Montogue

Quiz HD102

Hydraulic Structures \&

Design of Open Channels
 Lucas Montogue

Problems

Problem 1

A trapezoidal irrigation canal has a bottom width of $b=1.6 \mathrm{~m}$, side slopes of $m=2(2 \mathrm{H}: 1 \mathrm{~V})$, and a longitudinal bottom slope of $S_{0}=0.0008$. A rectangular sharp-crested weir is installed in this channel. The structure has a crest height of p $=0.80 \mathrm{~m}$ and a crest length of $L_{w}=1.04 \mathrm{~m}$. The water surface elevation at the approach section is $h_{0}=0.96 \mathrm{~m}$ above the weir crest. Determine the discharge in the canal.

A) $Q=0.26 \mathrm{~m}^{3} / \mathrm{s}$
B) $Q=0.78 \mathrm{~m}^{3} / \mathrm{s}$
C) $Q=1.73 \mathrm{~m}^{3} / \mathrm{s}$
D) $Q=2.24 \mathrm{~m}^{3} / \mathrm{s}$

Problem 2

A $45^{\circ} \mathrm{V}$-notch weir is installed in a 1.2 -m wide rectangular laboratory flume. The crest height is 0.6 m and the water surface elevation at the approach section is 0.23 m above the crest. Determine the discharge in the weir

A) $Q=9.42 \mathrm{~L} / \mathrm{s}$
B) $Q=14.6 \mathrm{~L} / \mathrm{s}$
C) $Q=19.1 \mathrm{~L} / \mathrm{s}$
D) $Q=24.7 \mathrm{~L} / \mathrm{s}$

Problem 3

A broad-crested weir has a crest length $L_{b}=0.85 \mathrm{~m}$, crest width $L_{w}=1.2 \mathrm{~m}$, and crest height $P=0.30 \mathrm{~m}$. The water surface is at a height of 0.26 m above the crest. Find the discharge.

A) $Q=202 \mathrm{~L} / \mathrm{s}$
B) $Q=273 \mathrm{~L} / \mathrm{s}$
C) $Q=347 \mathrm{~L} / \mathrm{s}$
D) $Q=396 \mathrm{~L} / \mathrm{s}$

Problem 4

A circular concrete culvert has diameter $D=1 \mathrm{~m}$ and slope $S=0.0025$. The culvert has a groove end with headwall, as illustrated below. The inlet is not mitered to an embankment slope. Determine the headwater depth, $H W$, when the culvert conveys $Q=0.8 \mathrm{~m}^{3} / \mathrm{s}$ under inlet control conditions.

A) $H W=0.34 \mathrm{~m}$
B) $H W=0.73 \mathrm{~m}$
C) $H W=1.12 \mathrm{~m}$
D) $H W=1.47 \mathrm{~m}$

Problem 5

A rectangular box culvert has the following properties: flow depth $D=1.0$ m , width $b=1.5 \mathrm{~m}$, length $L=60 \mathrm{~m}$, and slope $S=0.0035$. The culvert is made of reinforced concrete. The inlet is square-edged on three edges with a headwall parallel to the embankment, and the outlet is submerged with tailwater depth TW $=1.3 \mathrm{~m}$. Determine the headwater depth, $H W$, when the culvert is flowing full at Q $=3.2 \mathrm{~m}^{3} / \mathrm{s}$.
A) $H W=1.67 \mathrm{~m}$
B) $H W=2.13 \mathrm{~m}$
C) $H W=2.65 \mathrm{~m}$
D) $H W=3.16 \mathrm{~m}$

Problem 6

Design a spillway section for a design discharge of $1200 \mathrm{~m}^{3} / \mathrm{s}$, assuming that the upstream water surface level is at elevation 320 m , and the upstream channel floor is at an elevation of 280 m . The spillway has a vertical face and is 65m long.

Problem 7

An unlined channel to be excavated in gravelly soil overlain by Bermuda grass will convey a discharge of $125 \mathrm{~m}^{3} / \mathrm{s}$ over a slope of 0.001 . Proportion the channel dimensions using the maximum permissible velocity method. Assume the channel to be straight.

Problem 8

Using the tractive force approach, design a slightly sinuous channel in fine gravel that conveys a discharge of $65 \mathrm{~m}^{3} / \mathrm{s}$. The bottom slope is 0.0002 , and the particle size is 7.5 mm . Assume that the soil particles are slightly rounded.

Problem 9

Design a trapezoidal roadside channel lined with very coarse gravel mulch. The following data are given: discharge $Q=0.42 \mathrm{~m}^{3} / \mathrm{s}$, bottom width $b=0.4 \mathrm{~m}$, side slope $m=3$, longitudinal slope $S_{0}=0.008 \mathrm{~m} / \mathrm{m}$, and $d_{50}=50 \mathrm{~mm}$.

Problem 10

A trapezoidal grass-lined channel section has a bottom width of 6 m and side slopes of $3: 1$. The channel slope is 0.009 and the proposed channel lining is good stand $45-\mathrm{cm}$ lespedeza sericea. What is the maximum allowable discharge for this lining?

