1.376
0.93sΣ = =  

Also,  

( )
i si

ai
i si ai

ξ
ξ

Σ
Σ =

Σ Σ
 

62 0.18 8.57 10
21,000

D O
a

−∴Σ = = ×  

2 1.28 0.0221
58

H O
a∴Σ = =  

 

From equation (2.61), the averaged slowing down decrement is given by 
 

1
i si

is
ξ ξ= Σ

Σ ∑  

 

For 1% contamination, the number densities and thus the macroscopic cross-
sections of heavy water and water are replaced by 0.99 and 0.01 of their nominal 
values, respectively. Accordingly,  
 

2 2
2 2

2 2

0.99 0.01
0.99 0.01

D O H O
D O s H O s

D O H O
s s

ξ ξ
ξ

× Σ + × Σ
=

Σ + Σ
 

0.51 0.99 0.353 0.91 0.01 1.376 0.525
0.99 0.353 0.01 1.376

ξ × × + × ×
∴ = =

× + ×
 

The variation in slowing down ratio, in turn, is given by 

( )D O H O 62 2

0.51 0.99 0.353 0.91 0.01 1.376 832
0.99 0.01 0.99 8.57 10 0.01 0.0221

i si
i

a a

s

a

ξ
ξ

−

Σ
Σ × × + × ×

= = =
Σ Σ + Σ × × + ×

∑
 

Thus, while the contamination has only small effects on the slowing down 
decrement, it decreases the slowing down ratio substantially as a result of the 
much larger absorption cross-section of water.  
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◼ P4.3 
The volume of the reactor is given by the sum of fuel, coolant (sodium), and 
structural material (iron):  

f Na FeV V V V= + +  

We were given Vf/V = 0.30, VNa/V = 0.50, and VFe/V = 0.20. We also know that  

PuO2 2f UOV V V= +  

and we were given Vf = VPuO2/Vf = 0.15 and VUO2//Vf = 0.85. Using volume 
weighting, we may write  

( )
( ) ( ) ( )Na Fe

f
f ff

f
a f a Na a Fe a

V V vv
k

V V V V V V∞

ΣΣ
= =

Σ Σ + Σ + Σ
 

Na Fe

0.30
(I)

0.30 0.50 0.20

f
f

f
a a a

v
k∞

Σ
∴ =

Σ + Σ + Σ
 

Using volume weighting for the fissile and fertile material in the fuel:  

PuO UOPuO UO PuO UO49 28 49 282 22 2 2 20.15 0.85f
f f f f f

f f

V V
v v v v v

V V
   

Σ = Σ + Σ = Σ + Σ      
   

 

Also,  

PuO UOPuO UO PuO UO2 22 2 2 20.15 0.85f
a a a a a

f f

V V
V V

   
Σ = Σ + Σ = Σ + Σ      

   
 

Substituting the two previous results into (I) brings to 

PuO UO49 282 2

PuO UO Na Fe2 2

0.045 0.255
0.045 0.255 0.50 0.20

f f

a a a a

v v
k∞

Σ + Σ
∴ =

Σ + Σ + Σ + Σ
 

Using Σ = N𝜎𝜎 = (𝜌𝜌No/A)𝜎𝜎 and ignoring the cross-sections of oxygen, we have 

PuO UO49 49 28 282 2

PuO UO2 2

PuO UO49 28 Na FeNa Fe2 2

PuO UO Na Fe2 2

0.045 0.255

0.045 0.255 0.50 0.20

o f o f

o a o a o a o a

N v N v
A A

k
N N N N

A A A A

ρ ρ
σ σ

ρ ρ ρ ρσ σ σ σ
∞

+

∴ =
+ + +

 

Cancelling No, 

PuO UO49 49 28 282 2

PuO UO2 2

PuO UO49 28 Na FeNa Fe2 2

PuO UO Na Fe2 2

0.045 0.255

0.045 0.255 0.50 0.20

f f

a a a a

v v
A A

k

A A A A

ρ ρ
σ σ

ρ ρ ρ ρσ σ σ σ
∞

+

∴ =
+ + +

 

The pertaining mass numbers are ANa = 23, AFe = 55.85, APuO2 = 239 + 2 × 16 = 271, 
and AUO2 = 238 + 2 × 16 = 270; all other variables can be read from the given table, 
so that 

11 110.045 2.98 1.95 0.255 2.47 0.05
271 270

11 11 0.97 7.870.045 2.40 0.255 0.404 0.50 0.0018 0.20 0.0087
271 270 23 55.85

k∞
× × × + × × ×

=
× × + × × + × × + × ×

 

1.343k∞∴ =  

◼ P4.4 
The first step is to update the value of 𝑘𝑘∞ accounting for the given nonleakage 
probability:  

1.0 1.111
0.9NL

kk
P∞ = = =  



18 
© 2023 Montogue Quiz 

As before, the sum of volumes is such that 𝑉𝑉 = 𝑉𝑉𝑓𝑓 + 𝑉𝑉𝑁𝑁𝑁𝑁 + 𝑉𝑉𝐹𝐹𝐹𝐹 and we are given 
𝑉𝑉𝑓𝑓/𝑉𝑉 = 0.30, 𝑉𝑉𝑁𝑁𝑁𝑁/𝑉𝑉 = 0.50, and 𝑉𝑉𝐹𝐹𝐹𝐹/𝑉𝑉 = 0.20. Also, the total volume of fuel is given 
by the sum of the volume of plutonium dioxide, 𝑉𝑉PuO2, and uranium dioxide, 𝑉𝑉UO2: 

PuO UO2 2fV V V= +  

Let x = 𝑉𝑉PuO2/𝑉𝑉 and 1 – x = 𝑉𝑉UO2/𝑉𝑉. Using volume weighting, we may write 

( )
( ) ( ) ( )Na Fe

Na Fe

f
f ff

f
a f a a a

V V vv
k

V V V V V V∞

ΣΣ
= =

Σ Σ + Σ + Σ
 

Na Fe

0.30
(I)

0.30 0.50 0.20

f
f f

f
a a a a

v v
k∞

Σ Σ
∴ = =

Σ Σ + Σ + Σ
 

Using volume weighting for the fissile and fertile material in the fuel, we have 

( )PuO UO49 282 21f
f f fv xv x vΣ = Σ + − Σ  

and  

( )PuO UO2 21f
a a ax xΣ = Σ + − Σ  

Substituting in (I),  

( )
( )

PuO UO49 282 2

PuO UO Na Fe2 2

0.30 1

0.30 1 0.50 0.20
f ff

a a a a a

xv x vv
k

x x∞

 Σ + − ΣΣ  = =
Σ  Σ + − Σ + Σ + Σ 

 

Using Σ = N𝜎𝜎 = (𝜌𝜌No/A)𝜎𝜎 and ignoring the cross-sections of oxygen, we have 

( )

( )

PuO UO49 49 28 282 2

PuO UO2 2

PuO UO49 28 Na FeNa Fe2 2

PuO UO Na Fe2 2

0.30 1

0.30 1 0.50 0.20

o f o f

o a o a o a o a

x N v x N v
A A

k
x N x N N N

A A A A

ρ ρ
σ σ

ρ ρ ρ ρσ σ σ σ
∞

 
+ − 

  =
 

+ − + + 
  

 

Cancelling No, 

( )

( )

PuO UO49 49 28 282 2

PuO UO2 2

PuO UO49 28 Na FeNa Fe2 2

PuO UO Na Fe2 2

0.30 1
1.111

0.30 1 0.50 0.20

f f

a a a a

x v x v
A A

k
x x

A A A A

ρ ρ
σ σ

ρ ρ ρ ρσ σ σ σ
∞

 
+ − 

  = =
 

+ − + + 
  

 

The mass numbers A have already been calculated in the previous problem. 
Substituting these and other data, we obtain 

( )

( )

11 110.30 2.98 1.95 1 2.47 0.05
271 270 1.111

11 11 0.97 7.870.30 2.40 1 0.404 0.50 0.0018 0.20 0.0087
271 270 23 55.85

x x
k

x x
∞

 × × × + − × × ×  = =
 × × + − × × + × × + × ×  

 

( )
( )

0.30 0.236 0.00503 1
1.111

0.30 0.0974 0.0165 1 0.000283
x x

k
x x∞

 + −  ∴ = =
 + −  + 

 

This first-degree equation in 𝑥𝑥 can be easily solved by expanding the terms in 
brackets, cross-multiplying, and solving for 𝑥𝑥. We can speed things up with 
Mathematica:  

 

That is, 𝑥𝑥 ≈ 0.102. Therefore, the fuel should be 10.2% PuO2 and 89.8% UO2 by 
volume.  
◼ P4.6 
Let N be the number density of UO2. Given the enrichment 𝑒̃𝑒 = 0.03, we appeal to 
equation (4.49) (pp. 107) to compute factor 𝜂𝜂𝑇𝑇: 
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( )

25 25

25 281 2

f
f f

T f O
a a a a

v eNv
eN e N N

σ
η

σ σ σ
Σ

= =
Σ + − +



 
 

Cancelling N, 

( )

25 25

25 281 2
f

T O
a a a

ev
e e

σ
η

σ σ σ
=

+ − +



 
 

Gleaning data from Table 3.2 and oxygen data from Table E-3, we get 

( )
0.03 2.43 505 1.834

0.03 591 1 0.03 2.42 2 0.0002Tη
× ×

= =
× + − × + ×

 

Now, to find the resonance escape probability p, we appeal to equation (4.40) in 
page 104: 

exp (I)f f

m s

V N
p I

V ξ
  

= −   Σ  
 

Given A = 238 + 2 × 16 = 270, the number density of fuel is 

( )23
22 30

11.0 6.02 10
2.45 10 g/cm

270f
NN
A

ρ × ×
= = = ×  

The resonance integral 𝐼𝐼 for UO2 can be read from Table 4.3 (pp. 105), 

( )4.45 26.6 4 4.45 26.6 4 11 1.1 19.74 bI Dρ= + = + × =  

Note that we have used 1.1 cm as the pin diameter instead of 1.0 cm because we 
were told that the Dancoff correction increases the fuel diameter for the 
resonance integral calculation by 10%. Taking 𝜉𝜉Σ𝑠𝑠 = 1.28 for water from Table 3.1, 
we substitute into (I) to obtain 

( ) ( )
22

24
2.45 101exp exp 19.74 10

2 1.28
f f

m s

V N
p I

V ξ
−

 ×     = − = − × × ×    Σ       

 

0.828p∴ =  

Next, the thermal utilization is given by equation (4.55) (pp. 108): 

( )( )
1 (II)

1 m f
m m f f aT aT

f
V N V Nς σ σ

=
+

 

Here, the number density ratio Nm/Nf is determined as 

0

0

1.0 270 1.364
11 18

m fm m m

f f f f m

AN N A
N N A A

ρρ
ρ ρ

×
= = = =

×
 

The absorption cross-sections 𝜎𝜎�𝑎𝑎𝑎𝑎𝑚𝑚  = 0.5896 b and 𝜎𝜎�𝑎𝑎𝑎𝑎
𝑓𝑓  = 6.540 b can be read from 

