# II Montogue 

## QUIZ CE202

Ideal Reactors - Part 2

## Lucas Montogue

## PROBLEMS

## - Problem 1

The reaction

$$
A \rightarrow B
$$

is to be carried out isothermally in a continuous flow reactor. The entering volumetric flow rate $v_{0}$ is $10 \mathrm{dm}^{3} / \mathrm{h}$. Calculate both the CSTR and PFR reactor volumes necessary to consume $99 \%$ of $A$ (i.e., $C_{A}=0.01 C_{A, 0}$ ) when the entering molar flow rate is $5 \mathrm{~mol} / \mathrm{h}$, assuming the reaction rate $-r_{A}$ is

$$
-r_{A}=k ; k=0.05 \frac{\mathrm{~mol}}{\mathrm{~h} \cdot \mathrm{dm}^{3}}
$$

True or false?
1.( ) The volume of a CSTR that accommodates this reaction is greater than $100 \mathrm{dm}^{3}$. 2.( ) The volume of a PFR that accommodates this reaction is greater than $90 \mathrm{dm}^{3}$.

Suppose now that the reaction rate is described by

$$
-r_{A}=k C_{A} ; k=0.0001 \mathrm{~s}^{-1}
$$

3.( ) The volume of a CSTR that accommodates this reaction is greater than $2600 \mathrm{dm}^{3}$.
4.( ) The volume of a PFR that accommodates this reaction is greater than $150 \mathrm{dm}^{3}$

Suppose now that the reaction rate is described by

$$
-r_{A}=k C_{A}^{2} ; k=300 \frac{\mathrm{dm}^{3}}{\mathrm{~mol} \cdot \mathrm{~h}}
$$

5.( ) The volume of a CSTR that accommodates this reaction is greater than $700 \mathrm{dm}^{3}$. 6.( ) The volume of a PFR that accommodates this reaction is greater than $5 \mathrm{dm}^{3}$

## Problem 2

In an isothermal batch reactor, $70 \%$ of a liquid reactant is converted in 13 minutes. The reaction, $A \rightarrow R$, is first order on reactant A . What space-time is required to effect this conversion in a plug flow reactor and in a mixed flow reactor? Consider the following statements.

Statement 1: The space-time needed to effect the reaction in a plug flow reactor is greater than 10 minutes.

Statement 2: The space-time needed to effect the reaction in a mixed flow reactor is greater than 30 minutes.
A) Both statements are true,
B) Statement 1 is true and statement 2 is false.
C) Statement 1 is false and statement 2 is true.
D) Both statements are false.

## Problem 3

An aqueous feed of $A$ and $B(400$ liter/min, $100 \mathrm{mmol} A / \mathrm{liter}, 200 \mathrm{mmol}$ $B /$ liter) is to be converted to product in a mixed flow reactor. The kinetics of the reaction is represented by

$$
A+B \rightarrow R ;-r_{A}=200 C_{A} C_{B} \frac{\mathrm{~mol}}{\text { liter } \cdot \min }
$$

Find the volume of reactor required to for $99.9 \%$ conversion of $A$ to product.
A) $V=3880 \mathrm{~L}$
B) $V=6540 \mathrm{~L}$.
C) $V=11,100 \mathrm{~L}$
D) $V=20,000 \mathrm{~L}$

## - Problem 4

An aqueous feed of $A$ and $B(400$ liter $/ \mathrm{min}, 100 \mathrm{mmol} A / \mathrm{liter}, 200 \mathrm{mmol}$ $B /$ liter) is to be converted to product in a plug flow reactor. The kinetics of the reaction are represented by

$$
A+B \rightarrow R ;-r_{A}=200 C_{A} C_{B} \frac{\mathrm{~mol}}{\text { liter } \cdot \mathrm{min}}
$$

Find the volume of reactor needed for $99.9 \%$ conversion of $A$ to product.
A) $V=124 \mathrm{~L}$
B) $V=248 \mathrm{~L}$.
C) $V=372 \mathrm{~L}$
D) $V=496 \mathrm{~L}$

## - Problem 5

A gaseous feed of pure A ( $2 \mathrm{~mol} / \mathrm{liter}, 100 \mathrm{~mol} / \mathrm{min}$ ) decomposes to give a variety of products in a plug flow reactor. The kinetics of the conversion is represented by

$$
A \rightarrow 2.5 \text { (Products) } ;-r_{A}=\left(10 \min ^{-1}\right) C_{A}
$$

Find the expected conversion in a 22 -liter reactor.
A) $X_{A}=0.44$
B) $X_{A}=0.56$
C) $X_{A}=0.71$
D) $X_{A}=0.90$

## Problem 6

We plan to replace our present mixed flow reactor with one having double the volume. For the same aqueous feed ( $10 \mathrm{~mol} \mathrm{~A} / \mathrm{liter}$ ) and the same feed rate, find the new conversion. The reaction kinetics are represented by

$$
A \rightarrow R ;-r_{A}=k C_{A}^{1.5}
$$

and the present conversion is $70 \%$.
A) $X_{A}^{\prime}=0.444$
B) $X_{A}^{\prime}=0.510$
C) $X_{A}^{\prime}=0.795$
D) $X_{A}^{\prime}=0.951$