A) $Q=26.7 \mathrm{~m}^{3} / \mathrm{s}$
B) $Q=37.8 \mathrm{~m}^{3} / \mathrm{s}$
C) $Q=48.3 \mathrm{~m}^{3} / \mathrm{s}$
D) $Q=58.2 \mathrm{~m}^{3} / \mathrm{s}$

Additional Information

- Theory for weirs and culverts (probs. 1 to 5) can be obtained in Chapter 6 of Akan's Open Channel Hydraulics (2006), pp. 200 to 209 and 212 to 224.
- Theory for spillways (prob. 6) can be obtained in Part 7 of the Lecture Notes prepared by Prof. Atil Bulu of Istanbul Technical University
(https://web.itu.edu.tr/~bulu/water resources files/lecture notes 07.pdf, retrieved 09/23/19).
- Theory for channel design by the permissible velocity (probs. 7 and 8) and tractive force methods can be found in Chapter 9 of Chaudhry's Open-Channel Flow (2008), pp. 286 to 295.
- Theory for design of roadside channels with small discharge (prob. 9) can be obtained in the FHWA's publication Design of Roadside Channels with Flexible Linings (2005)
(https://www.fhwa.dot.gov/engineering/hydraulics/pubs/05114/05114.pdf, retrieved 09/23/19).
- Theory for design of channels with vegetative linings (prob. 10) can be found in Chapter 4 of

Sturm's Open Channel Hydraulics (2009), pp. 132 to 136.

Figure 1 Weir length correction.

Figure 2 Weir discharge coefficient for sharp-crested rectangular weirs.

Figure 3 Head correction for sharp-crested V-notch weirs.

Figure 4 Discharge coefficient for fully-contracted sharp-crested V-notches.

Table 1 Culvert inlet control flow coefficients

Shape and material	Inlet edge description	K_{I}	M_{I}	$K_{\text {II }}$	$M_{\text {II }}$	c	\boldsymbol{Y}
Circular concrete	Square edge with headwall	0.3155	2.0			1.28	0.67
Circular concrete	Groove end with headwall	0.2512	2.0			0.94	0.74
Circular corrugated metal	Headwall	0.2512	2.0			1.021	0.69
Circular	Beveled ring, 45° bevels	0.1381	2.50			0.966	0.74
Rectangular box	30-75 ${ }^{\circ}$ wingwall flares	0.1475	1.00			1.117	0.81
Rectangular box	90° and 15° wingwall flares	0.2243	0.75			1.288	0.80
Rectangular box	0° wingwall flare	0.2243	0.75			1.362	0.82
Horizontal ellipse concrete	Square edge with headwall	0.3220	2.0			1.282	0.67
Horizontal ellipse concrete	Groove end with headwall	0.1381	2.5			0.940	0.74
Vertical ellipse concrete	Square edge with headwall	0.3220	2.0			1.282	0.67
Vertical ellipse concrete	Groove end with headwall	0.1381	2.5			0.940	0.74
Rectangular box	45° wingwall flare $d=$ $0.043 D$			1.623	0.667	1	0.8
Rectangular box	$\begin{aligned} & 18-33.7^{\circ} \text { wingwall flare } d \\ &=0.083 D \end{aligned}$			1.547	0.667	0.8	0.83
Rectangular box	90° headwall with 3/4" chamfers			1.639	0.667	1.21	0.79
Rectangular box	90° headwall with 45° bevels			1.576	0.667	0.8	0.83
Rectangular box	90° headwall with 33.7° bevels			1.547	0.667	0.81	0.865
Rectangular box with top bevels	45° wingwall flares offset			1.582	0.667	0.97	0.835
Rectangular box with top bevels	33.7° wingwall flares offset			1.576	0.667	0.81	0.88

Table 2 Entrance loss coefficients

Type of structure and design of entrance	Coefficient $\boldsymbol{k}_{\boldsymbol{e}}$
\rightarrow Pipe, concrete:	
Projecting from fill socket end (groove-end)	0.2
Projecting from fill, sq. cut end	0.5
Headwall or headwall and wingwalls: socket end of pipe (groove-end)	0.2
Headwall or headwall and wingwalls: - square edge	0.5
Mitered to conform to fill slope	0.7
End-section conforming to fill slope	0.5
Beveled edges, 33.7° or 45° bevels	0.2
\rightarrow Pipe or pipe-arch, corrugated metal:	
Projecting from fill (no headwall)	0.9
Headwall or headwall and wingwalls square-edge	0.5
Mitered to conform to fill slope, paved or unpaved slope	0.7
\rightarrow Box, reinforced concrete:	
Headwall parallel to embankment (no wingwalls) - square-edged on three edges	0.5
Headwall parallel to embankment (no wingwalls) - rounded on three edges to radius of 1/12 barrel dimension, or beveled edges on three sides	0.2
Wingwalls at $30-75^{\circ}$ to barrel: - square-edged at crown	0.4
Wingwalls at $30-75^{\circ}$ to barrel: - crown edge rounded to radius of $1 / 12$ barrel dimension or beveled top edge	0.2
Wingwalls at $10-25^{\circ}$ to barrel: - square-edged at crown	0.5
Wingwalls parallel (extension of sides): - square-edged at crown	0.7
Side- or slope-tapered inlet	0.2

Figure 5 Coefficient of discharge for ogee crests with vertical faces.

(a) Discharge coefficient C_{D} versus P / H_{D} for design head

(b) C / C_{D} versus H / H_{D}

Table 3 Relationship between the design head and the head on the crest corresponding to maximum reservoir level

$\boldsymbol{H}_{\boldsymbol{e}}, \boldsymbol{H}_{\boldsymbol{d}} \geq \mathbf{1 0} \mathbf{~ m}$	$\boldsymbol{H}_{\boldsymbol{e}}, \boldsymbol{H}_{\boldsymbol{d}}<\mathbf{1 0} \mathbf{~ m}$
Without piers: $H_{D}=0.43 H_{e}^{1.22}$	Without piers: $H_{D}=0.70 H_{e}$
With piers: $H_{D}=0.39 H_{e}^{1.22}$	With piers: $H_{D}=0.74 H_{e}$

Figure 6 Coordinate coefficients.