Table E-3; substituting in (II),  

( )( )( ) ( )
1 1 0.778

1 1.16 2 1.364 0.5896 6.5401 m f
m f m f aT aT

f
V V N Nς σ σ

= = =
+ × × ×+

 

Finally, 𝑘𝑘∞ is calculated as 

1.24 0.828 0.778 1.834 1.465Tk pfε η∞ = = × × × =  

◼ P4.8 
Part (a): The resonance escape probability is given by equation (4.40), namely 

exp f f

m s

V N
p I

V ξ
  

= −   Σ  
 

As heavy water is replaced by light water, the only quantity changing is the 
slowing down power, 𝜉𝜉Σ𝑠𝑠. Referring to Table 3.1 on page 62, we see that the SDP 
of H2O (= 1.28) is greater than that of D2O (= 0.18). Accordingly, we surmise that 
the resonance escape probability will increase.  
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Part (b): The thermal utilization is given by equation (4.55), namely 

( )( )( )
1

1 m f
m f m f aT aT

f
V V N Nς σ σ

=
+

 

The major change will occur in the moderator thermal absorption cross-section, 
𝜎𝜎�𝑎𝑎𝑎𝑎𝑚𝑚 . The thermal disadvantage factor will change less. With reference to Table E-3, 
we see that 𝜎𝜎�𝑎𝑎𝑎𝑎𝑚𝑚  is much smaller for heavy water than for light water. Accordingly, 
the numerator in (4.55) will increase and the thermal utilization will decrease.  
Part (c): Because of its very small thermal absorption cross-section, heavy water is 
considered to be the best moderator. Reactors can be built using natural uranium 
if heavy water is the moderator, but not with light water. Therefore, the net 
effect of replacing heavy water with ordinary water would be to decrease the 
value of 𝑘𝑘∞.  

◼ P4.10 
Part (a): The pertaining calculations have been performed in the solution to 
Problem 4.6. The resonance escape probability is such that 

( ) ( )
22

24

1 2.45 10
exp exp 19.74 10

1.28
f f m

m fs

V N Vp I
V Vξ

−

− ×     = − = − × × ×      Σ     

 

1

exp 0.378 (I)m

f

Vp
V

−  
 ∴ = −      

 

This is the equation we need to plot in part (a).  
Part (b): The thermal utilization f is such that 

( )( )( ) ( ) ( )
1 1

1 1.16 1.364 0.5896 6.5401 m f
m fm f m f aT aT

f
V VV V N Nς σ σ

= =
+ × × ×+

 

( )
1 (II)

1 0.1426 m f

f
V V

∴ =
+

 

This is the equation we need to plot in part (b).  
Part (c): With 𝜀𝜀 and 𝜂𝜂𝑇𝑇 unchanged at 1.24 and 1.834, respectively, we write the 
four-factor formula to obtain 

( )

1
11.24 exp 0.378 1.834

1 0.1426
m

T
f m f

Vk pf
V V V

ε η
−

∞

  
 = = × − × ×    +  

 

( )

1
12.274exp 0.378 (III)

1 0.1426
m

f m f

Vk
V V V

−

∞

  
 ∴ = − ×    +  

 

This is the equation we need to plot in part (c).  
Parts (d) and (e): The equations obtained in parts (a), (b), and (c) are plotted with 
the following MATLAB code (note that we’ve used a wider range of 𝑉𝑉𝑚𝑚/𝑉𝑉𝑓𝑓 values 
than the problem statement suggests): 

m_f = linspace(0,4,100); 
p = exp(-0.378.*m_f.^(-1)); 
f = 1./(1+0.1426.*m_f); 
k_inf = 2.274.*p.*f; 
figure 
plot(m_f, p, 'LineWidth', 2, 'Color', 'red') 
hold on 
plot(m_f, f, 'LineWidth', 2, 'Color', 'blue') 
plot(m_f, k_inf, 'LineWidth', 2, 'Color', 'magenta') 
grid on 
hold off 

(See next page.) 
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Note that the resonance escape probability p increases steadily with increasing 
Vm/Vf. In turn, the thermal utilization f decreases steadily with increasing Vm/Vf. 
Finally, 𝑘𝑘∞ at first rapidly increases with Vm/Vf but then begins to drop. 

To find the maximum value of 𝑘𝑘∞, we type 

>> max(k_inf)

ans = 

 1.4668 

That is, 𝑘𝑘∞,max = 1.4668. This is entry number 46 in k_inf; the corresponding 𝑉𝑉𝑚𝑚/𝑉𝑉𝑓𝑓 
is  

>> m_f(46)

ans = 

   1.8182 

That is, the maximum 𝑘𝑘∞ corresponds to a volume ratio 𝑉𝑉𝑚𝑚/𝑉𝑉𝑓𝑓 ≈ 1.818. 

◼ P4.11
Part (a): As indicated by Table 4.3, the resonance integral increases when
replacing U with UO2. This effect is magnified by the lower density of UO2.
Part (b): The thermal utilization may decrease slightly as a result of the lower
density of UO2. The thermal absorption cross-section of oxygen is so small that it
has little effect.
Part (c): Since the thermal absorption cross-section of oxygen is so small, it causes
only a very slight decrease in 𝜂𝜂𝑇𝑇. The decrease in density cancels out of the
definition of 𝜂𝜂𝑇𝑇.
◼ P4.12
With reference to the table given in Problem 3.4, calculating 𝜂𝜂𝑇𝑇 is straightforward:

0.02f
f

T f
a

Nν
η

Σ
= =
Σ

25 25 0.01fv Nσ + 49 49

0.02
f

N
ν σ

25 0.01a Nσ + 49 0.97f Nσ +

25 25 49 49

25 49 2828

0.02 0.01
0.02 0.01 0.97

f f

a f aa

v σ ν σ
σ σ σσ

+
=

+ +

0.02 2.43 505 0.01 2.90 698 1.874
0.02 591 0.01 973 0.97 2.42Tη

× × + × ×
∴ = =

× + × + ×

◼ P5.6
Part (a): The period T we aim for is

( )
3

3

2 2exp 10
ln 10

T
T
  = → = 
 

( )3

2 0290 h 17.4 min
ln 10

T∴ = = =

Part (b): Since the period is very long, the positive reactivity must be quite small 
relative to 𝛽𝛽, and we may use equation (5.57): 

1 (I)T
T

β ρ
ρλ β λ

= → =

0 0.5 1 1.5 2 2.5 3 3.5 4
Vm/Vf

0

0.5

1

1.5

p(
x)

, f
(x

), 
ki

nf
(x

)

p
f
kinf
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The only missing quantity is 𝜆𝜆, which can be established from equation (5.34); the 
delayed neutron properties can be gleaned from Table 5.1. 

 

As shown in the highlighted cell, we have 𝜆𝜆 = 0.07662 s-1. Substituting in (I),  

( )
1 1 0.0125 dollars 1.25 cents

0.07662 17.4 60T
ρ
β λ
= = = =

× ×
 

◼ P5.9 
Since only one cent of reactivity is involved, equation (5.57) is a reasonable 
approximation for both positive and negative periods of parts (a) and (b) 
respectively. Table 5.1 gives the delayed neutron fractions. However, we must use 
equation (5.34) to calculate 𝜆𝜆. The calculations are summarized below.  
 

Half-life (s) 
beta(l) beta(l)/lambda(l) 

U-233 U-235 Pu-239 U-233 U-235 Pu-239 
56 0.00023 0.00021 0.00007 0.018586 0.01697 0.005657 
23 0.00078 0.00142 0.00063 0.025887 0.047128 0.020909 
6.2 0.00064 0.00128 0.00044 0.005726 0.011452 0.003937 
2.3 0.00074 0.00257 0.00069 0.002456 0.00853 0.00229 

0.61 0.00014 0.00075 0.00018 0.000123 0.00066 0.000158 
0.23 0.00008 0.00027 0.00009 2.66E-05 8.96E-05 2.99E-05 
Sum 0.00261 0.0065 0.0021 0.052805 0.084829 0.032981 

1/lambda 
  

20.23176 13.05064 15.70501 
lambda 0.049427 0.076625 0.063674 

 

Then, the reactor periods are expressed as 

T
ββ

ρλ
= =

100
0.01βλ λ

=  

Part (a): Using the 𝜆𝜆 values highlighted in blue, we have, for uranium-233,  

100 2023 s 33.7 min
0.049427

T = = =  

For uranium-235,  
100 1305 s 21.8 min

0.076625
T = = =  

For plutonium-239,  
100 1571 s 26.2 min

0.063674
T = = =  

Part (b): The periods for part (b) are simply T = −33.7 min for uranium-233, T = 
−21.8 min for uranium-235, and T = −26.2 min for plutonium-239.  
◼ P6.6 
Part (a): In source-free spherical geometry, the neutron flux is given by equation 
(6.51), namely 

( ) 1 2exp expC r C rr
r L r L

φ    = + −   
   

 

Since in this problem there is no source at the origin, the flux 𝜙𝜙(0) must be finite. 
However, with reference to the equation above, this can only hold if C2 = −C1, so 
that 

I
Approximate
half-life (sec)

lambda beta beta/lambda

1 56 0.0124 0.00021 0.01697
2 23 0.0301 0.00142 0.04713
3 6.2 0.1118 0.00128 0.01145
4 2.3 0.3013 0.00257 0.00853
5 0.61 1.1361 0.00075 0.00066
6 0.23 3.0130 0.00027 0.00009

Total 0.0065 0.08483
1/lambda
lambda

13.05064
0.07662
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( ) ( )1 1 sinh
exp exp (I)

r LC r C rr C
r L r L r

φ    = − − =   
   

 

where C = 2C1. Suppose that there are 𝑠𝑠′′ neutrons/s/cm2 impinging on the surface 
of the sphere. Then, the incoming partial current will be  

( ) ( ) ( )1 1
4 2 r R

dJ R R D r s
dr

φ φ−

=
′′= + =  

Inserting the flux distribution,  

( ) ( ) ( )
2

sinh cosh sinh1 1 1
4 2 2

R L R L R L
C DC DC s

R LR R
′′+ − =  

Solving for C:  

( ) ( ) ( )1 1 1
1 2 sinh 2 cosh 4C DR R L DL R L Rs− −

−
  ′′= − +   

Substituting C in (I) brings to 

( ) ( )
( ) ( ) ( )1 1

sinh
4

1 2 sinh 2 cosh
r L Rr s

rDR R L DL R L
φ

− −

  ′′=  − +  
 

Part (b): The fraction absorbed will be simply one minus the fraction reflected. 
The fraction reflected is just the albedo, namely 

( )
( )

J R
J R

α
+

−=  

But 𝐽𝐽+(R) is given by (6.32) and 𝐽𝐽−(R) = 𝑠𝑠′′, so that 

( ) ( )1 1 1 (II)
4 2 r R

dR D r
s dr

α φ φ
=

 = − ′′  
 

We first take the flux derivative,  

( ) ( ) ( )
( ) ( ) ( )