## - Problem 7

A stream of pure gaseous reactant $\mathrm{A}\left(C_{A, 0}=660 \mathrm{mmol} / \mathrm{liter}\right)$ enters a plug
flow reactor at a flow rate of $F_{A, 0}=540 \mathrm{mmol} / \mathrm{min}$ and polymerizes there as follows.

$$
3 \mathrm{~A} \rightarrow \mathrm{R} ;-r_{A}=54 \frac{\mathrm{mmol}}{\text { liter } \cdot \mathrm{min}}
$$

How large a reactor is needed to lower the concentration of $A$ in the exit stream to $C_{A, f}=330 \mathrm{mmol} / \mathrm{liter}$ ?
A) $V=1.90 \mathrm{~L}$
B) $V=3.81 \mathrm{~L}$
C) $V=7.50 \mathrm{~L}$
D) $V=11.4 \mathrm{~L}$

## - Problem 8

An aqueous feed containing $\mathrm{A}(1 \mathrm{~mol} / \mathrm{liter})$ enters a 2 -liter plug flow reactor and reacts away ( $2 \mathrm{~A} \rightarrow \mathrm{R},-r_{A}=0.05 C_{A}^{2} \mathrm{~mol} / \mathrm{liter} \cdot \mathrm{s}$ ). Find the outlet concentration of A for a feed rate of 0.5 liter/min.
A) $C_{A, f}=0.0339 \mathrm{~mol} / \mathrm{L}$
B) $C_{A, f}=0.0769 \mathrm{~mol} / \mathrm{L}$
C) $C_{A, f}=0.112 \mathrm{~mol} / \mathrm{L}$
D) $C_{A, f}=0.341 \mathrm{~mol} / \mathrm{L}$

## - Problem 9

At $650^{\circ} \mathrm{C}$, phosphine vapor decomposes as follows:

$$
4 \mathrm{PH}_{3} \rightarrow P_{4(\mathrm{~g})}+6 \mathrm{H}_{2} ;-r_{\text {phos }}=\left(10 \mathrm{hr}^{-1}\right) C_{\text {phos }}
$$

What size of plug flow reactor operating at $649^{\circ} \mathrm{C}$ and 11.4 atm is needed for $75 \%$ conversion of $10 \mathrm{~mol} / \mathrm{hr}$ of phosphine in a $2 / 3$ phosphine- $1 / 3$ inert feed?
A) $V=16.9 \mathrm{~L}$
B) $V=31.1 \mathrm{~L}$
C) $V=40.4 \mathrm{~L}$
D) $V=49.2 \mathrm{~L}$

## Problem 10

1 liter/s of a $20 \%$ ozone- $80 \%$ air mixture at 1.5 atm and $93^{\circ} \mathrm{C}$ passes through a plug flow reactor. Under these conditions ozone decomposes by the homogeneous reaction

$$
2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2} ;-r_{\mathrm{ozone}}=k C_{\mathrm{ozone}}^{2} ; k=0.05 \frac{\mathrm{liter}}{\mathrm{~mol} \cdot \mathrm{~s}}
$$

What size reactor is needed for $50 \%$ decomposition of ozone?
A) $V=1080 \mathrm{~L}$
B) $V=1520 \mathrm{~L}$
C) $V=2130 \mathrm{~L}$
D) $V=2690 \mathrm{~L}$

## Problem 11

Pure gaseous A at about 3 atm and $30^{\circ} \mathrm{C}(120 \mathrm{mmol} /$ liter $)$ is fed into a $1-$ liter mixed flow reactor at various flow rates. There it decomposes, and the exit concentration of $A$ is measured for each flow rate. From the following data, find a rate equation to represent the kinetics of the decomposition of $A$. Assume that reactant A alone affects the rate.

$$
A \rightarrow 3 R
$$

| $v_{0}$ (liter/min) | 0.06 | 0.48 | 1.5 | 8.1 |
| :---: | :---: | :---: | :---: | :---: |
| $C_{A}$ (mmol/liter) | 30 | 60 | 80 | 105 |

A) $-r_{A}=0.002 C_{A} \mathrm{mmol} / \mathrm{liter} \cdot \mathrm{min}$
B) $-r_{A}=0.004 C_{A} \mathrm{mmol} / \mathrm{liter} \cdot \mathrm{min}$
C) $-r_{A}=0.002 C_{A}^{2} \mathrm{mmol} / \mathrm{liter} \cdot \mathrm{min}$
D) $-r_{A}=0.004 C_{A}^{2} \mathrm{mmol} /$ liter $\cdot \mathrm{min}$

## - Problem 12

A mixed flow reactor is being used to determine the kinetics of a reaction whose stoichiometry is $A \rightarrow R$. For this purpose, various flow rates of an aqueous solution of 100 mmol A/liter are fed to a 1-liter reactor, and for each run the outlet concentration of $A$ is measured. Find a rate equation to represent the following data. Also assume that reactant A alone affects the rate.

| $v$ (liter/min) | 1 | 6 | 24 |
| :---: | :---: | :---: | :---: |
| $C_{A}$ (mmol/liter) | 4 | 20 | 50 |