Table 4 Suggested side slopes

Material	Recommended Side Slope
Rock	Nearly vertical to $0.25: 1$
Earth with concrete lining	$0.5: 1$
Stiff clay	$0.5: 1$ to $1: 1$
Firm soil	$1: 1$
Loose sandy soil	$2: 1$
Light sand, sandy loam	$3: 1$

Table 5 Suggested freeboard

Discharge (m³/s)	<0.75	0.75 to 1.5	1.5 to 85	>85
Freeboard (m)	0.45	0.60	0.75	0.90

Table 6 Selected values of Manning's n for open channels

Surface Material	Manning's Roughness Coefficient \boldsymbol{n}
Cement	0.011
Wood	0.012
Concrete	0.013
Soil cement	0.022
Earth channel, clean	0.022
Earth channel, firm gravel	0.023
Earth channel, gravelly	0.025
Stone masonry	0.032
Gravel mulch	0.033

Table 7 Recommended permissible velocities

Material		$V(\mathrm{~m} / \mathrm{s})$
Fine gravel		1.5
Coarse gravel		1.8
Earth	Sandy silt	0.6
	Silt clay	1.1
	Clay	1.8
Grass-lined earth (slopes < 5\%)	Bermuda grass + sandy silt	1.8
	Bermuda grass + silt clay	2.4
	Kentucky Blue grass + sandy silt	1.5
	Kentucky Blue grass + silt clay	2.1
Poor rock (usually sedimentary)	Soft sandstone	2.4
	Soft shale	1.1
Good rock (usually igneous or hard metamorphic)		6.1

Table 8 Changes in permissible velocity

Channel type	Change permissible velocity by...
Slightly sinuous	-5%
Moderately sinuous	-13%
Very sinuous	-22%

Figure 7 Angles of repose for non-cohesive material.

Particle size (inches)

Figure 8 Permissible shear stress for noncohesive materials.

Figure 9 Permissible shear stress for cohesive materials (versus void ratio).

Table 9 Changes in permissible shear according to channel type

Channel type	Change permissible shear by...
Slightly sinuous	-10%
Moderately sinuous	-25%
Very sinuous	-40%

Table 10 Typical permissible shear stresses
For bare soil and stone linings in roadside channels

Lining Category	Permissible Shear Stress		
	$\mathbf{N} / \mathbf{m}^{\mathbf{2}}$	$\mathbf{l b / \mathbf { f t } ^ { \mathbf { 2 } }}$	
Gravel Mulch	Coarse gravel $D_{50}=25 \mathrm{~mm}$	19	0.4
	Very coarse gravel $D_{50}=50$ mm	38	0.8
	$D_{50}=0.15 \mathrm{~m}$	113	2.4
	$D_{50}=0.30 \mathrm{~m}$	227	4.8

Table 11 Permissible shear stresses and constant a_{0} for vegetative linings ${ }^{1}$

Retardance Class	Permissible $\boldsymbol{\tau}_{\boldsymbol{p}}$, $\mathbf{p s f}$	Permissible $\boldsymbol{\tau}_{\boldsymbol{p}}$, Pa	$\boldsymbol{a}_{\mathbf{0}}$ in Resistance Equation
A	3.70	177	24.7
B	2.10	100	30.7
C	1.00	48	36.4
D	0.60	29	40.0
E	0.35	17	42.7

${ }^{1} a_{0}$ is a coefficient used in the computation of Manning's n with the formula

$$
n=\frac{R^{1 / 6}}{a_{0}+16.4 \log \left(R^{1.4} S^{0.4}\right)}
$$

Table 12 Classification of vegetal cover as to degree of retardance

Vegetal Retardance Class	Cover and Condition
A	\rightarrow Weeping lovegrass - Excellent stand, tall (avg. 30 in. [76 cm]) \rightarrow Yellow bluestem \rightarrow Ischaemum - Excellent stand, tall (avg. 36 in. [91 cm])
B	\rightarrow Kudzu - Very dense growth, uncut \rightarrow Bermuda grass - Good stand, tall (avg. 12 in. [30 cm]) \rightarrow Native grass mixture (little bluestem, bluestem, blue gamma, and other long and short Midwest grasses) - Good stand, unmowed \rightarrow Weeping lovegrass - Good stand, tall (avg. 24 in. [61 cm]) \rightarrow Lespedeza sericea - Good stand, not woody, tall (avg. 19 in. [48 cm]) \rightarrow Alfalfa - Good stand, uncut (avg. $11 \mathrm{in} .[28 \mathrm{~cm}]$) \rightarrow Weeping lovegrass - Good stand, unmowed (avg. $13 \mathrm{in} .[33 \mathrm{~cm}$]) \rightarrow Kudzu - Dense growth, uncut \rightarrow Blue gamma - Good stand, uncut (avg. 13 in . [33 cm])
C	\rightarrow Crabgrass - Fair stand, uncut (10 to 48 in.) (25 to 120 cm) \rightarrow Bermuda grass - Good stand, mowed (avg. 6 in. [15 cm]) \rightarrow Common lespedeza - Good stand, uncut (avg. 11 in . [28 cm]) \rightarrow Grass-legume mixture - summer (orchard grass, redtop, Italian ryegrass, and common lespedeza) - Good stand, uncut (6 to 8 in. [15 to 20 cm$]$) \rightarrow Centipede grass - Very dense cover (avg. 6 in. [15 cm]) \rightarrow Kentucky bluegrass - Good stand, headed (6 to 12 in .) [15 to 30 cm]
D	\rightarrow Bermuda grass - Good stand, cut to 2.5 in. height (6 cm) \rightarrow Common lespedeza - Excellent stand, uncut (avg. 4.5 in. [11 cm]) \rightarrow Buffalo grass - Good stand, uncut (3 to 6 in.) (8 to 15 cm) \rightarrow Grass-legume mixture - fall, spring (orchard grass, redtop, Italian ryegrass, and common lespedeza) - Good stand, uncut (4 to 5 in.) (10 to 13 cm) \rightarrow Lespedeza sericea - After cutting to 2 in . height (5 cm), very good stand before cutting
E	$\begin{aligned} & \rightarrow \text { Bermuda grass - Good stand, cut to } 1.5 \text { in. }(4 \mathrm{~cm}) \\ & \rightarrow \text { Bermuda grass - Burned stubble } \end{aligned}$