1 1

1 1

cosh sinh
4

1 2 sinh 2 cosh
L r L r r Ld Rr s

dr rDR R L DL R L
φ

− −

− −

−   ′′=  − +  
 

Substituting 𝜙𝜙(R) and the derivative d𝜙𝜙(R)/dr into (II), 

( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

1 1

1 1

1 1

sinh
1 2 sinh 2 cosh

cosh sinh
2

1 2 sinh 2 cosh

R L
DR R L DL R L

L R L R R L
D

DR R L DL R L

α
− −

− −

− −

 
 − + 

=  − −
 − + 

 

We can simplify this lengthy expression with Mathematica’s Simplify command:  

 

That is,  

( ) ( ) ( )
( ) ( ) ( )

2 cosh 2 sinh
(III)

2 cosh 2 sinh
DR R L L D R R L

DR R L L D R R L
α

− × + + ×
=

× + − + ×
 

For graphite, D = 0.84 cm and Σ𝑎𝑎 = 2.1×10-4 cm-1, so that 

( )40.84 2.1 10 63.3 cmaL D −= Σ = × =  

Also, R = 100 cm; inserting these quantities into (III), 
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( ) ( ) ( )
( ) ( ) ( )

2 0.84 100 cosh 100 63.3 63.3 2 0.84 100 sinh 100 63.3
2 0.84 100 cosh 100 63.3 63.3 2 0.84 100 sinh 100 63.3

α
− × × × + × × + ×

=
× × × + × − × + ×

 

0.976α∴ =  

Thus, because graphite has a very small absorption cross-section, 97.6% of the 
neutrons are reflected from the sphere, while only 100 – 97.6 = 2.4% are absorbed 
in the slab. Note that if the sphere had a very large radius (𝑅𝑅 → ∞), equation (III) 
would further simplify to: 

 

That is,  
2 2 0.84 63.3lim 0.948

2 2 0.84 63.3R
D L

D L
α

→∞

− + − × +
= = =

+ × +
 

That is, in the upper limit of an infinite-size sphere, only about 5.2% of the 
incident neutrons would be absorbed in the graphite.  
◼ P6.10 
Part (a): Equation (6.51) applies on both sides of the spherical shell; the equation 
is 

( ) ( ) ( )1 2exp expC Cr r L r L
r r

φ = + −  

Inside the shell we must have C1 = −C2 and therefore the solution may be restated 
as 

( ) ( ) ( ) ( )1 1 sinh
exp exp ; 0

r LC Cr r L r L C r R
r r r

φ = − − = ≤ <  

Outside the shell we must have C1 = 0, so that the solution vanishes at infinity. 
Thus, we may write 

( ) ( )exp
;

r L
r C R r

r
φ

−
′= < ≤ ∞  

The next step is to employ the interface conditions, (6.42) and (6.44), to 
determine the remaining two constants. From equation (6.42),  

( ) ( )0, 0, sinh expR Rx x C C
L L

φ φ− +
    ′= → = −   
   

 

exp sinh (I)R RC C
L L

   ′∴ =    
   

 

To employ equation (6.44), we need the currents at each side of the interface:  

( ) ( ) ( ) ( )
20

cosh sinh
0r

r L r LdJ r D r D C r R
dr Lr r
φ −−

 
= − = − − ≤ < 

 
 

( ) ( ) ( ) ( )
20

exp exp
r

r L r LdJ r D r D C R r
dr Lr r
φ ++

 − − 
′= − = − < ≤ ∞ 

 
 

For this spherical geometry problem, equation (6.44) becomes 

( ) ( )
R R

d dD r s D r
dr dr
φ φ− +′′− + = −  

( ) ( ) ( ) ( )
2 2

cosh sinh exp expR L R L R L R L
D C s D C

LR R LR R
   − − 

′′ ′∴− − + = +   
   

 

Replacing C’ with (I),  

( ) ( ) ( ) ( )1 2 1cosh sinh 1 sinhD RL R L R L C R s D RL R L C− −′′ − − + = +   
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( ) ( )
( )

( )1

exp

sinh cosh exp
R L

RLs RLsC R L R L R L
D D

−

= −

′′ ′′
∴ =  +  = − 

 

Finally, we have 

( )
( ) ( )

( ) ( )

sinh exp ; 0

exp sinh ;

R Lsr L R L r R
r D

r
R Lsr L R L R r
r D

φ

′′  − ≤ <  = 
′′  − ≤ < ∞  

 

Part (b): Since sinh(r/L) ≈ r/L for small r, flux 𝜙𝜙(0) is such that  

( ) ( ) ( )0 sinh exp expR Ls R Rsr L R L
r D L D

φ
′′ ′′   = − ≈ −   

   
 

Also,  

( ) sinh expR R LsR
L L D

φ
′′   = −   

   
 

Dividing 𝜙𝜙(0) by 𝜙𝜙(R),  

( )
( )

( )exp0 R L
R

φ
φ

−
=

R s′′ D

( ) ( )sinh expR L R L− L s′′ D
( )
( )sinh

R L
R L

=  

◼ P6.14 

In equation (6.95) let �1 − 𝑘𝑘∞ = m. The first two terms of a Taylor series 
expansion of sinh(x) centered at x = 0 are  

( ) ( )
3

sinh
6
xx x x= + +O  

so that, substituting in (6.95),  

( )
( )
( )

( )
( )

1 1

2 2 11

sinh 1 sinh
1 1

sinhsinh 1
o o

a a

L k r L mrs sR Rr
m r m r L mRL k R

φ
− −

∞

−−
∞

   −′′′ ′′′   = − = −
 Σ Σ−    

 


 

( )
( )
( )

31 1

32 1 1

1
61

1
6

o

a

L mr L mrs Rr
m r L mR L mR

φ
− −

− −

 +′′′  ∴ = −
 Σ + 



 
 

( ) 2 1o

a

s Rr
m r

φ
′′′

∴ = −
Σ

 r
R

( )
( )

1

1

2

2

11 6
11 6

L mr

L mR

−

−

  +    +    


 

( )
( )
( )

1

2 1

2

2

11 61 (I)
11 6

o

a

L mrsr
m L mR

φ
−

−

  +′′′   ∴ = −  Σ +    


 

For small 𝑥𝑥 and y, we may use the approximation 

( )
( ) ( )( )1

1 1 1
1

x
x y x y x y

y
+

+ = ≈ + − ≈ + −
+

 

so that  

( )
( )

( ) ( )
1

1 1

1

2
2 2

2

11 1 16 1
6 611 6

L mr
L mr L mR

L mR

−

− −

−

 +  ≈ + −
 +  




 

Substituting in (I),  

( )
( )
( )

( ) ( )
1

1 1
2 21

2
2 2

2

11 1 161 1 1
6 611 6

o o

a a

L mrs sr L mr L mR
m mL mR

φ
−

− −

−

  +′′′ ′′′    = − = − − +    Σ Σ  +    




 

( ) ( )2
2 2

6
o

a

sr R r
L

φ
′′′

∴ = −
Σ

  
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Alternatively,  

( ) ( )2 2

6
osr R r
D

φ
′′′

= −  

Turning to equation (6.103), let �1 − 𝑘𝑘∞ = n. Note that for small 𝑥𝑥 a Taylor series 
expansion of sin(x) around x = 0 reads  

( )31sin
6

x x x x= − +O  

so that  

( )
( )
( )

( )
( )

1 1

2 2 11

sin 1 sin
1 1

sinsin 1
o o

a a

R L k r R L nrs sr
n n r L nRr L k R

φ
− −

∞

−−
∞

   −′′′ ′′′   = − = −
 Σ Σ−    

 


 

( )
( )
( )

31 1

32 1 1

1
6 1

1
6

o

a

L nr L nrs Rr
n r L nR L nR

φ
− −

− −

  −′′′   ∴ = −  Σ −   



 
 

( ) 2
o

a

s R rr
n r R

φ
′′′

∴ =
Σ





( )
( )

21 1

21 1

1
6 1 (II)

1
6

L nr L nr

L nR L nR

− −

− −

  −   −  −   
 

 

As before, for small 𝑥𝑥 and y, we may use the approximation 𝑥𝑥 + y ≈ (1 – 𝑥𝑥)(1 + y) ≈ 
1 – 𝑥𝑥 + y, giving 

( )
( )

( ) ( )
31 1

1 1
31 1

2 21 1 16 1
6 61

6

L nr L nr
L nr L nR

L nR L nR

− −

− −

− −

 −
  ≈ − +
 − 


 

 

Substituting in (II),  

( ) ( ) ( )1 1
2

2 21 11 1
6 6

o

a

sr L nr L nR
n

φ − −′′′  = − + − Σ  
  

( ) ( )2
2 2

6
o

a

sr R r
L

φ
′′′

∴ = −
Σ

  

Clearly, equations (6.95) and (6.103) tend to the same result in the limit of 𝑘𝑘∞ → 1.  
◼ P6.15 
Within the sphere (except at the origin) the flux is given by equation (6.92), but 
with the distributed source equal to zero:  

( ) ( ) ( )1 11 2exp 1 exp 1 (I)C Cr L k r L k r
r r

φ − −
∞ ∞= − + − −  

To obtain the two arbitrary constants, we first set the flux to zero at the 
extrapolated boundary, that is, 𝜙𝜙(𝑅𝑅�) = 0, giving  

( ) ( ) ( )1 11 2exp 1 exp 1 0C Cr R L k R L k R
R R

φ − −
∞ ∞= = − + − − =  

 
 

( )1
1 2exp 2 1C L k R C−

∞∴ = − − −   

Substituting in (I),  
0 

( ) ( ){ }1 1 2exp 1 exp 1 2 Cr L k r L k r R
r

φ − −
∞ ∞

   = − − − − −   
  

 

or, in terms of hyperbolic functions,  

( ) ( )1sinh 1 (II)Cr L k R r
r

φ −
∞

 = − − 
  

where C is an arbitrary constant. To determine C, we appeal to equation (6.53); 
the current J(r) is given by (6.52),  

( ) ( )
( )

( )

1

1
2

1 cosh 1

sinh 1

D k L k R rd LrJ r D r C
Ddr L k R r
r

φ

−
∞ ∞

−
∞

  − − −   − =  
  + − −   





 

so that 
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( )
( )

( )

1

1

2
0 0

1 cosh 1
lim 4 lim 4

sinh 1
p r r

Dr k L k R r
Ls r J r C

D L k R r
π π

−
∞ ∞

−
∞

→ →

  − − −  = =  
  + − −  




 

( )
( )

1

1

0 1 cosh 1 0
4

sinh 1 0
p

D k L k R
Ls C

D L k R
π

−
∞ ∞

−
∞

×  − − −  ∴ =  
  + − −  




 

( )14 sinh 1ps D L k R Cπ −
∞∴ = −   

( )14 sinh 1
ps

C
D L k Rπ −

∞

∴ =
− 

 

Substituting C in (II) gives the flux 𝜙𝜙(r):  

( )
( )1

1

sinh 1

4sinh 1
p

L k R r s
r

DrL k R
φ

π

−
∞

−
∞

 − − =
 − 




 

◼ P6.16 
Part (a): Within the sphere (except at the origin) the flux is given by Eq. (6.101), 
but with the distributed source set equal to zero:  
 