A) $-r_{A}=12 C_{A} \mathrm{mmol} /$ liter $\cdot \mathrm{min}$
B) $-r_{A}=24 C_{A} \mathrm{mmol} /$ liter $\cdot \mathrm{min}$
C) $-r_{A}=12 C_{A}^{2} \mathrm{mmol} /$ liter $\cdot \mathrm{min}$
D) $-r_{A}=24 C_{A}^{2} \mathrm{mmol} / \mathrm{liter} \cdot \mathrm{min}$

## $\rightarrow$ Problem 13.1

We are planning to operate a batch reactor to convert $A$ into $R$. This is a liquid reaction, the stoichiometry is $A \rightarrow R$, and the rate of reaction is given in the following table. How long must we react each batch for the concentration to drop from $C_{A, 0}=1.3 \mathrm{~mol} /$ liter to $C_{A, f}=0.3 \mathrm{~mol} /$ liter?

| $C_{A}$ (mol/liter) | $-r_{A}$ (mol/liter $\left.\cdot \mathbf{m i n}\right)$ |
| :---: | :---: |
| 0.1 | 0.1 |
| 0.2 | 0.3 |
| 0.3 | 0.5 |
| 0.4 | 0.6 |
| 0.5 | 0.5 |
| 0.6 | 0.25 |
| 0.7 | 0.10 |
| 0.8 | 0.06 |
| 1.0 | 0.05 |
| 1.3 | 0.045 |
| 2.0 | 0.042 |

A) $t=8.41 \mathrm{~min}$
B) $t=12.7 \mathrm{~min}$
C) $t=19.4 \mathrm{~min}$
D) $t=23.2 \mathrm{~min}$

## $\rightarrow$ Problem 13.2

For the reaction in the previous problem, what size of plug flow reactor would be needed for $80 \%$ conversion of a feed stream of $1000 \mathrm{~mol} \mathrm{~A} / \mathrm{hr}$ at $C_{A, 0}=$ $1.5 \mathrm{~mol} /$ liter?
A) $V=70.9 \mathrm{~L}$
B) $V=110 \mathrm{~L}$
C) $V=191 \mathrm{~L}$
D) $V=275 \mathrm{~L}$

- Problem 14

The data in the following table have been obtained on the decomposition of gaseous reactant $A$ in a constant volume batch reactor at $100^{\circ} \mathrm{C}$. The stoichiometry of the reaction is $2 \mathrm{~A} \rightarrow \mathrm{R}+\mathrm{S}$. What size mixed flow reactor operating at $100^{\circ} \mathrm{C}$ and 1 atm can treat $100 \mathrm{~mol} \mathrm{~A} / \mathrm{hr}$ in a feed consisting of $20 \%$ inerts to obtain $95 \%$ conversion of A ?

| $t$ (sec) | $p_{A}$ (atm) | $t$ (sec) | $p_{A}$ (atm) |
| :---: | :---: | :---: | :---: |
| 0 | 1.0 | 140 | 0.25 |
| 20 | 0.80 | 200 | 0.14 |
| 40 | 0.68 | 260 | 0.08 |
| 60 | 0.56 | 330 | 0.04 |
| 80 | 0.45 | 420 | 0.02 |
| 100 | 0.37 |  |  |

A) $V=585 \mathrm{~L}$
B) $V=1050 \mathrm{~L}$
C) $V=1540 \mathrm{~L}$
D) $V=2160 \mathrm{~L}$