Solutions

P. 1 ■ Solution

The flow depth at the approach section is $y=0.80+0.96=1.76 \mathrm{~m}$. The top width of the flow at the weir section is $B=b+2 m y=1.6+2 \times 2 \times 1.76=8.64 \mathrm{~m}$. Thus, the average channel width is $\bar{b}=(b+B) / 2=(1.6+8.64) / 2=5.12 \mathrm{~m}$. With $L_{w} / \bar{b}=1.04 / 5.12=0.2, h_{0} / p=0.96 / 0.80=1.2$, we obtain $L_{k}=0.0024$ and $k_{w}=0.39$ from Figures 1 and 2 , respectively. The effective crest length is

$$
L_{e w}=L_{w}+L_{k}=1.04+0.0024=1.0424 \mathrm{~m}
$$

and, knowing that the head correction is $h_{k}=0.001 \mathrm{~m}$, the effective head follows as

$$
h_{e 0}=h_{0}+h_{k}=0.96+0.001=0.961 \mathrm{~m}
$$

Finally, substituting the available variables into the equation for weir discharge, we obtain

$$
Q=k_{w} \sqrt{2 g} L_{e w} h_{e 0}^{3 / 2}=0.39 \times \sqrt{2 \times 9.81} \times 1.0424 \times 0.961=1.73 \mathrm{~m}^{3} / \mathrm{s}
$$

Note that, in this case, the corrections for the crest length and the head are negligible and could have been ignored altogether.
\star The correct answer is \mathbf{C}.

P. 2 ■ Solution

From the problem statement, we have $B=1.2 \mathrm{~m}, p=0.6 \mathrm{~m}, \theta=45^{\circ}$, and h_{0} $=0.23 \mathrm{~m}$. For the problem at hand, $h_{0} / p=0.23 / 0.6=0.38<0.40$, and $h_{0} / B=$ $0.23 / 1.2=0.19<0.20$. Therefore, the V -notch is fully contracted. For $\theta=45^{\circ}$, we have $h_{k}=0.0015 \mathrm{~m}$ and $k_{w}=0.309$ from Figures 3 and 4 , respectively. We are then ready to substitute the available data into the equation for discharge,

$$
\begin{gathered}
Q=k_{w} \sqrt{2 g} \tan \left(\frac{\theta}{2}\right) h_{e 0}^{5 / 2}=0.309 \times \sqrt{2 \times 9.81} \times \tan \left(\frac{45^{\circ}}{2}\right)(0.23+0.0015)^{5 / 2} \\
\therefore Q=0.0146 \mathrm{~m}^{3} / \mathrm{s}=14.6 \mathrm{~L} / \mathrm{s}
\end{gathered}
$$

t The correct answer is \mathbf{B}.

P. 3 ■ Solution

Initially, we neglect the velocity head of the approach flow. This implies that

$$
E_{0}=h_{0}
$$

Then, since $C_{V}=\left(E_{0} / h_{0}\right)^{3 / 2}$, we initially have $C_{V}=1$. This coefficient accounts for the approach velocity head. We proceed to obtain coefficient $k_{d,}$ which is given by

$$
k_{d}=0.358+0.038 \frac{E_{0}}{L_{b}}=0.358+0.038 \times \frac{0.26}{0.85}=0.370
$$

k_{d} is related to the discharge coefficient k_{w} by

$$
k_{w}=k_{d} C_{v}=0.370 \times 1=0.370
$$

We may then determine the discharge Q,
$Q=k_{w} \sqrt{2 g} L_{w} h_{0}^{3 / 2}=0.370 \times \sqrt{2 \times 9.81} \times 1.2 \times 0.26^{3 / 2}=0.261 \mathrm{~m}^{3} / \mathrm{s}=261 \mathrm{~L} / \mathrm{s}$