( ) ( ) ( )1 11 2sin 1 cos 1 (I)C Cr L k r L k r
r r

φ − −
∞ ∞= − + −  

To obtain the two arbitrary constants, we first set the flux to zero at the 
extrapolated boundary, that is, 𝜙𝜙(𝑅𝑅�) = 0; thus, 

( ) ( )1 11 20 sin 1 cos 1C CL k R L k R
R R

− −
∞ ∞= − + − 

 
 

Solving for C2,  

( )1
2 1 tan 1C C L k R−

∞= − −   

Substituting in (I),  

( ) ( ) ( ) ( )1 1 11 sin 1 tan 1 cos 1 (II)Cr L k r L k R L k r
r

φ − − −
∞ ∞ ∞

 = − − − − 
  

We can determine C1 with equation (6.53); we first need the current J(r):  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

1 1 11
2

1
1 1 11

sin 1 tan 1 cos 1

1
cos 1 tan 1 sin 1

d CJ r D r D L k r L k R L k r
dr r

DC L k
L k r L k R L k r

r

φ − − −
∞ ∞ ∞

−
− − −∞

∞ ∞ ∞

 = − = − − − − 

−  − − + − − 





 

But for small x, sin(x) ≈ x and cos(x) ≈ 1, giving 

( ) ( )

( )

1 11
2

1
1 11

1 tan 1

1
1 tan 1 1

CJ r D L k r L k R
r

DC L k
L k R L k r

r

− −
∞ ∞

−
− −∞

∞ ∞

 = − − − 

−  − + − − 





 

Substituting into (6.53),  

( )
( )

( )

1 11
2

2 2
10 0

1 11

1 tan 1
lim 4 lim 4

1
1 tan 1 1

p r r

CD L k r L k R
rs r J r r

DC L k
L k R L k r

r

π π

− −
∞ ∞

−→ →
− −∞

∞ ∞

  − − −   = =  
−  − + − −   





 

( )
( )

1 1
1

0 1 1 1 2
1

1 tan 1
lim 4

1 tan 1 1
p r

DC L k r L k R
s

DC L k r L k R L k r
π

− −
∞ ∞

→ − − −
∞ ∞ ∞

  − − −   ∴ =  
  − − + − −  




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( )
( )

1
1

1 2

1

1 1
1

1 0
4

1

tan

0 tan

1

1 1 0
p

DC L k
s

DC L k L k R L k

L k R
π

−
∞

− −
∞ ∞

∞

−

−

∞

  − × −   ∴ =  
  − − + − − ×

−






 

( )1
1 t4 an 1p L k Rs DCπ −

∞∴ −= − 

( )1 1tan 14
p

L k R

s
C

Dπ −
∞

∴
−

= −


I’ve highlighted the tangent term to make the final calculations easier to follow. 
Substituting C1 into (II) brings to 

( ) ( ) ( ) ( ) ( )1 1 1
1

1 sin 1 tan 1 cos 1
4 tan 1

ps
r L k r L k R L k r

r D L k r
φ

π
− − −

∞ ∞ ∞−
∞

 
   = × − × − − − −  − 



( ) ( ) ( )
( )

1
1

1

sin 1
cos 1

4 tan 1
p

L k rs
r L k r

Dr L k R
φ

π

−
∞−

∞ −
∞

 −
 ∴ = − −
 − 



The equation above gives the flux distribution we were asked to determine. 
Part (b): The equation determined in part (a) becomes singular when the 
denominator of the second term vanishes:  

( )1 1
tan 1 0

k R
L k R

L
π− ∞

∞

−
− = → =


  

( )2
1

1

k

L Rπ
∞∴ =

+ 
 

This result is identical to the criticality condition (6.105). 
◼ P6.17
We begin by setting 𝑘𝑘∞ = 1 in equation (6.82), which can be restated as

( )2
2

1 osd dr r
r dr dr D

φ
′′′ − =  

This ODE can be integrated directly. Multiplying through by −r2dr and carrying out 
the integration, we have 

( )2 2osdd r r r dr
dr D
φ

′′′  = −  ∫ ∫

( )
3

2
13

osd rr r C
dr D
φ

′′′
∴ = − +

Multiplying through by dr/r2 and integrating a second time, 

( ) 1 23
os r drd r dr C

D r
φ

′′′
= − +∫ ∫ ∫

( )
2

1 2
1 (I)

6
os rr C C

D r
φ

′′′
∴ = − − +

It remains to determine constants C1 and C2. Since this is a distributed source, the 
flux must be finite at the origin, which in turn prohibits us from dividing by zero in 
the right-hand side of (I); thus, C1 = 0, giving 

( )
2

2 (II)
6

os rr C
D

φ
′′′

= − +

Also, the flux must vanish at the extrapolated boundary 𝑅𝑅� , so (II) becomes 

( )
2

2 0
6

os Rr R C
D

φ
′′′

= = − + =




2

2 6
os RC

D
′′′

∴ =


Substituting in (I), 
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( )
2 2

6 6
o os sr Rr

D D
φ

′′′ ′′′
= − +



( ) ( )2 2

6
osr R r
D

φ
′′′

∴ = −

Notice that this happens to be the same flux profile to which equations (6.95) and 
(6.103) tend to in the limit of 𝑘𝑘∞ → 1, as we’ve established in Problem 6.14. 
◼ P6.18
Parts (a) to (d): For small x, we have sinh(x) ≈ x and sin(x) ≈ x. Accordingly, (6.95)
simplifies to

( ) ( )
( )
( )

1

10

sinh 1
0 lim 1

1 sinh 1a
r

L k rs R
k r L k R

φ
−

∞

−
∞ ∞

→

 −′′′  = −
 − Σ − 





( ) ( ) ( )
1

10

1
0 lim 1

1 sinh 1a
r

L k rs R
k r L k R

φ
−

∞

−
∞ ∞

→

 −′′′  ∴ ≈ −
 − Σ − 





( ) ( )
( )
( )

1
0 1 (I)

1 sinh 1a

R L ks
k k R L

φ ∞

∞ ∞

 −′′′  ∴ ≈ −
 − Σ − 




 

In turn, (6.103) simplifies to 

( ) ( )
( )
( )

1

10

sin 1
0 lim 1

1 sin 1a
r

L k rs R
k r L k R

φ
−

∞

−
∞ ∞

→

 −′′′  = −
 − Σ − 





( ) ( )
( )
( )

1
0 1 (II)

1 sin 1a

R L ks
k k R L

φ ∞

∞ ∞

 −′′′  ∴ ≈ −
 − Σ − 




 

Equations (I) and (II) can be normalized with respect to 𝜙𝜙(0) ∝ 𝑠𝑠0′′′/Σ𝑎𝑎. The
remaining step is to plot 𝜙𝜙(0) with respect to the specified ranges of values; the 
pertaining MATLAB code for part (b) is shown next:  

kinf_low = linspace(0,1,100); 
kinf_high = linspace(1,1.1,100); 
RL = 8; 
phi_low = 1./(1-kinf_low).*(1 - RL.*sqrt(1-kinf_low)./sinh(sqrt(1-
kinf_low)*RL)); 
phi_high = 1./(kinf_high-1).*(RL.*sqrt(kinf_high - 
1)./sin(sqrt(kinf_high - 1).*RL) - 1); 
plot(kinf_low, phi_low, 'LineWidth', 2, 'Color', 'blue') 
hold on 
plot(kinf_high, phi_high, 'LineWidth', 2, 'Color', 'red') 
hold off 
grid on 

As can be seen, with a fixed 𝑅𝑅�/L = 8, the reactor approaches criticality by 
increasing 𝑘𝑘∞, and 𝜙𝜙(0) rises slowly at first but very rapidly for 𝑘𝑘∞ > 1. As 𝑘𝑘∞ → 
1.154, the flux tends to infinity. Note that we’ve truncated the plotting range as 
(0, 1.1) instead of (0, 1.154) for visualization purposes.  

0 0.2 0.4 0.6 0.8 1 1.2
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0
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10

15

20

25

30
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)



30 
© 2023 Montogue Quiz

The code for part (c) is shown in continuation: 

kinf = 1.154; 
RL = linspace(0,8,500);  
phi = 1./(kinf-1).*(RL.*sqrt(kinf - 1)./sin(sqrt(kinf - 1).*RL) - 
1); 
plot(RL, phi, 'LineWidth', 2, 'Color', 'red') 
grid on 

As can be seen, increasing the core radius causes the flux to rise correspondingly, 
especially at 𝑅𝑅�/L greater than 7. The flux tends to infinity as 𝑅𝑅�/L → 8, that is, as 
criticality is reached. 

◼ P7.2
Since the core is uniform, minimizing the critical mass is equivalent to minimizing
the core volume. Conversely, we can ask: for a given volume, what value of the
height-to-diameter ratio yields the minimum buckling, and therefore the minimum
leakage? Let 𝜒𝜒 denote the height-to-diameter ratio, that is,

H
D

χ =

The cylinder volume can be stated as 

2 2
31 (I)

4 4 4
D DV H D Dπ π χ χπ= = × =

The buckling is given by equation (7.20), 

2
22 2 22.405 4.810B

R H D D
π π

χ
      = + = +       

       
 

2
2

2
21 4.810 (II)B

D
π
χ

  
 ∴ = +  
   

Solving (I) for diameter, 
1
331 4

4
VV D Dχπ
πχ

 
= → =  

 
Substituting in (II), 

2

2
3

2

2 2
2 21 4.810 4.810

4
B

D V
π πχ π
χ χ

          = + = +    
          

( )2

2
3 2 2 3 2 4 34.810

4
B

V
π χ π χ− ∴ = + 

 

To minimize the buckling B, we first differentiate the equation above, 
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Then, we set the result above to zero, which means that the term highlighted in 
red must be such that 

20.853 0χ− + =

0.853 0.924χ∴ = =

That is, the smallest critical mass for a bare cylindrical reactor is attained when the 
height-to-diameter ratio equals approximately 0.924.  