## ADDITIONAL INFORMATION

Table 1 Performance equations for $n$-th order kinetics and $\varepsilon_{A}=0$

|  | Plug Flow or Batch | Mixed Flow |
| :---: | :---: | :---: |
| $\begin{aligned} n & =0 \\ -r_{\mathrm{A}} & =k \end{aligned}$ | $\frac{k \tau}{C_{\mathrm{A} 0}}=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A} 0}}=X_{\mathrm{A}}$ | $\frac{k \tau}{C_{\mathrm{A} 0}}=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A} 0}}=X_{\mathrm{A}}$ |
| $\begin{aligned} n & =1 \\ -r_{\mathrm{A}} & =k C_{\mathrm{A}} \end{aligned}$ | $k \tau=\ln \frac{C_{\mathrm{A} 0}}{C_{\mathrm{A}}}=\ln \frac{1}{1-X_{\mathrm{A}}}$ | $k \tau=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A}}}=\frac{X_{\mathrm{A}}}{1-X_{\mathrm{A}}}$ |
| $\begin{aligned} n & =2 \\ -r_{\mathrm{A}} & =k C_{\mathrm{A}}^{2} \end{aligned}$ | $k \tau C_{\mathrm{A} 0}=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A}}}=\frac{X_{\mathrm{A}}}{1-X_{\mathrm{A}}}$ | $k \tau=\frac{\left(C_{\mathrm{A} 0}-C_{\mathrm{A}}\right)}{C_{\mathrm{A}}^{2}}=\frac{X_{\mathrm{A}}}{C_{\mathrm{A} 0}\left(1-X_{\mathrm{A}}\right)^{2}}$ |
| $\begin{gathered} \text { any } n \\ -r_{\mathrm{A}}=k C_{\mathrm{A}}^{n} \end{gathered}$ | $\begin{equation*} (n-1) C_{\mathrm{A0}}^{n-1} k \tau=\left(\frac{C_{\mathrm{A}}}{C_{\mathrm{A} 0}}\right)^{1-n}-1=\left(1-X_{\mathrm{A}}\right)^{1-n}-1 \tag{20} \end{equation*}$ | $k \tau=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{C_{\mathrm{A}}^{n}}=\frac{X_{\mathrm{A}}}{C_{\mathrm{A} 0}^{n-1}\left(1-X_{\mathrm{A}}\right)^{n}}$ |
| $\begin{gathered} n=1 \\ \mathrm{~A} \underset{2}{\stackrel{1}{\rightleftarrows}} \mathrm{R} \\ C_{\mathrm{R} 0}=0 \end{gathered}$ | $k_{1} \tau=\left(1-\frac{C_{\mathrm{A} e}}{C_{\mathrm{A} 0}}\right) \ln \left(\frac{C_{\mathrm{A} 0}-C_{\mathrm{A} e}}{C_{\mathrm{A}}-C_{\mathrm{A} e}}\right)=X_{\mathrm{A} e} \ln \left(\frac{X_{\mathrm{A} e}}{X_{\mathrm{A} e}-X_{\mathrm{A}}}\right)$ | $k_{1} \tau=\frac{\left(C_{\mathrm{A} 0}-C_{\mathrm{A}}\right)\left(C_{\mathrm{A} 0}-C_{\mathrm{A} e}\right)}{C_{\mathrm{A} 0}\left(C_{\mathrm{A}}-C_{\mathrm{A} e}\right)}=\frac{X_{\mathrm{A}} X_{\mathrm{A} e}}{X_{\mathrm{A} e}-X_{\mathrm{A}}}$ |
| General rate | $\tau=\int_{C_{\mathrm{A}}}^{C_{\mathrm{A} 0}} \frac{d C_{\mathrm{A}}}{-r_{\mathrm{A}}}=C_{\mathrm{A} 0} \int_{0}^{X_{\mathrm{Ae}}} \frac{d X_{\mathrm{A}}}{-r_{\mathrm{A}}}$ | $\tau=\frac{C_{\mathrm{A} 0}-C_{\mathrm{A}}}{-r_{\mathrm{A} f}}=\frac{C_{\mathrm{A} 0} X_{\mathrm{A}}}{-r_{\mathrm{A} f}}$ |

Table 2 Performance equations for $n$-th order kinetics and $\varepsilon_{A} \neq 0$

|  | Plug Flow |  | Mixed Flow |  |
| :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} n & =0 \\ -r_{\mathrm{A}} & =k \end{aligned}$ | $\frac{k \tau}{C_{\mathrm{A} 0}}=X_{\mathrm{A}}$ | (20) | $\frac{k \tau}{C_{\mathrm{A} 0}}=X_{\mathrm{A}}$ |  |
| $\begin{aligned} n & =1 \\ -r_{\mathrm{A}} & =k C_{\mathrm{A}} \end{aligned}$ | $k \tau=\left(1+\varepsilon_{\mathrm{A}}\right) \ln \frac{1}{1-X_{\mathrm{A}}}-\varepsilon_{\mathrm{A}} X_{\mathrm{A}}$ | (21) | $k \tau=\frac{X_{\mathrm{A}}\left(1+\varepsilon_{\mathrm{A}} X_{\mathrm{A}}\right)}{1-X_{\mathrm{A}}}$ | (14b) |
| $\begin{aligned} n & =2 \\ -r_{\mathrm{A}} & =k C_{\mathrm{A}}^{2} \end{aligned}$ | $k \tau C_{\mathrm{A} 0}=2 \varepsilon_{\mathrm{A}}\left(1+\varepsilon_{\mathrm{A}}\right) \ln \left(1-X_{\mathrm{A}}\right)+\varepsilon_{\mathrm{A}}^{2} X_{\mathrm{A}}+\left(\varepsilon_{\mathrm{A}}+1\right)^{2} \cdot \frac{X_{\mathrm{A}}}{1-X_{\mathrm{A}}}$ | (23) | $k \tau C_{\mathrm{A} 0}=\frac{X_{\mathrm{A}}\left(1+\varepsilon_{\mathrm{A}} X_{\mathrm{A}}\right)^{2}}{\left(1-X_{\mathrm{A}}\right)^{2}}$ | (15) |
| $\begin{gathered} \text { any } n \\ -r_{\mathrm{A}}=k C_{\mathrm{A}}^{n} \end{gathered}$ |  |  | $k \tau C_{\mathrm{A} 0}^{n-1}=\frac{X_{\mathrm{A}}\left(1+\varepsilon_{\mathrm{A}} X_{\mathrm{A}}\right)^{n}}{\left(1-X_{\mathrm{A}}\right)^{n}}$ |  |
| $\begin{gathered} n=1 \\ \stackrel{1}{\rightleftarrows} \mathrm{~A} \\ \underset{2}{\rightleftarrows} \\ C_{\mathrm{R} 0}=0 \end{gathered}$ | $\frac{k \tau}{X_{\mathrm{A} e}}=\left(1+\varepsilon_{\mathrm{A}} X_{\mathrm{A} e}\right) \ln \frac{X_{\mathrm{A} e}}{X_{\mathrm{A} e}-X_{\mathrm{A}}}-\varepsilon_{\mathrm{A}} X_{\mathrm{A}}$ | (22) | $\frac{k \tau}{X_{\mathrm{A} e}}=\frac{X_{\mathrm{A}}\left(1+\varepsilon_{\mathrm{A}} X_{\mathrm{A}}\right)}{X_{\mathrm{A} e}-X_{\mathrm{A}}}$ |  |
| General expression | $\tau=C_{\mathrm{A} 0} \int_{0}^{x_{\mathrm{A}}} \frac{d X_{\mathrm{A}}}{-r_{\mathrm{A}}}$ | (17) | $\tau=\frac{C_{\mathrm{A} 0} X_{\mathrm{A}}}{-r_{\mathrm{A}}}$ | (11) |