Next, we shall refine this solution by taking the approach velocity head into account. The total depth at the approach section is $0.30+0.26=0.56 \mathrm{~m}$, and the velocity is

$$
V=\frac{0.261}{0.56 \times 1.2}=0.388 \mathrm{~m} / \mathrm{s}
$$

The corresponding velocity head is

$$
\frac{V_{0}^{2}}{2 g}=\frac{0.388^{2}}{2 \times 9.81}=0.0077 \mathrm{~m}
$$

Thus, E_{0} is actually

$$
E_{0}=0.26+0.0077=0.2677 \mathrm{~m}
$$

Let us update coefficient C_{v}, which is no longer equal to unity,

$$
C_{v}=\left(\frac{E_{0}}{h_{0}}\right)^{\frac{3}{2}}=\left(\frac{0.2677}{0.26}\right)^{\frac{3}{2}}=1.045
$$

k_{d} is then updated as well,

$$
k_{d}=0.358+0.038 \times \frac{0.2677}{0.85}=0.370
$$

Note that k_{d} is unchanged relative to its previous value. Finally, the discharge coefficient k_{w} is given by

$$
k_{w}=C_{v} k_{d}=1.045 \times 0.370=0.387
$$

Having found k_{w}, we can return to the expression for the discharge Q, which is determined to be

$$
Q=0.387 \times \sqrt{2 \times 9.81} \times 1.2 \times 0.26^{3 / 2}=0.273 \mathrm{~m}^{3} / \mathrm{s}=273 \mathrm{~L} / \mathrm{s}
$$

This is the updated discharge, which now accounts for the approach velocity head as well.
\star The correct answer is \mathbf{B}.

P. 4 ■ Solution

Before anything else, we need to verify whether the culvert is submerged or unsubmerged.

$$
\frac{Q}{A D^{1 / 2} g^{1 / 2}}=\frac{0.8}{\left(\frac{\pi \times 1^{2}}{4}\right) \times 1^{1 / 2} \times 9.81^{1 / 2}}=0.325 \leq 0.62
$$

Thus, it is safe to conclude that the culvert is unsubmerged. Next, we establish the value of the critical depth. We first require angle θ,

$$
A \sqrt{D_{H}}=\frac{Q}{\sqrt{g}} \rightarrow \frac{(\theta-\sin \theta) D^{2}}{8} \sqrt{\frac{\frac{(\theta-\sin \theta) D^{2}}{8}}{D \sin \left(\frac{\theta}{2}\right)}}=\frac{0.8}{\sqrt{9.81}}
$$

Substituting $D=1 \mathrm{~m}$, we have

$$
\left(\frac{\theta-\sin \theta}{8}\right)^{\frac{3}{2}} \sqrt{\sin \left(\frac{\theta}{2}\right)}=\frac{0.8}{\sqrt{9.81}}
$$

This can be solved in Mathematica with the FindRoot function, namely,

$$
\text { FindRoot }\left[\left(\frac{\theta-\operatorname{Sin}[\theta]}{8}\right)^{\frac{3}{2}} \sqrt{\operatorname{Sin}\left[\frac{\theta}{2}\right]}-\frac{0.8}{\sqrt{9.81}},\{\theta, 1\}\right]
$$

which returns 3.18 for θ. The critical depth can be obtained with the relation

$$
\theta=2 \cos ^{-1}\left(1-\frac{2 y}{D}\right)
$$

To obtain y, we apply the command Solve,

$$
\text { Solve }\left[3.18==2 \operatorname{ArcCos}\left[1-\frac{2 y}{1}\right], y\right]
$$

The critical depth is found as $y=0.51 \mathrm{~m}$. Next, we find the velocity V_{c} from the relation

$$
V_{c}=\frac{Q}{\left[\frac{(\theta-\sin \theta) D^{2}}{8}\right]}=\frac{0.8}{\left[\frac{(3.18-\sin 3.18) \times 1^{2}}{8}\right]}=1.99 \mathrm{~m} / \mathrm{s}
$$

We may then apply the form I equation for inlet control flow,

$$
\frac{H W}{D}=\frac{E_{c}}{D}+K_{I}\left(\frac{Q}{A D^{0.5} g^{0.5}}\right)^{M_{I}}+k_{s} S
$$

where $H W$ is the headwater depth above the upstream invert of the culvert, E_{c} is the specific energy at critical conditions, k_{s} is a constant equal to 0.7 for mitered inlets and -0.5 for non-mitered inlets, S is the culvert barrel slope, and K_{l} and M_{l} are empirical constants. Using Table 1, we see that the pertaining coefficients are $K_{l}=0.2512$ and $M_{l}=2.0$. Substituting these and other appropriate variables in the equation above gives

$$
\begin{gathered}
\frac{H W}{D}=\frac{y_{c}}{D}+\frac{V_{c}^{2}}{2 g D}+0.2512\left(\frac{Q}{A D^{0.5} g^{0.5}}\right)^{2}+k_{s} S \\
\therefore \frac{H W}{D}=\frac{0.51}{1}+\frac{1.99^{2}}{2 \times 9.81}+0.2512\left(\frac{0.8}{\frac{\pi \times 1^{2}}{4} \times 1^{0.5} \times 9.81^{0.5}}\right)^{2}-0.5 \times 0.025=0.726
\end{gathered}
$$

Thus, the headwater depth equals

$$
H W=0.726 \times 1 \approx 0.73 \mathrm{~m}
$$

* The correct answer is \mathbf{B}.