◼ P7.3
Part (a): For a cylinder with a height-to-diameter ratio of one, 2R = D = H.
Referring to equation (7.20), we have

2
2

2 2 2 22.405 4.810 33.01B
H R D D D
π π       = + = + =       

       

Setting (7.6) to one and replacing B2 with the result above, 

2 2
2

2

1.361.0 33.011 1 18

kk
M B

D

∞= → =
+ + ×

172.4 cmD∴ =

The critical assembly must have a height and diameter of approximately 1.72 
meters. 
Part (b): With H’ = H/2 = 172/2 = 86 cm, the value of k when the two halves are 
isolated from each other becomes  

2 2
2

2 2
1.36 0.807

1 4.8101 18
172 86

kk
M B π
∞= = =

+     + × +    
     

◼ P7.6
Part (a): We begin by writing out equation (7.7) in Cartesian coordinates:

22 0Bφ φ∇ + =  

( ) ( )
2 2 2

2
2 2 2 , , , , 0x y z B x y z

x y z
φ φ

 ∂ ∂ ∂
∴ + + + = ∂ ∂ ∂ 

 

Substituting the given 𝜙𝜙(x,y,z), 

2 2

2 2

2

2
2

cos cos cos cos cos cos

cos cos cos cos cos cos 0

y z d x x z d yC C
a a dx a a a dx a

x y d z x y zC B C
a a dz a a a a

π π π π π π

π π π π π π

              +                            
            + + =                        

Dividing through by 𝜙𝜙(x,y,z), 

( )
( )

( )

( )
( )

( )

22 2

22 2 2
coscos cos

0 (I)
cos cos cos

dd dy ax a z adydx dz B
x a y a z a

ππ π

π π π
+ + + =

Computing the derivatives on the left-hand side, 

( )
2

2

2

cos sin cosd d x xx a
dx a dx a a a

π π π ππ        = − = −       
       

 

( )
2

2

2

cos cosd xy a
dy a a

π ππ    = −   
   

 

( )
2

2

2

cos cosd zz a
dz a a

π ππ    = −   
   

 

Substituting in (I), 
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( )

( )

( )

( )

( )

( )

2 2 2

2
cos cos cos

0 (I)
cos cos cos

x a y a z a
a a a B

x a y a z a

π π ππ π π

π π π

     − − −     
     + + + =  

2 2 2
2 0B

a a a
π π π     ∴− − − + =     
     

 

2
2 3B

a
π ∴ =  
 

 

Accordingly, the flux distribution is correct, since it satisfies the diffusion equation 
provided the buckling is set to B2 = 3(𝜋𝜋/a)2; the flux is positive within the reactor, 
and meets the boundary conditions because  

2
cos cos 0

2x a

x
a
π π

=±

   = ± =   
   

 

and similarly for y and z.  
Part (b): The reactor power is given by equation (7.22),  

fP dVγ φ= Σ∫  

Substituting the given 𝜙𝜙(x,y,z),  

( )
2 2 2

2 2 2

, , cos cos cos
a a a

f f
a a a

x y zP x y z dV C dx dy dz
a a a
π π πγ φ γ

− − −

     = Σ = Σ      
     ∫ ∫ ∫ ∫  

The integrals on the right-hand side are such that 

( )
2

2

2

2

2cos sin 1 1
a

a

a

a

x a x a adx
a a
π π

π π π−
−

     = = ×  − −  =            ∫  

and similarly for y and z. It follows that 

32 2 2 2
f f

a a a aP C Cγ γ
π π π π

       = Σ × × × = Σ       
       

 

Since the volume V = a3, we can solve the result above for constant C:  

332
2f

f

a PP C C
a
πγ

π γ
   = Σ → =   Σ   

 

3

8 f

PC
V

π
γ

∴ =
Σ

 

Part (c): We’ve already determined the buckling in part (a):  

2
2 3B

a
π =  
 

 

Part (d): As usual in criticality calculations, we appeal to equation (7.6) with L = M:  

( )2 2
2 2 1

1
kk k k M B
M B
∞

∞= → = +
+

 

2
2

1.0 1 3k M
a
π

∞

  ∴ = × + ×  
   

 

2
21.0 1 20 3 1.296

200
k π
∞

  ∴ = × + × =  
   

 

◼ P7.12 
The flux distribution is given by (6.107), which when combined with equation 
(6.104) becomes 
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( ) 1 sinC rr
r R

πφ  =  
 

 

The maximum flux is at the center of the sphere. For small r, sin(𝜋𝜋r/R) ≈ 𝜋𝜋r/R, 
giving 

( ) 1 10 (I)C r C
r R R

π πφ ≈ × =

The volume-averaged flux is given by 

( ) ( )3 0

21 1 44
3

R
r dV r r dr

V R
φ φ φ π

π
= =∫ ∫  

1
3 0

23 sin 4
4

R C r r dr
R r R

πφ π
π

 ∴ =  
 ∫  

13 0

3 sin 4
4

R rC rdr
R R

πφ π
π

 ∴ =  
 ∫  

1
3 0

3 sin
RC r rdr

R R
πφ  ∴ =  
 ∫

The integral on the right-hand side can be evaluated with Mathematica: 

Therefore, 
2

1 1
3

3 3C R C
R R

φ
π π

= × =

Combining the result above and the result in (I), the maximum-to-average ratio 
becomes  

( ) 1

1

20
3.29

3 3
C R

C R
φ π π
φ π

= = =  

◼ P7.13
The flux distribution within the core is given by equation (6.107) (pp. 161):

( ) ( )11 sin 1 ; 0Cr L k r r R
r

φ −
∞= − × ≤ ≤

In the reflector, the flux distribution is given by (6.51) (pp. 150): 

( ) 1 2exp expC r C rr
r L r L

φ    = + −   
   

For the boundary condition 𝜙𝜙(r → ∞) = 0 to hold, we must have C1 = 0, so the 
relation above simplifies to 

( ) 2 exp ;C rr R r
r L

φ  = − ≤ ≤ ∞ 
 

We proceed to impose the interfacial condition (6.42): 

( ) ( ) ( )11 2
0 0 sin 1 exp

r R r R

C C rr r L k r
r r L

φ φ −
− + ∞

= =

    = → − × = −       

( )11 2sin 1 exp (I)C C RL k R
R R L

−
∞

 ∴ − = − 
 

Similarly, using interface condition (6.43), 

( ) ( ) ( ) ( )0 0 0 0
d dD r r D r r
dr dr
φ φ− − + +=  
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( ) ( )1 111
2

2 2
2

1
sin 1 cos 1

exp exp

C kCD L k R D L k R
R RL

C R C RD D
R L RL L

− −∞
∞ ∞

−
∴− − + −

   = − − − −   
   

Multiplying this latter result by R2/D, 

( ) ( )1 11
1

2
2

1
sin 1 cos 1

exp exp (II)

RC k
C L k R L k R

L
R RC RC
L L L

− −∞
∞ ∞

−
− − + −

   = − − − −   
   

Then, we divide (II) by (I) and manipulate, giving 

( )
( )

( )
( )

111
1

1 11 1

2
2

2 2

1
cos 1sin 1

sin 1 sin 1

exp exp

exp exp

RC k
L k RC L k R L

C CL k R L k R
R R

R RC RC
L L L

C R C R
R L R L

−∞−
∞∞

− −
∞ ∞

−
−−

− +
− −

   − − −   
   = −
   − −   
   

( )
( )

211

11 2

1 expcos 1

sin 1 exp

RC RRC k
L k R L LLR RC C RL k R

R R L

−∞
∞

−
∞

 − −−  
 ∴− + = − −
 − − 
 

( )
( )

211

11 2

1 expcos 1

sin 1 exp

RC RRC k
L k R L LL

C C RL k R
R R L

−∞
∞

−
∞

 − −−  
 ∴ = −
 − − 
 

( )11 2

1 2

1
cot 1

RC k RCL k R
L L

C C
R R

−∞
∞

−
−

∴ = −

( )
2 2

11
cot 1

R k RL k R
L L

−∞
∞

−
∴ − = −

1cot 1 1Rk k
L∞ ∞

 ∴ − − = − 
 

1cot 1 1 0Rk k
L∞ ∞

 ∴ − − + = 
 

The result above is the transcendental criticality condition we were asked to 
obtain.  
◼ P7.14
Within the internal reflector the flux is given by equation (6.51) but with C2 = −C1,
so that the flux is finite at the origin. Thus, with C = C1/2, we may write

( ) 1 exp exp sinh ; 0C r r C rr r R
r L L r L

φ       = − − = ≤ ≤            

With the source term set equal to zero, equation (6.102) specifies the flux in the 
core,  

( ) 1 2sin 1 cos 1 ; 2C r C rr k k R r R
r L r L

φ ∞ ∞
   = − + − ≤ ≤   
   

To meet the boundary condition 𝜙𝜙(2R) = 0, the latter equation yields 
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2 1
2tan 1 RC C k
L∞

 = − − × 
 

so that 

( ) 1 2sin 1 tan 1 cos 1C r R rr k k k
r L L L

φ ∞ ∞ ∞

      = − − − × −            
 

or, using trigonometric identities, 

( ) ( )2
sin 1 ; 2

R rCr k R r R
r L

φ ∞

 − ′
= − ≤ ≤ 

 

Next, we apply interface condition (6.42), namely 

( ) ( ) ( )
0 0

2
sinh sin 1

r R r R

R rC r Cr r k
r L r L

φ φ− + ∞

= =

  − ′    = → = −          

( )2
sinh sin 1

R RC R C k
R L R L∞

 − ′ ∴ = −  
   

sinh sin 1 (I)C R C Rk
R L R L∞

′   ∴ = −   
   

Similarly, using interface condition (6.43), 

( ) ( ) ( ) ( )0 0 0 0
d dD r r D r r
dr dr
φ φ− − + +=  

22 sinh cosh sin 1 1cos 1 (II)C R C R C R C RD D D k D k k
L RL L L RL LRR ∞ ∞ ∞

′ ′       ∴− + = − − − − −       
       

Dividing (II) by (I) brings to 

22 sinh cosh sin 1 1cos 1

sinh sin 1

C R C R C R C RD D D k D k k
L RL L R L RL LR

C R C Rk
R L R L

∞ ∞ ∞

∞

′ ′       − + − − − − −       
       =

′   −   
   

1 1 1 1sinh cosh sin 1 1cos 1

sinh sin 1

R R R RD D D k D k k
R L L L R L L L

R Rk
L L

∞ ∞ ∞

∞

       − + − − − − −       
       ∴ =

   −   
   

coth 1cot 1D D R D D Rk k
R L L R L L∞ ∞

   ∴− + = − − − −   
   

coth 1cot 1R Rk k
L L∞ ∞

   ∴ = − − −   
   

This is the criticality condition.  
◼ P7.16
In the core region we write equation (7.7) for a slab geometry with B2 = (𝑘𝑘∞ – 1)/L2

and L2 = D/Σ𝑎𝑎:

( ) ( )
2

2
2 0

d x
B x

dx
φ

φ+ =  

The solution in this case is 

( ) ( ) ( )1 2sin cos ; 0x C Bx C Bx x aφ ′ ′= + ≤ ≤

In the reflector region the solution is given by (6.20): 

( ) 1 2exp exp ; 2x xx C C a x a
L L

φ    = + − ≤ ≤   
   

We next apply boundary and interface conditions. On the left we have 𝜙𝜙(0) = 0, 
giving 
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( ) ( ) ( )1 2

0

0 sin 0 cos 0 0C B C Bφ
=

′ ′= × + × =


2 0C′∴ =

so that 

( ) ( )10 sin ; 0C Bx x aφ ′= ≤ ≤

On the right, we impose 𝜙𝜙(2a) = 0, so that C2 = −C1exp(4a/L) and 

( ) 1
4exp exp expx a xx C

L L L
φ       = − −            

This latter result can be expressed in terms of hyperbolic functions: 

( ) ( )2
sinh ; 2

a x
x C a x a

L
φ

 − 
= ≤ ≤ 

 

Next, we appeal to interface condition (6.42), 

( ) ( ) ( )0 0 1
2sin sinh a ax a x a C B a C

L
φ φ− +

− ′= = = → × =  
 

 