## SOLUTIONS

## P. $1 \rightarrow$ Solution

1. False. The design equation for the CSTR is

$$
\begin{gathered}
V=\frac{F_{A, 0}-F_{A}}{-r_{A}} \\
\therefore V=\frac{C_{A, 0} v_{0}-C_{A} v_{0}}{-r_{A}}
\end{gathered}
$$

so that

$$
V=\frac{C_{A, 0} v_{0}-C_{A} v_{0}}{-r_{A}}=\frac{0.5 \times 10-(0.01 \times 0.5) \times 10}{0.05}=99 \mathrm{dm}^{3}
$$

2. True. Consider now the PFR under the same conditions. The reaction is modeled as

$$
\begin{gathered}
-v_{0} \frac{d C_{A}}{d V}=k \rightarrow-\frac{v_{0}}{k} d C_{A}=d V \\
\therefore \int_{0}^{V} d V=-\frac{v_{0}}{k} \int_{C_{A, 0}}^{C_{A}} d C_{A} \\
\therefore V=-\frac{v_{0}}{k}\left(C_{A}-C_{A, 0}\right)
\end{gathered}
$$

Substituting the numerical quantities brings to

$$
V=-\frac{10}{0.05} \times(0.01 \times 0.5-0.5)=99 \mathrm{dm}^{3}
$$

3. True. With the rate of reaction $-r_{A}=k C_{A}$, the CSTR volume becomes

$$
V=\frac{C_{A, 0} v_{0}-C_{A} v_{0}}{k C_{A}}=\frac{1 \mathrm{~h}}{3600 \mathrm{~s}} \times\left(\frac{0.5 \times 10-0.01 \times 0.5 \times 10}{0.0001 \times 0.01 \times 0.5}\right)=2750 \mathrm{dm}^{3}
$$

4. False. We proceed to consider the PFR under the same conditions. The reaction is modeled as

$$
\begin{gathered}
-v_{0} \frac{d C_{A}}{d V}=k C_{A} \rightarrow \frac{v_{0}}{k} \frac{d C_{A}}{C_{A}}=\int_{0}^{V} d V \\
\therefore V=-\frac{v_{0}}{k} \ln \left(\frac{C_{A, 0}}{C_{A}}\right)
\end{gathered}
$$

Substituting the numerical quantities, we obtain

$$
V=-\frac{1 \mathrm{~h}}{3600 \mathrm{~s}} \times \frac{10}{0.0001} \times \ln \left(\frac{0.01 \times 0.5}{0.5}\right)=128 \mathrm{dm}^{3}
$$

5. False. With the rate of reaction $-r_{A}=k C_{A}^{2}$, the CSTR volume becomes

$$
V=\frac{C_{A, 0} v_{0}-C_{A} v_{0}}{k C_{A}^{2}}=\frac{0.5 \times 10-0.01 \times 0.5 \times 10}{300 \times(0.01 \times 0.5)^{2}}=660 \mathrm{dm}^{3}
$$

6. True. We proceed to consider the PFR under the same conditions. The reaction is modeled as

$$
\begin{gathered}
-v_{0} \frac{d C_{A}}{d V}=k C_{A}^{2} \rightarrow-\frac{v_{0}}{k} \int_{C_{A, 0}}^{C_{A}} \frac{d C_{A}}{C_{A}^{2}}=\int_{0}^{V} d V \\
\therefore V=\frac{v_{0}}{k}\left(\frac{1}{C_{A}}-\frac{1}{C_{A, 0}}\right)
\end{gathered}
$$

Substituting the numerical quantities, we get

$$
V=\frac{10}{300} \times\left(\frac{1}{0.01 \times 0.5}-\frac{1}{0.5}\right)=6.6 \mathrm{dm}^{3}
$$

## P. $2 \rightarrow$ Solution

In the batch reactor, $70 \%$ conversion occurs in 13 min. Thus, the holding time or mean residence time in the batch reactor is 13 min . For a constant fluid density system, the space time is equivalent to the holding time of the reactor. In a plug flow reactor, the space time required would be the same as the holding time in the batch reactor; accordingly, we surmise that the space time for the plug flow reactor to achieve 70\% conversion is equal to 13 minutes.