P. 5 ■ Solution

From Table 2, we obtain $k_{e}=0.5$. For a box culvert such as the one considered in this problem, we have $A=b D=1.5 \times 1.0=1.5 \mathrm{~m}^{2}, P=2(b+D)=$ $2(1.5+1.0)=5 \mathrm{~m}$, and $R=A / P=1.5 / 5=0.3 \mathrm{~m}$. Since the culvert is made of reinforced concrete, we have $n=0.013$ from Table 6 . Finally, we resort to the equation for a culvert under outlet control flow with full-flow conditions,

$$
H W=T W-S \times L+\left(1+k_{e}+\frac{2 g n^{2} L}{k_{n}^{2} R^{4 / 3}}\right) \frac{Q^{2}}{2 g A^{2}}
$$

Substituting the pertaining variables, we find that
$H W=1.3-0.0035 \times 60+\left(1+0.5+\frac{2 \times 9.81 \times 0.013^{2} \times 60}{1^{2} \times 0.3^{4 / 3}}\right) \times \frac{3.2^{2}}{2 \times 9.81 \times 1.5^{2}}=1.67 \mathrm{~m}$

* The correct answer is \mathbf{A}.

P. 6 ■ Solution

Assuming a high overflow spillway section, for $P / H_{D} \geq 3$, the discharge coefficient $C_{D}=0.49$ (Figure 5). The head on the crest controls the discharge through the equation

$$
\begin{aligned}
& Q=C_{D} \sqrt{2 g} L H_{e}^{\frac{3}{2}} \rightarrow H_{e}^{3 / 2}=\frac{Q}{C_{D} \sqrt{2 g} L} \\
\therefore & H_{e}=\left(\frac{1200}{0.49 \times \sqrt{2 \times 9.81} \times 65}\right)^{\frac{2}{3}}=4.17 \mathrm{~m}
\end{aligned}
$$

The depth of water upstream is $320-280=40 \mathrm{~m}$. The approach velocity can be found from the definition of discharge,

$$
\begin{gathered}
Q=V A \rightarrow V=\frac{Q}{A} \\
\therefore V=\frac{1200}{40 \times 65}=0.46 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

which is a quite small approach velocity, thus suggesting that our assumption of a high overflow spillway was correct. The velocity head is

$$
\text { V. Head }=\frac{V^{2}}{2 g}=\frac{0.46^{2}}{2 \times 9.81}=0.011 \mathrm{~m}
$$

The maximum water head, therefore, is

$$
\text { Maximum water head }=4.17-0.011=4.16 \mathrm{~m}
$$

The height of the crest, in turn, is designed to be

$$
P=40-4.16=35.84 \mathrm{~m}
$$

Now, because H_{e} is smaller than 10 m and there are no piers, we shall take the following equation among the relations presented in Table 3,

$$
H_{D}=0.70 H_{e} \rightarrow H_{D}=0.70 \times 4.17=2.92 \mathrm{~m}
$$

Our design head is 2.92 m . Next, we compute the ratio P / H_{D} to ensure ourselves that its value is greater than 1.33 and the high overflow assumption is correct.

$$
\frac{P}{H_{D}}=\frac{35.84}{2.92}=12.27>1.33
$$

Thence, let us calculate the shape of the downstream quadrant, which follows from the equation

$$
X^{1.85}=2 H_{D}^{0.85} Y=2 \times 2.92^{0.85} Y=4.97 Y
$$

Then, to find the point of tangency, we resort to the formula

$$
x_{D T}=0.485 H_{D}\left(K_{s p} \alpha\right)^{1.176} \rightarrow x_{D T}=0.485 \times 2.92 \times(2 \times 2)^{1.176}=7.23 \mathrm{~m}
$$

Finally, we find the ellipse that fits the upstream quadrant, which is given by

$$
\frac{x^{2}}{A^{2}}+\frac{(B-y)^{2}}{B^{2}}=1
$$

To find this shape, we use the graphs presented in Figure 6. For $P / H_{D}=12$, the ratio A / H_{D} equals 0.28 . Therefore,

$$
\frac{A}{H_{D}}=0.28 \rightarrow A=0.28 \times 2.92=0.818 \mathrm{~m}
$$

Similarly, coefficient B can be obtained from the other graph, noting that $B / H_{D}=0.165$ for $P / H_{D}=12$. Hence,

$$
\frac{B}{H_{D}}=0.165 \rightarrow B=0.165 \times 2.92=0.482 \mathrm{~m}
$$

Finally, the ellipse that describes the upstream quadrant is

$$
\frac{x^{2}}{0.818^{2}}+\frac{(0.482-y)^{2}}{0.482^{2}}=1
$$

P. 7 ■ Solution

First, we select the Manning n, which has a value of 0.025 for a coarse gravel. Let us set the side slope as $m=2$. Using Table 7 , we take $1.8 \mathrm{~m} / \mathrm{s}$ as the permissible velocity. Since the channel is going to convey a relatively large discharge, however, it is reasonable to assume that the flow depth will be greater than 1 m , and hence we may increase $V_{\max }$ by $0.15 \mathrm{~m} / \mathrm{s}$; it follows that $V_{\max }=1.8+$ $0.15=1.95 \mathrm{~m} / \mathrm{s}$. Because the channel is straight, there is no need to reduce the permissible velocity (as would be prescribed by Table 8). We then determine the hydraulic radius with the Manning formula,

$$
R=\left(\frac{n V_{\max }}{k_{n} S_{0}^{1 / 2}}\right)^{\frac{3}{2}}=\left(\frac{0.025 \times 1.95}{1.0 \times 0.001^{1 / 2}}\right)^{\frac{3}{2}}=1.91 \mathrm{~m}
$$