( )1 sin sinh (I)aC Ba C
L

 ′∴ =  
 

Likewise, using interface condition (6.43), 

( ) ( ) ( ) ( )0 0 0 0
d dD x x D x x
dr dr
φ φ− − + +=  

( ) 1
1 cos cosh (II)aDC B Ba DCL

L
−  ′∴ = −  

 

Dividing (I) by (II), 

C′ ( )1 sin Ba
D C′ ( )1 cos

C
B Ba

=
( )sinh a L

D− C ( )1 coshL a L−

( )1 tan tanh aB Ba L
L

−  ∴ = −  
 

Replacing B gives the final criticality condition: 

1
tan tanh

1
kL aa L

L Lk
∞

∞

 −  = −    −   

tan 1 1 tanha ak k
L L∞ ∞

   ∴ − = − −   
   

◼ P8.1
Part (a): Let V and V’ be the old and new volumes, respectively, and assume a
height-to-diameter ratio 𝜒𝜒 = H/D; we proceed to write

3 31 1;
4 4

V D V Dπχ πχ′ ′= =  

so that 

( )
1

13
31.2 1.0627D V

D V
′ ′ = = = 

 

Using the equation for buckling of a cylindrical core, 

2
2 2

2.405
2

B
D D

π
χ

   
= +   

  

( )2
2

2
21 2 2.405

C

B
D

π
χ

=

  
 ∴ = × × +  
   
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2
2

CB
D

∴ =

The ratio of bucklings is 

2 2 22

2
1 0.8855

1.0627
B C D D
B DC D
′ ′     = = = =     ′     

 

The nonleakage probability of the initial reactor is PNL = 1 – PL = 1 – 0.065 = 0.935. 
Recalling that buckling and nonleakage probability are related by equation (7.8) 
(pp. 169), we may write 

2 2
2 2

1 1 1
1NL

NL

P B L
L B P

−  
= → = − +  

22 LB
B

−′ ∴ = 
 

( )
2

1 1NLP
L−

′ −

( )
( )
( )
1 1
1 11 1

NL

NLNL

P
PP

′ −
=

−−

1211 1NL
NL

BP
P B

−
   ′ ′∴ = + −   

    

1
11 1 0.8855 0.94201

0.935NLP
−

  ′∴ = + − × =    
 

Finally, the leakage probability of the updated reactor is 

1 1 0.9420 0.058L NLP P′ ′= − = − =

Part (b): Noting that 𝑘𝑘∞′ 𝑃𝑃𝑁𝑁𝑁𝑁′  = 𝑘𝑘∞𝑃𝑃𝑁𝑁𝑁𝑁 = 1, the change in enrichment needed to
accommodate the specified increase in power is calculated as 

0.93501 1 0.00744 0.744%
0.94201

k k k
k k

∞ ∞ ∞

∞ ∞

′ ′−
= − = − = − = −

◼ P8.2
Parts (a), (b) and (c): For a bare uniform core, it follows from (8.22) (pp. 204) that
𝑃𝑃max′′′  = 3.63𝑃𝑃�′′′ = 3.63P/V. Then, noting that 500 W/cm3 = 500 MW/m3,

max
max

3.63 3.63P PP V
V P

′′′ = → =
′′′

3.63 0.00726
500

PV P×
∴ = =  

But for a cylinder with a height-to-diameter ratio of one, volume V = 𝜋𝜋H3/4, or 

3
1
34

4
H VV Hπ

π
 = → =  
 

1 13 34 0.00726 0.2099 (I)PH P
π

× ∴ = = 
 

 

This equation indicates that the core height is proportional to power1/3. Next, the 
core buckling is given by (7.20) (pp. 172), which for a core with height-to-diameter 
ratio of one becomes 

2
2 2 2 22 2.405 2 2.405B

D H H H
π π× ×       = + = +       

       
 

2 233.01B H −∴ =

Replacing H with result (I), 

2

21
2 333.01 33.01 0.2099B H P

−
−  

∴ = = ×  
 

2
2
3749.2 (II)B P

−
∴ =
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This second result indicates that buckling is inversely proportional to power2/3. To 
find the nonleakage probability, we appeal to equation (7.8) (pp. 169),  

2
3

2 2 2
2

1 1
1

1 0.2 749.2
NLP

M B
P
−

= =
+  

+ × 
 

2
3

2 3
2

1 1 (III)
1 29.971 0.2 749.2

NLP
PP

− −
∴ = =

+
+ ×

 

The calculations for all three reactor power ratings are summarized below. 

◼ P8.6
Part (a): The peak-to-average power density in a uniform cylindrical reactor is
3.63; we can use this to establish the reactor volume V:

max
max

3.63 3.633.63 P PP P V
V P

′′′ ′′′= = → =
′′′

33.63 3000 43.6 m
250

V ×
∴ = =

With the height-to-diameter ratio set to one, the core size becomes 

2 3

4 4
D HV Hπ π= =  

1
34VH

π
 ∴ =  
 

1
34 43.6 3.82 mH

π
× ∴ = = 

 

Part (b): For the cladding heat flux, 𝑞𝑞max′′  = 3.63𝑞𝑞�′′, so that

max
max 3.63

3.63
qq q q
′′

′′ ′′ ′′= → =

2125 34.4 W/cm
3.63

q′′∴ = =

Let N be the number of rods and a be their radius; the total heat transfer surface 
is 2𝜋𝜋aHN, and the reactor power can be expressed as 

62 3000 10 WP aHNqπ ′′= = ×
Solving for aN, 

9
9 3 102 3 10

2
P aHNq aN

Hq
π

π
×′′= = × → =

′′

9
23 10 36,330 cm

2 382 34.4
aN

π
×

∴ = =
× ×

However, if p is the lattice pitch, then 

2 2
2 2382 114,600 cm (I)

4 4
DNp π π ×

= = =

Dividing through by aN, 

2 2 114,600 3.154 cm
36,330

Np p
aN a

= = =

Also, given that the moderator to fuel volume ratio is set at 2.0, 
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2 2

2

21 1 2.0p a p
a a
π

π π
−  = − = 

 

21 3.0p
aπ

 ∴ = 
 

2

3.0p
a

π ∴ = 
 

 

3.0 3.070p
a

π∴ = =  

The lattice pitch p then becomes 

2

3.154 3.070p pp p
a a

 = → = × 
 

3.154 1.027 cm
3.070

p∴ = =

The fuel element diameter is 

12 2 2 1.027 0.669 cm 6.69 mm
3.070

ad a p
p

 
= = = × × = = 

 

Part (c): To find the approximate number of fuel elements, we solve equation (I) in 
part (b) for N:  

2
2

114,600114,600Np N
p

= → =

2
114,600 108,700
1.027

N∴ = ≈

Part (d): Note that Fr = 2.32 for a uniform cylindrical core. Solving (8.42) (pp. 208) 
for 𝑊̇𝑊, we get 

( )0,max
0,max

r r
r

p p i

PF F PT T W
Wc c T T

= + → =
−




The specific heat of water at the specified temperature can be taken as 6.4 
kJ/kg∙oC (see page 210), so that 

( )
( )

92.32 3.0 10
27,200 kg/s

6400 330 290
W

× ×
= =

× −


Taking 𝜌𝜌 = 0.676 kg/m3 as the density of pressurized water at the specified 
temperature (page 210), the average coolant velocity becomes  

( ) ( ) ( )22 2 3 2

27,200 526 cm/s
0.676 10 108,700 1.027 0.669 2

Wv
N p aρ π π−

= = =
 − × × × − × 

5.26 m/sv∴ =

◼ P8.10
With the new peaking factors Fr = 1.30 and Fz = 1.46, all we have to do is follow
the steps outlined in Section 8.3. For the core volume we evaluate Eq. (8.26) at the
point of maximum linear heat rate to obtain

( )9
7 3cell

max max

22 1.536 3.0 10 1.30 1.46
3.36 10 cm

400
r z rA PF F p PF FV

q q
× × × ×

= = = = ×
′ ′

333.6 mV∴ =

For a height-to-diameter ratio of one, the core height H becomes 

12 34
2
H VV H Hπ

π
   = → =   
   
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1
34 33.6 3.50 mH

π
× ∴ = = 

 
 

The core-averaged power density is determined as 

33000 89.3 MW/m
33.6

PP
V

′′′ = = =

To find the number of fuel elements, we divide the core cross-sectional area by the 
area of a lattice cell:  

( ) ( )2

2 2
cell

2 22 350 2
40,780

1.536
HRN

A p
π ππ ×

= = = =  

The mass flow rate is obtained by solving (8.42) for 𝑊̇𝑊:  

( )
( )6

0,max

3000 10 1.301 1 15,230 kg/s
6400 330 290

r

p i

PFW
c T T

× ×
= = × =

−−


71.52 10 g/sW∴ = ×

Taking 0.676 g/cm3 as the density of pressurized water at 300oC, the mean 
coolant velocity is  

( ) ( )
7

2 2 2 2

1.52 10 357 cm/s
0.676 40,780 1.536 0.509

Wv
N p aρ π π

×
= = =

− × × − ×

3.57 m/sv∴ =

Note that using the same lattice but with the lowered peaking factors, the core 
size dropped from 4.34 m to 3.50 m, the number of fuel pins dropped from 62,702 
to 40,780, the mass flow rate dropped from 27,200 kg/s to 15,200 kg/s, and the 
average flow speed dropped slightly from 4.15 m/s to 3.57 m/s.  
◼ P8.11
The calculations are identical to those of Section 3 and Problem 8.10. Firstly, the
reactor volume is

( )9
7 3cell

max max

22 1.536 3.0 10 1.00 1.00
1.77 10 cm

400
r z rA PF F p PF FV

q q
× × × ×

= = = = ×
′ ′

317.7 mV∴ =

The core height H is 

The mass flow rate is obtained by solving (8.42) for 𝑊̇𝑊: 

( )
( )6

0,max

3000 10 1.001 1 11,720 kg/s
6400 330 290

r

p i

PFW
c T T

× ×
= = × =

−−


71.52 10 g/sW∴ = ×

The core-averaged power density is 

33000 170 MW/m
17.7

PP
V

′′′ = = =

The number of fuel elements is 

( ) ( )2

2 2
cell

2 22 283 2
26,660

1.536
HRN

A p
π ππ ×

= = = =  

Lastly, the mean coolant velocity is 

( ) ( )
7

2 2 2 2

1.17 10 421 cm/s
0.676 26,660 1.536 0.509

Wv
N p aρ π π

×
= = =

− × × − ×

4.21 m/sv∴ =  

( )6
11 33 4 17.7 104 283 cm 2.83 mVH

π π

 × ×   = = = = 
    
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Note that using the same lattice but with the peaking factors set to ideal values of 
1.0, the core size dropped from 4.34 m to 2.83 m, the number of fuel pins dropped 
from 62,702 to 26,660, the mass flow rate dropped from 27,200 kg/s to 11,720 
kg/s, and the average flow speed increased slightly from 4.15 m/s to 4.21 m/s.  
◼ P8.12
We first restate (8.42) as