Consider now the same reaction being carried out in a mixed flow reactor. For a first order reaction, the rate expression is $r_{A}=k C_{A}$. Substituting in the performance equation brings to

$$
t=-\int_{0}^{X_{A, f}} \frac{d X_{A}}{-r_{A}}=\int_{0}^{X_{A, f}} \frac{d X_{A}}{k C_{A, 0}\left(1-X_{A}\right)}=-\frac{\ln \left(1-X_{A}\right)}{k}
$$

$$
\begin{gathered}
\therefore k=-\frac{\ln \left(1-X_{A}\right)}{t} \\
\therefore k=-\frac{\ln (1-0.7)}{13}=0.0926 \mathrm{~min}^{-1}
\end{gathered}
$$

Equipped with the rate constant, we can determine the space time $\tau$,

$$
\begin{gathered}
\frac{\tau}{C_{A, 0}}=\frac{X_{A}}{-r_{A}} \rightarrow \tau=\frac{C_{A, 0} X_{A}}{k C_{A}} \\
\therefore \tau=\frac{X_{A}}{k A_{A}\left(1-X_{A}\right)} \\
\therefore \tau=\frac{X_{A}}{k\left(1-X_{A}\right)} \\
\therefore \tau=\frac{0.7}{0.0926 \times(1-0.7)}=25.2 \mathrm{~min}
\end{gathered}
$$

- The correct answer is $\mathbf{B}$.


## P. $3 \Rightarrow$ Solution

The rate equation for the reaction can be rewritten as

$$
-r_{A}=200\left(C_{A, 0}-C_{A, 0} X_{A}\right)\left(C_{B, 0}-C_{B, 0} X_{A}\right)
$$

Taking $M=C_{B, 0} / C_{A, 0}=200 / 100=2.0$ as the initial molar ratio of reactants, we have

$$
-r_{A}=200 C_{A, 0}^{2}\left(1-X_{A}\right)\left(M-X_{A}\right) \frac{\mathrm{mol}}{\mathrm{liter} \cdot \min }
$$

The space time $\tau$ is given by

$$
\tau=\frac{C_{A, 0} X_{A}}{-r_{A}}
$$

Since $\tau=V / v_{0}$, we have

$$
\frac{V}{v_{0}}=\frac{C_{A, 0} X_{A}}{-r_{A}} \rightarrow V=\frac{v_{0} C_{A, 0} X_{A}}{-r_{A}}
$$

Finally, we substitute our data to obtain

$$
\begin{gathered}
V=\frac{v_{0} C_{A, 0} X_{A}}{-r_{A}} \rightarrow V=\frac{v_{0} C_{A, 0} X_{A}}{200 C_{A, 0}^{2}\left(1-X_{A}\right)\left(M-X_{A}\right)} \\
\therefore V=\frac{v_{0} X_{A}}{200 C_{A, 0}\left(1-X_{A}\right)\left(M-X_{A}\right)} \\
\therefore V=\frac{400 \times 0.999}{200 \times(100 / 1000) \times(1-0.999) \times(2-0.999)}=20,000 \mathrm{~L}
\end{gathered}
$$

- The correct answer is $\mathbf{D}$.


## P. $4 \rightarrow$ Solution

For a second-order reaction such as the present one, we have

$$
k \tau C_{A, 0}(M-1)=\ln \left[\frac{M-X_{A}}{M\left(1-X_{A}\right)}\right]
$$

where the initial molar ratio of reactants $M=C_{B, 0} / C_{A, 0}=200 / 100=2.0$. Inserting this and other data in the equation gives

$$
200 \times \tau \times 0.1 \times(2-1)=\ln \left[\frac{2-0.999}{2 \times(1-0.999)}\right]
$$

$$
\begin{gathered}
\therefore 20 \tau=6.22 \\
\therefore \tau=0.311 \mathrm{~min}
\end{gathered}
$$

The reactor volume required is determined to be

$$
V=\tau v=0.311 \times 400=124 \mathrm{~L}
$$

- The correct answer is A.


## P. $5 \Rightarrow$ Solution

The expansion factor is $\varepsilon_{A}=(2.5-1.0) / 1.0=1.5$. The performance equation for a first-order reaction with $\varepsilon_{A} \neq 0$ is given by equation (21) of Table 2,

$$
k \tau=\left(1+\varepsilon_{A}\right) \ln \left(\frac{1}{1-X_{A}}\right)-\varepsilon_{A} X_{A}
$$

Substituting $\tau=V C_{A, 0} / F_{A, 0}$ gives

$$
\frac{k V C_{A, 0}}{F_{A, 0}}=\left(1+\varepsilon_{A}\right) \ln \left(\frac{1}{1-X_{A}}\right)-\varepsilon_{A} X_{A}
$$

Inserting the numerical data, we have

$$
\begin{aligned}
\frac{10 \times 22 \times 2}{100} & =(1+1.5) \ln \left(\frac{1}{1-X_{A}}\right)-1.5 X_{A} \\
\therefore 4.4 & =2.5 \ln \left(\frac{1}{1-X_{A}}\right)-1.5 X_{A}
\end{aligned}
$$

The result above is a nonlinear equation in $X_{A}$. One way to solve it is to apply the FindRoot command in Mathematica, using an initial guess of $X_{A}=0.5$,

$$
\text { FindRoot }\left[4.4-2.5 \log \left[1 /\left(1-x_{A}\right)\right]+1.5 x_{A},\left\{x_{A}, 0.5\right\}\right]
$$

The code above returns $X_{A}=0.90$. Thus, the conversion in the plug flow reactor is about $90 \%$.