Next, we find the required flow area from conservation of mass,

$$
A=\frac{Q}{V}=\frac{125}{1.95}=64.10 \mathrm{~m}^{2}
$$

We then obtain the wetted perimeter,

$$
P=\frac{A}{R}=\frac{64.10}{1.91}=33.56 \mathrm{~m}
$$

Thence, we want to find a bottom width and a flow depth that satisfy the equations for area and wetted perimeter simultaneously. For a trapezoidal channel, the former is

$$
\begin{gathered}
A=(b+m y) y \\
\therefore(b+2 y) y=64.10
\end{gathered}
$$

while the latter is

$$
\begin{aligned}
& P=b+2 y \sqrt{1+m^{2}} \\
& \therefore b+2 y \sqrt{1+2^{2}}=P \\
& \therefore b+4.47 y=33.56
\end{aligned}
$$

Using Mathematica, the two equations can be solved simultaneously with the command Solve,

$$
\text { Solve }[(b+2 * y) y==64.1 \& \& b+4.47 y==33.56,\{b, y\}]
$$

This returns $\{b=23.3, y=2.30\}$ and $\{b=-16.9, y=11.3\}$. The latter solution is impossible, which leaves us with a width $b=23.3 \mathrm{~m}$ and a depth $y=$ 2.30 m. Note that we have confirmed our assumption that the flow depth was going to be greater than 1 m , which we considered to justify the increase in the permissible velocity. Finally, because the discharge is greater than $85 \mathrm{~m}^{3} / \mathrm{s}$, we can prescribe a freeboard of 0.9 m (Table 5). It follows that the total depth of the channel will be $2.30+0.90=3.20 \mathrm{~m}$.

P. 8 ■ Solution

The average particle size in inches is $0.75 / 2.54=0.3 \mathrm{in}$. We shall adopt a roughness coefficient of 0.023 and a slope of $3 \mathrm{H}: 1 \mathrm{~V}$, which corresponds to a side slope angle of

$$
\tan ^{-1} \frac{1}{3}=18.4^{\circ}
$$

Using the graph of angle of repose versus particle size (Figure 7), we find that ϕ for this material is approximately 26.5°. We then find the tractive force ratio, K,

$$
K=\sqrt{1-\frac{\sin ^{2} 18.4^{\circ}}{\sin ^{2} 26.5^{\circ}}}=0.71
$$

To find the maximum allowable stress, we make use of the graph in Figure 8, which gives the permissible stress as a function of particle diameter. For a particle diameter of 7.5 mm , the allowable stress is $6.5 \mathrm{~N} / \mathrm{m}^{2}$. Since the channel is slightly sinuous, the permissible shear must be reduced by 10% (Table 9). The result is

$$
\tau_{p}=0.90 \times 6.5=5.85 \mathrm{~N} / \mathrm{m}^{2}
$$

The permissible tractive force on the channel sides is

$$
\tau_{p, \mathrm{~s}}=0.71 \times 5.85=4.15 \mathrm{~N} / \mathrm{m}^{2}
$$

The actual unit tractive force on the side is

$$
\tau_{s}=0.76 \gamma y S_{0}=0.76 \times 9810 \times 0.0002 y=1.49 y
$$

Equating this to the permissible stress on the sides, we find

$$
\begin{gathered}
\tau_{s}=\tau_{p, s} \rightarrow 1.49 y=4.15 \\
\therefore y=\frac{4.15}{1.49}=2.79 \mathrm{~m}
\end{gathered}
$$

The channel bottom width can be found by solving the Manning equation for b,

$$
\begin{gathered}
Q=\frac{k_{n} \sqrt{S_{0}}}{n} \times \frac{[(b+m y) y]^{\frac{5}{3}}}{\left(b+2 y \sqrt{1+m^{2}}\right)^{\frac{2}{3}}} \\
\therefore 65=\frac{\sqrt{0.0002}}{0.023} \times \frac{[(b+3 \times 2.79) \times 2.79]^{\frac{5}{3}}}{\left(b+2 \times 2.79 \times \sqrt{1+3^{2}}\right)^{\frac{2}{3}}}
\end{gathered}
$$

In Mathematica, we make use of the NSolve command with the Reals option activated,

$$
\text { NSolve }\left[65==\frac{\sqrt{0.0002}}{0.023} \frac{((b+3 * 2.79) * 2.79)^{\frac{5}{3}}}{\left(b+2 * 2.79 \sqrt{1+3^{2}}\right)^{\frac{2}{3}}}, b \text {, Reals }\right]
$$

This yields the solution $b=15.44 \mathrm{~m}$. Finally, we must verify whether the channel bed will be scoured or not. To do so, we compare $\tau=\gamma y S_{0}$ with the maximum permissible value τ_{p}; that is,

$$
\tau=9810 \times 2.79 \times 0.0002=5.47<\tau_{p}=5.85 \mathrm{~N} / \mathrm{m}^{2}
$$

The result is below the permissible limit of $5.85 \mathrm{~N} / \mathrm{m}^{2}$, which implies that the channel bottom will not be eroded. Our design is stable for the channel sides and for the channel bed. Finally, we could predict a freeboard for the channel; using Table 5, we conclude that 0.75 m is an adequate value. The channel depth will be $2.79+0.75=3.54 \mathrm{~m}$.