( ) ( ),max flow ,maxp o i p o i
r

Wc T T v A c T T
F

P P
ρ− −

= =

Denoting the modified values with primes, the ratio of peaking factors 𝐹𝐹𝑟𝑟′/𝐹𝐹𝑟𝑟 is
calculated to be 

flow pr

r

v A cF
F

ρ′′
=

( ),maxo iT T P′ −

flow pv A cρ ( ),maxo iT T P−
( )
( )

,max

,max

o i

o i

T Tv
v T T

′ −′
=

−

( )
( )
325 290

0.9 0.788
330 290

r

r

F
F

−′
∴ = × =

−
 

In order to accommodate the specified changes, the radial peaking factor must be 
reduced by 21.2%. 
◼ P8.13
Letting 𝜃𝜃(t) = Tf(t) – Tc(0) since Tc remains constant, we first restate equation
(8.49) as

( ) ( )1 1expo
f f

d tt P t
dt M c T
θ θ

τ
 = − 
 

 

Rearranging and multiplying through by exp(t/𝜏𝜏), 

( ) ( )1 1exp exp expo
f f

d t t tt t P
dt M c T

θ θ
τ τ τ

       + =             
 

or, equivalently, 

( ) 1 1 1exp expo
f f

d tt P t
dt M c T

θ
τ τ

      = +            

Integrating between 0 and t:  

( ) ( )
0

1 1 1exp 0 exp
t

o
f f

tt P t dt
M c T

θ θ
τ τ

     ′ ′− = −        
∫

( ) ( ) ( )exp 1 1 11exp 0
1 1o

f f

T ttt P
M c T

τ
θ θ

τ τ

 ′ +  −    ∴ − =    +    
 

Solving for 𝜃𝜃(t), 

( ) ( ) ( ) ( )
( )

exp exp10 exp
1 1o

f f

t ttt P
M c T

τ τ
θ θ

τ τ
 − − = − +    +   

 

To find the initial value 𝜃𝜃(0), we refer to equation (8.32): 

( ) ( ) ( )0 0 0f c f o o
f f

T T R P P
M c
τθ = − = =

where we have used 𝜏𝜏 = MfcfRf in the lattermost passage. Then, noting that 𝜃𝜃(t) = 
Tf(0) – Tc(0), we obtain 

( ) ( ) ( ) ( )
( )

exp exp10 exp
1 1f c o o

f f f f

t T ttT t T P P
M c M c T

ττ
τ τ

 + − = + − +    +   
 

Eliminating Mfcf yields 

( ) ( ) ( ) ( )
( )

exp exp10 exp
1 1f c o o

f f

t T ttT t T P P
T

R R

ττ
τ ττ τ

 + − = + − +    +   
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Performing some algebraic manipulation, 

( ) ( ) ( ) ( ) ( )0 exp exp
1

o f
f c

P R
T t T t T t T t

T
τ

τ
= +  + −  +

which is the relationship we were asked to demonstrate. 
◼ P9.4
Part (a): We first take the average coolant temperature

( ) ( )1 1 350 500 425º C
2 2c i oT T T= − = × + =

The thermal resistance is then 

1150 425 0.725º C/MW
1000

f c
f

T T
R

P
− −

= = =

The mass flow rate is, in turn, 

( ) ( )
61000 10 5333 kg/s

1250 500 350p o i

PW
c T T

×
= = =

× −−


Part (b): The temperature defect is given by the integral (9.34), which in this case 
simplifies to 

( )( ) ( ) ( ) ( )5 51.8 10 0.45 10 350 180T f c i rD T Tα α − − = + − = − × + × × − 

0.00230TD∴ = −

For the power defect, we write 

( ) ( )1
2P f f p f cD R Wc Pα α α

− = + +  
 

( ) ( ) ( ) ( ){ }5 6 5 51
0.725 1.8 10 2 5333 1250 10 1.8 10 0.45 10 1000PD − − − −

−
   ∴ = × − × + × × × × − × + × ×   

0.0141PD∴ = −

◼ P9.5
Part (a): The core will be overmoderated inasmuch as the reactor’s temperature
coefficient is positive. For the problem at hand,

( )
4

2 67.2 10 30 1.5 0.010 10
273T f m T T

T
α α α

−
−×

= + = − + + − ×
+

The easiest way to establish the range of temperatures for which 𝛼𝛼𝑇𝑇 is positive is 
to plot the relationship above. As shown below, the temperature coefficient is 
positive (and hence, the core is overmoderated) in the range 0 ≤ T  ≤ 170oC. 

Part (b): To find the temperature defect, all we have to do is integrate 𝛼𝛼𝑇𝑇 over the 
range T ∈ (35, 290):  

( )
290 2904

2 6

35 35

7.2 10 30 1.5 0.010 10
273TD dT T T dT

T

−
−×

= − + + − ×
+∫ ∫
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The integration can be carried out with the following MATLAB code: 

alpha_f = @(T) -720./sqrt(273 + T); 
alpha_m = @(T) (30 + 1.5.*T - 0.01.*T.^2); 
DT_f = integral(alpha_f, 35, 290); 
DT_m = integral(alpha_m, 35, 290); 
DT = (DT_f + DT_m).*10.^-6 

DT = 

-0.0202

That is, 𝐷𝐷𝑇𝑇 = −0.0202.  
Part (c): The power defect is given by equation (9.35), namely 

( )( ) ( )( )T p T pf c
P f f f e c cT Ti i

D T dT T dTα α= +∫ ∫  

Here, Ti = 290oC, Rf = 0.45oC/MW(t), W = 68×106 kg/h = 18,890 kg/s, and cp = 6400 
J/kgoC, so that, using the formulas given in page 230,   

( )61 1 3000 10 290 302.4º C
2 2 18,890 6400c i

p

T P T
Wc

= + = × × + =
× ×

0.45 3000 302.4 1652.4º Cf f cT R P T= + = × + =

Accordingly, 

( )1652.4 302.4 2 6

290 290

720 30 1.5 0.01 10
273

P f c c c
f

D dT T T dT
T

−
 
 = − + + − ×
 + 
∫ ∫

These calculations, including the two integrals on the right-hand side, can be 
performed with the following MATLAB code:  

alpha_f = @(T) -720./sqrt(273 + T); 
alpha_m = @(T) (30 + 1.5.*T - 0.01.*T.^2); 
DP_f = integral(alpha_f, 290, 1652.4); 
DP_m = integral(alpha_m, 290, 302.4); 
DP = (DP_f + DP_m).*10.^-6 

DP = 

-0.0340

That is, 𝐷𝐷𝑇𝑇 = −0.0340. 

◼ P10.1
The xenon concentration following shutdown is given by equation (10.19):

( ) ( ) ( )I X IX X I
f

X aX I X

t t tX t e e eλ λ λγ γ γφ
λ σ φ λ λ

− − + 
= Σ + − + − 

 

To find the maximum, we differentiate the relation above and set the result to 
zero, giving 

( ) ( ) 0I X X IX X I
f X I

X aX I X

t t tdX e e e
dt

λ λ λγ γ λ γφ λ λ
λ σ φ λ λ

− − + 
= Σ + − + = + − 

 

For a very large flux 𝜙𝜙, the first term in brackets tends to zero, and optimizing the 
relation above boils down to 

( ) 0X It t
X Ie eλ λλ λ− −− + =  

X It t
X Ie eλ λλ λ− −∴ =  

ln ln ln lnX It t
X Ie eλ λλ λ− −∴ + = +  

ln lnX X I It tλ λ λ λ∴ − = −  

( )1 ln (I)I X
I X

t λ λ
λ λ

∴ =
−

Using the half-life values given in decay series (10.11), we have 
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1

1 2,

0.693 0.693 0.1034 h
6.7I

It
λ −= = =

1

1 2,

0.693 0.693 0.0753 h
9.2X

Xt
λ −= = =

Finally, we substitute into (I) to obtain 

( )1 ln 0.1034 0.0753 11.286 11.3 h
0.1034 0.0753

t∴ = = ≈
−

◼ P10.3
To find the ratio, we appeal to equation (10.15) (page 248),

( ) ( ) 25 25I X I X
f f

X aX X aX

X N
γ γ γ γ

φ σ φ
λ σ φ λ σ φ

+ +
= Σ =

+ +
 

( ) 25
25 (I)I X

f
X aX

X
N

γ γ
σ φ

λ σ φ
+

∴ =
+

 

Using half-life data from (10.11), 𝜆𝜆𝑋𝑋 = 0.693/𝑡𝑡1 2⁄ ,𝑋𝑋 = 0.693/9.2 = 0.0753 h-1 = 
2.09×10-5 s-1. Also, the absorption cross-section of xenon-135 is 2.65×106 b, as 
given in page 247. Referring to Table 10.1, we read 𝛾𝛾𝐼𝐼 = 0.0639 and 𝛾𝛾𝑋𝑋 = 0.00237. 
Finally, 𝜎𝜎𝑓𝑓25 = 505 b is taken from Table 3.2. Substituting in (I) brings to

( )
( ) ( )24

25 5 18

0.0639 0.00237
505 10

2.09 10 2.65 10
X

N
φ

φ
−

− −

+
= × ×

× + × ×
 

( ) ( )23
25 5 18

1 3.35 10
2.09 10 2.65 10

X
N

φ
φ

−
− −

∴ = × ×
× + × ×

 

( ) ( )23
25 18

5
5

1 3.35 10
2.65 10

2.09 10 1
2.09 10

X
N

φ

φ

−

−
−

−

∴ = × ×
 ×

× + × 
×  

 

18
25 13

1 1.60 10
1 1.27 10

X
N

φ
φ

−
−∴ = × ×

+ ×
 

The expression above is plotted below. As can be seen, when the flux is very large, 
X/N25 tends to a maximum value such that 

( )
18

25 5
13

1.60 10lim 1.26 10
1.27 10

X N
φ

−
−

−→∞

×
= = ×

×

0 1 2 3 4 5 6 7 8 9 10
1014

0

0.5

1

1.5

X/
N

25

10
-5
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◼ P10.4
Parts (a) and (b): Taking 𝛾𝛾 = 3.1×10-11 W∙s as the energy release per fission and
noting that 1 MW/m3 = 1 W/cm3, the average flux becomes

( )
13 2

11

80 1.27 10 n/cm /s
3.1 10 0.203f

Pφ
γ −

′′′
= = = ×

Σ × ×
 

Multiplying this by peaking factor Fq gives the maximum flux: 

( )13 13 2
max 2.0 1.27 10 2.54 10 n/cm /sq

f

F P
φ

γ
′′′

= = × × = ×
Σ

Using data from (10.11), we compute the decay constants 

1 5 1

1 2,

0.693 0.693 0.103 hr 2.86 10 s
6.7I

It
λ − − −= = = = ×

1 5 1

1 2,

0.693 0.693 0.0753 hr 2.09 10 s
9.2X

Xt
λ − − −= = = = ×

Also, 𝜎𝜎𝑎𝑎𝑎𝑎 = 2.65×106 b, 𝛾𝛾𝐼𝐼 = 0.0639, and 𝛾𝛾𝑋𝑋 = 0.00237 (Table 10.1), so that, 
referring to equation (10.15),  

( ) ( )
5 18

0.0639 0.00237
0.203

2.09 10 2.65 10
I X

f
X aX

X
γ γ

φ φ
λ σ φ φ− −

+ +
= Σ = ×

+ × + ×
 

5 18
0.0135

2.09 10 2.65 10
X φ

φ− −∴ =
× + ×

To answer part (a), we substitute 𝜙𝜙� = 1.27×1013 n/cm2/s above to obtain 

( )
( )

13
15 3

5 18 13

0.0135 1.27 10
3.14 10 cm

2.09 10 2.65 10 1.27 10
X −

− −

× ×
= = ×

× + × × ×

To answer part (b), we substitute 𝜙𝜙max = 2.54×1013 n/cm2/s, 

( )
( )

13
15 3

5 18 13

0.0135 2.54 10
3.89 10 cm

2.09 10 2.65 10 2.54 10
X −

− −

× ×
= = ×

× + × × ×

Note that although the flux doubles from part (a) to part (b), the xenon 
concentration rises by only ≈24%.  
Parts (c) and (d): To find the average samarium concentration, we take 𝛾𝛾𝑃𝑃 = 
0.0107 from Table 10.1 and 𝜎𝜎𝑎𝑎𝑎𝑎 = 41,000 b from page 250, so that  

16 3
24

0.0107 0.203 5.30 10 cm
41,000 10

P f

aS

S
γ
σ

−
−

Σ ×
= = = ×

×

Since the samarium concentration is independent of the flux, it is the same 
throughout the reactor (so long as Σ𝑓𝑓 is uniform).  