- The correct answer is $\mathbf{D}$.


## P. $6 \Rightarrow$ Solution

The performance equation for the reactor is

$$
\frac{V}{F_{A, 0}}=\frac{X_{A}}{-r_{A}}
$$

which, substituting the relation we have for $r_{A}$, becomes

$$
\begin{aligned}
\frac{V}{F_{A, 0}}= & \frac{X_{A}}{-r_{A}} \rightarrow \frac{V}{F_{A, 0}}=\frac{X_{A}}{k C_{A, 0}^{1.5}\left(1-X_{A}\right)^{1.5}} \\
& \therefore \frac{V k}{F_{A, 0}}=\frac{X_{A}}{C_{A, 0}^{1.5}\left(1-X_{A}\right)^{1.5}}
\end{aligned}
$$

Inserting $C_{A, 0}=10 \mathrm{~mol} / \mathrm{L}$ and $X_{A}=0.7$ in the right-hand side gives

$$
\frac{V k}{F_{A, 0}}=\frac{0.7}{10^{1.5} \times(1-0.7)^{1.5}}=0.135(\mathrm{I})
$$

Now, suppose we had a mixed flow reactor with twice the volume of the original. We restate the performance equation as

$$
\begin{aligned}
& \frac{2 V}{F_{A, 0}}=\frac{X_{A}^{\prime}}{k C_{A, 0}^{1.5}\left(1-X_{A}^{\prime}\right)^{1.5}} \rightarrow 2\left(\frac{V k}{F_{A, 0}}\right)=\frac{X_{A}^{\prime}}{10^{1.5}\left(1-X_{A}^{\prime}\right)^{1.5}} \\
& \therefore 2\left(\frac{V k}{F_{A, 0}}\right)=\frac{X_{A}^{\prime}}{31.6\left(1-X_{A}^{\prime}\right)^{1.5}}
\end{aligned}
$$

From equation (I), we know that the term in parentheses in the left-hand side equals 0.135 . Substituting and squaring both sides, we obtain

$$
\begin{gathered}
2 \times\left(\frac{V k}{F_{A, 0}}\right)=\frac{X_{A}^{\prime}}{31.6\left(1-X_{A}^{\prime}\right)^{1.5}} \rightarrow 2 \times 0.135=\frac{X_{A}^{\prime}}{C_{A, 0}^{1.5}\left(1-X_{A}^{\prime}\right)^{1.5}} \\
\therefore 0.27=\frac{X_{A}^{\prime}}{31.6\left(1-X_{A}^{\prime}\right)^{1.5}} \\
\therefore(0.27 \times 31.6)^{2}=\left[\frac{X_{A}^{\prime}}{\left(1-X_{A}^{\prime}\right)^{1.5}}\right]^{2} \\
\therefore 72.8=\frac{X_{A}^{\prime 2}}{\left(1-X_{A}^{\prime}\right)^{3}}
\end{gathered}
$$

The result above is a third-degree equation in $X_{A}^{\prime}$, which can be expanded to give

$$
-72.8 X_{A}^{\prime 3}+217.4 X_{A}^{\prime 2}-218.4 X_{A}^{\prime}+72.8=0
$$

One way to solve this equation is to employ Mathematica's Solve command, using the following syntax,

$$
\text { Solve }\left[-72.8 x^{3}+217.4 x^{2}-218.4 x+72.8==0, x\right]
$$

This returns $x=X_{A}^{\prime}=0.795$. The conversion of the larger reactor is about 79.5\%.

- The correct answer is $\mathbf{C}$.


## P. $7 \Rightarrow$ Solution

The expansion factor is $\varepsilon_{A}=(1-3) / 3=-0.667$. From the expression for $r_{A}$, it is easy to see that the reaction in question is a zero order reaction. In this case, the pertinent performance equation is

$$
\frac{k \tau}{C_{A, 0}}=\frac{k V}{F_{A, 0}}=X_{A, f} \rightarrow V=\frac{F_{A, 0} X_{A, f}}{k} \text { (I) }
$$

The final concentration of reactant is given by

$$
\frac{C_{A, f}}{C_{A, 0}}=\frac{1-X_{A, f}}{1+\varepsilon_{A} X_{A, f}}
$$

Substituting $C_{A, 0}=660 \mathrm{mmol} / \mathrm{L}, C_{A, f}=330 \mathrm{mmol} / \mathrm{L}$, and $\varepsilon_{A}=-0.667$, we have

$$
\frac{330}{660}=\frac{1-X_{A, f}}{1-0.667 X_{A, f}} \rightarrow X_{A, f}=0.750
$$

Substituting this and other data into equation (I) gives

$$
V=\frac{540 \times 0.750}{54}=7.5 \mathrm{~L}
$$

- The correct answer is C.