P. 9 ■ Solution

We use the design approach presented in the FHWA's Design of Roadside Channels with Flexible Linings. We begin by assuming a depth of flow $y=0.5 \mathrm{~m}$. The area and wetted perimeter are, respectively,

$$
\begin{gathered}
A=(b+m y) y=(0.4+3 \times 0.5) \times 0.5=0.95 \mathrm{~m}^{2} \\
P=b+2 y \sqrt{m^{2}+1}=0.4+2 \times 0.5 \times \sqrt{3^{2}+1}=3.56 \mathrm{~m}
\end{gathered}
$$

The hydraulic radius is $R=0.95 / 3.56=0.267 \mathrm{~m}$. From Table 6, we note that Manning's n for a channel lined with gravel mulch is 0.033 . The discharge is calculated with the Manning equation,

$$
Q=\frac{k_{n}}{n} A R^{2 / 3} S_{0}^{1 / 2}=\frac{1.0}{0.033} \times 0.95 \times 0.267^{2 / 3} \times 0.008^{1 / 2}=1.07 \mathrm{~m}^{3} / \mathrm{s}
$$

This value is more than 5 percent greater than the design flow, and thus another iteration is needed. The new supposed flow depth can be established with the simple relation

$$
y_{2}=y_{1}\left(\frac{Q_{1}}{Q_{0}}\right)^{0.4}=0.5\left(\frac{1.07}{0.42}\right)^{0.4}=0.34 \mathrm{~m}
$$

We proceed to compute the new flow area and wetted perimeter,

$$
\begin{gathered}
A=(b+m y) y=(0.4+3 \times 0.34) \times 0.34=0.48 \mathrm{~m}^{2} \\
P=b+2 y \sqrt{m^{2}+1}=0.4+2 \times 0.34 \times \sqrt{3^{2}+1}=2.55 \mathrm{~m}
\end{gathered}
$$

The hydraulic radius, in turn, is $R=0.48 / 2.55=0.188 \mathrm{~m}$. The new discharge follows as

$$
Q=\frac{k_{n}}{n} A R^{2 / 3} S_{0}^{1 / 2}=\frac{1.0}{0.033} \times 0.48 \times 0.188^{2 / 3} \times 0.008^{1 / 2}=0.43 \mathrm{~m}^{3} / \mathrm{s}
$$

This result is within 5 percent of the initially supposed discharge. We may then determine the shear stress at maximum depth with the usual relation

$$
\tau_{d}=\gamma y S_{0}=9810 \times 0.34 \times 0.008=26.7 \mathrm{~N} / \mathrm{m}^{2}
$$

From Table 10, the permissible shear stress for very coarse gravel mulch is $\tau_{d}=38 \mathrm{~N} / \mathrm{m}^{2}$. We take a safety factor $S F=1.0$. Comparing the calculated shear with the permissible shear, we have

$$
\mathrm{SF} \times \tau_{d} \leq \tau_{p} \rightarrow 1.0 \times 26.7 \leq 38
$$

The equality checks, and we conclude that the lining is stable. The design process is complete.

P. 10 ■ Solution

From Table 12, the Vegetal Retardance Class is B, and, from Table 11, the permissible shear is 100 Pa . The maximum allowable depth comes from setting $\tau_{\text {max }}=\gamma y_{0} S=\tau_{p}$ and solving for y_{0},

$$
y_{0}=\frac{\tau_{p}}{\gamma S}=\frac{100}{9810 \times 0.009}=1.13 \mathrm{~m}
$$

The area and wetted perimeter of the cross-section for this depth are

$$
\begin{gathered}
A=(b m+y) y=(6 \times 3+1.13) \times 1.13=21.62 \mathrm{~m}^{2} \\
P=b+2 y \sqrt{1+m^{2}}=6+2 \times 1.13 \times \sqrt{1+3^{2}}=13.15 \mathrm{~m}
\end{gathered}
$$

Then, the hydraulic radius is $R=21.62 / 13.15=1.64 \mathrm{~m}$. Noting that $a_{0}=30.7$ for a cover belonging to the retardance class in question, the Manning n becomes

$$
n=\frac{R^{1 / 6}}{a_{0}+16.4 \log \left(R^{1.4} S^{0.4}\right)}=\frac{1.64^{1 / 6}}{30.7+16.4 \log \left(1.64^{1.4} 0.009^{0.4}\right)}=0.049
$$

Finally, the allowable discharge can be calculated with the Manning equation,

$$
Q=\frac{k_{n}}{n} A R^{2 / 3} S_{0}^{1 / 2}=\frac{1.0}{0.049} \times 21.62 \times 1.64^{2 / 3} \times 0.009^{0.5}=58.2 \mathrm{~m}^{3} / \mathrm{s}
$$

* The correct answer is \mathbf{D}.

Answer Summary

Problem 1	C
Problem 2	B
Problem 3	B
Problem 4	B
Problem 5	A
Problem 6	Open-ended pb.
Problem 7	Open-ended pb.
Problem 8	Open-ended pb.
Problem 9	Open-ended pb.
Problem 10	D

References

- AKAN, A. (2006). Open Channel Hydraulics. Oxford: ButterworthHeinemann.
- CHAUDRHY, M. (2008). Open-Channel Flow. 2nd edition. New York: Springer.
- Federal Highway Administration. (2005). Design of Roadside Channels with Flexible Linings. United States: FHWA.
- STURM, T. (2009). Open Channel Hydraulics. 2nd edition. New York: McGraw-Hill.

[^0]
[^0]: ?
 Got any questions related to this quiz? We can help!
 Send a message to contact@montogue.com and we'll answer your question as soon as possible.