◼ P10.6
Part (a): On a time scale of hours, assume that the samarium decays
instantaneously, so we may write

s f
d E E
dt

γ φ λ= Σ −  

The solution of this ODE is 

( ) ( )1 exp (I)s fE t t
γ φ

λ
λ
Σ

=  − −  

Similarly, for gadolinium,  

aG
d G E G
dt

λ σ φ= −  

Replacing E with (I), 

( )1 exps f aG
d G t G
dt

γ φ λ σ φ= Σ  − −  −   

Using an integrating factor exp(𝜎𝜎𝑎𝑎𝑎𝑎𝜙𝜙t), we have 
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( ) ( ) ( )exp 1 exp expaG s f aG
d G t t t
dt

σ φ γ φ λ σ φ  = Σ  − −     

Integrating from -0 to t, with the initial condition G(0) = 0,  

( ) ( ) ( ){ }
0

exp exp expaG s f aG aG

t
G t t t dtσ φ γ σ φ σ φ λ′ ′ ′ = Σ − − ∫  

( ) ( ) ( )exp 1exp 1
exp aGaG

aG s f
aG aG

tt
G t

σ φ λσ φ
σ φ γ φ

σ φ σ φ λ

  − −−  ∴ = Σ − −  
 

Simplifying,  

( ) ( ) ( )11 exp exps f
aG aG

aG aG

G t t t
γ

σ φ λ λ σ φ
σ σ φ λ
Σ  

 = − − − −  − 
 

The equation above describes the decay of gadolinium.  
Part (b): As t → ∞, the second term on the right-hand side of the expression 
obtained in part (a) tends to zero, and G(∞) becomes simply 

( ) ( )5
14

24

7.0 10
2.92 10 (II)

240,000 10
fs f

f
aG

G
γ
σ

−

−

× ×ΣΣ
∞ = = = × Σ

×
 

To determine the fission cross-section, we use 𝑃𝑃′′′ = 𝛾𝛾Σ𝑓𝑓𝜙𝜙 and note that 1 MW/m3 
= 1 W/cm3:  

f f
PP γ φ
γφ
′′′

′′′ = Σ → Σ =  

( ) ( )
1

11 12

100 0.403 cm
3.1 10 8.0 10f

P
γφ

−
−

′′′
∴Σ = = =

× × ×
 

Substituting in (II) brings to 

( ) ( )14 14 32.92 10 0.403 1.18 10 cmG −∞ = × × = ×  

Part (c): Following shutdown the Eu decays at a rate  

( ) ( )exps fE t t
γ φ

λ
λ
Σ

= −  

However, no additional Gd is produced from Eu, since 𝜙𝜙 = 0. Moreover, since Gd is 
stable its concentration remains at G(∞)  = 1.18×1014 cm-3.  
◼ P10.9 
We first rearrange equation (10.12) (page 247) and multiply through by exp(𝜆𝜆𝐼𝐼t):  

( ) ( )I f I
d I t I t
dt

γ φ λ= Σ −  

( ) ( )I I f
d I t I t
dt

λ γ φ∴ + = Σ  

( ) ( ) ( ) ( )exp expI I I f I
d I t I t t t
dt

λ λ γ φ λ ∴ + = Σ  
 

( ) ( ) ( )exp expI I f I
d I t t t
dt

λ γ φ λ ∴ = Σ  
 

 

Integrating between 0 and t, 
 

( ) ( ) ( ) ( )
0

exp 0 exp
t

I I f II t t I t dtλ γ φ λ ′ ′− = Σ∫  

( ) ( ) ( ) ( )exp 0 exp 1I f
I I

I

I t t I t
γ φ

λ λ
λ
Σ

∴ − =  −    

Solving for 𝐼𝐼(t), 

( ) ( ) ( ) ( )0 1 ; 0; 12 h (I)I II ft t

I

I t I e e tλ λγ φ
λ

− −Σ
= + − ∈  
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Let t’ = t – 12 h. Then, while the reactor is shut down, no iodine is produced and 
thus  

( ) ( ) ( )12 ; 12; 24 hI tI t I e tλ ′−= ∈  

Using the periodic boundary condition,  

( ) ( ) ( ) ( ) 12
0 24 12 exp I t

I I I tλ
=

= =  − ×    

( ) ( ) ( ) ( )12 12 120 24 0 1I I II f

I

I I I e e eλ λ λγ φ
λ

− × − × − ×Σ 
∴ = = + − × 

 
 

Solving for 𝐼𝐼(0):  

( ) ( )
( ) ( )

12
12

24 12

1 10
1 1

I

I

I I

I f I f

I I

e
I e

e e

λ
λ

λ λ

γ φ γ φ
λ λ

− ×
− ×

− × ×

−Σ Σ
= =

− +
 

Substituting 𝐼𝐼(0) into (I),  

( ) ( ) ( ) ( )12

1 1 ; 0; 12 h
1I

I II f I ft t

I I

I t e e t
e

λ λ
λ

γ φ γ φ
λ λ

− −
×

Σ Σ
= + − ∈

+
 

In turn,  

( ) ( ) ( )
12

12
; 0; 12 h

1

I
I

I

I f t

I

eI t e t
e

λ
λ

λ

γ φ
λ

×
′−

×

Σ
′= ∈

+
 

Replacing t’ with t ultimately gives  

( ) ( ) ( )
24

12
; 12; 24 h

1

I
I

I

I f t

I

eI t e t
e

λ
λ

λ

γ φ
λ

×
′−

×

Σ
= ∈

+
 

◼ P10.13 
Part (a): We begin with equation (10.38) on page 255:  

( ) ( )
( ) ( )

28 28

25 25 49 49

0

a a

N
CR t

N t N t
γσ

σ σ
=

+
 

At the beginning of life, N49(0) and the equation simplifies to 

( ) ( )
( ) ( )

28 28

25 25 49 49

0

a a

N
CR t

N t N t
γσ

σ σ
=

+

( )
( )

28 28

25 25

0
(I)

a

N
N t

γσ
σ

=  

The enrichment is  

( )
( ) ( )

25

25 28

0
0.04

0 0
N

e
N N

= =
+

  

Solving for N28(0)/N25(0),  

( )
( )

28

25

0 1 11 1 24
0 0.04

N
N e

= − = − =


 

Using thermal cross-section data from Table 3.2 and substituting the result above 
in (I), we obtain 

( ) 2.42 24.0 0.0983
591

CR t = × =  

Part (b): Firstly, note that, per equation (10.31),  

( ) ( ) ( )25 25 250 exp aN t N tσ = − Φ   

while equation (10.37) reads  

( ) ( ) ( ){ }
28

49 28 49
49 0 1 exp a
a

N t N tγσ σ
σ

 = − − Φ   
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Substituting these into the equation for conversion ratio,  

( ) ( )
( ) ( ) ( ) ( ){ }

28 28

25 25 25 28 28 49

0

0 exp 0 1 expa a a

N
CR t

N t N t
γ

γ

σ

σ σ σ σ
=

   − Φ + − − Φ   
 

Simplifying,  

( )
( ) ( ) ( ){ } ( )

25 49

1 0 (II)
exp 0 1 expa a

CR t CR
t CR tσ σ

=
   − Φ + − − Φ   

 

For 50% burnup, we restate (10.31) as  

( )
( ) ( )

25
25

25 exp 0.50
0 a

N t
t

N
σ = − Φ =   

Solving for 𝜎𝜎𝑎𝑎25Φ(t),  

( ) ( ) ( )25 25exp 0.50 ln 0.50a at tσ σ − Φ = → Φ = −   

( ) ( )25 ln 0.50 0.693a tσ∴ Φ = − =  

Similarly for the product 𝜎𝜎𝑎𝑎49Φ(t),  

( ) ( )
49

49
25

973ln 0.50 0.693 1.14
591

a
a

a

t σσ
σ

Φ = − = × =  

Substituting the pertaining data into (II), we have 

( )
( ) ( ) ( ){ } ( )

25 49

1 0 (II)
exp 0 1 expa a

CR t CR
t CR tσ σ

=
   − Φ + − − Φ   

 

( ) ( ) ( )
1 0.0983 0.173

exp 0.693 0.0983 1 exp 1.14
CR t∴ = × =

− + ×  − −  
 

Part (c): The fraction in question is  

( )
( ) ( )

49 4949 49

25 49 25 25 49 49
f

f f

N tP P
P P P N t N t

γσ φ
γσ φ γσ φ

′′′ ′′′
= =

′′′ ′′′ ′′′+ +
 

Using equations (10.31) and (10.37),  

( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

49 28 49 28 4949

25 25 25 49 28 49 28 49

0 1 exp

0 exp 0 1 exp
f a a

f a f a a

N tP
P N t N t

γ

γ

σ σ σ σ

σ σ σ σ σ σ

 − − Φ′′′  =
′′′    − Φ + − Φ   

 

This can be restated as 

( )( ) ( ) ( ) ( ){ }
( ) ( )( ) ( ) ( ) ( ){ }

49 25 28 49 28 25 4949

25 49 25 28 49 28 25 49

0 0 1 exp
(III)

exp 0 0 1 exp
f f a a

a f f a a

N N tP
P t N N t

γ

γ

σ σ σ σ σ

σ σ σ σ σ σ

   − − Φ′′′    =
′′′      − Φ + − Φ     

 

Using the pertaining cross-sections from Table 3.2 on page 77, we may write 

49 28

25 49
698 2.42 0.00344
505 973

f

f a

γσ σ
σ σ
      = × =              

 

Substituting into (III),  

( )
( ) ( )

49 0.00344 24 1 exp 1.14
0.10096 10.1%

exp 0.693 0.00344 24 1 exp 1.14
P
P

× ×  − − ′′′  = = ≈
′′′ − + × ×  − −  
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