## P. $8 \Rightarrow$ Solution

From the expression we were given for $r_{A}$, it is easy to conclude that the reaction is a second-order reaction. The appropriate performance equation is then

$$
k \tau C_{A, 0}=\frac{C_{A, 0}-C_{A, f}}{C_{A, f}}
$$

Substituting $\tau=V / v_{0}$ and solving for $C_{A, f}$, we get

$$
\begin{gathered}
k \tau C_{A, 0}=\frac{C_{A, 0}-C_{A, f}}{C_{A, f}} \rightarrow k \frac{V}{v_{0}} C_{A, 0}=\frac{C_{A, 0}-C_{A, f}}{C_{A, f}} \\
\therefore k \frac{V}{v_{0}} C_{A, 0}=\frac{C_{A, 0}}{C_{A, f}}-1 \\
\therefore \frac{C_{A, 0}}{C_{A, f}}=k \frac{V}{v_{0}} C_{A, 0}+1
\end{gathered}
$$

$$
\therefore C_{A, f}=\frac{C_{A, 0}}{k \frac{V}{v_{0}} C_{A, 0}+1}
$$

Entering the numerical values, we ultimately obtain

$$
C_{A, f}=\frac{1.0}{1+\frac{(0.05 \times 60) \times 1.0 \times 2.0}{0.5}}=0.0769 \mathrm{~mol} / \mathrm{L}
$$

Factor 60 was added to change the dimensions of $k$ from liter/mol $\cdot \mathrm{sec}$ to liter/mol-min.

- The correct answer is $\mathbf{B}$.


## P. $9 \rightarrow$ Solution

For the reaction in question, equation (21) of Table 2 holds,

$$
k \frac{C_{A, 0} V}{F_{A, 0}}=\left(1+\varepsilon_{A}\right) \ln \left(\frac{1}{1-X_{A}}\right)-\varepsilon_{A} X_{A}(\mathrm{I})
$$

We must first evaluate the initial concentration of phosphine,

$$
C_{A, 0}=\frac{P_{A, 0}}{R T}=\frac{2 / 3 \times 11.4}{0.0821 \times(649+273)}=0.101 \mathrm{~mol} / \mathrm{L}
$$

To determine the expansion factor, consider the following volume balance.

|  | $4 A \rightarrow 7 R$ |
| :---: | :--- |
| Reactants | $40 \rightarrow 70$ |
| Inerts | $20 \rightarrow 20$ |

Accordingly,

$$
\varepsilon_{A}=\frac{90-60}{60}=0.5
$$

We can now rearrange equation (I) and substitute our data, giving

$$
\begin{gathered}
V=\frac{F_{A, 0}}{k C_{A, 0}}\left[\left(1+\varepsilon_{A}\right) \ln \left(\frac{1}{1-X_{A}}\right)-\varepsilon_{A} X_{A}\right] \\
\therefore V=\frac{10}{10 \times 0.101} \times\left[(1+0.5) \times \ln \left(\frac{1}{1-0.75}\right)-0.5 \times 0.75\right]=16.9 \mathrm{~L}
\end{gathered}
$$

- The correct answer is A.


## P. $10 \Rightarrow$ Solution

For a second order reaction with expansion, the appropriate performance equation is equation (23) in Table 2,

$$
V=\frac{v}{C_{A, 0} k}\left[2 \varepsilon_{A}\left(1+\varepsilon_{A}\right) \ln \left(1-X_{A}\right)+\varepsilon_{A}^{2} X_{A}+\left(\varepsilon_{A}+1\right)^{2} \frac{X_{A}}{1-X_{A}}\right]
$$

The initial concentration of ozone $(A)$ is given by the ideal gas law,

$$
C_{A, 0}=\frac{P_{A, 0}}{R T}=\frac{0.2 \times 1.5}{0.0821 \times(273+93)}=0.00998 \mathrm{~mol} / \mathrm{L}
$$

The expansion factor is $\varepsilon_{A}=(11-10) / 10=0.1$. Substituting these and other data in the equation for $V$, we get

$$
\begin{gathered}
V=\frac{1.0}{0.00998 \times 0.05} \times\left[2 \times 0.1 \times(1+0.1) \ln (1-0.5)+0.1^{2} \times 0.5+(0.1+1)^{2} \times \frac{0.5}{1-0.5}\right] \\
\therefore V=2130 \mathrm{~L}
\end{gathered}
$$

- The correct answer is $\mathbf{C}$.


## P. $11 \rightarrow$ Solution

The rate $-r_{A}$ is given by

$$
\begin{equation*}
-r_{A}=\frac{C_{A, 0} X_{A} v_{0}}{V}=\frac{C_{A, 0}\left(C_{A, 0}-C_{A}\right) v_{0}}{\left(C_{A, 0}+\varepsilon_{A} C_{A}\right) V}=\frac{120\left(120-C_{A}\right) v_{0}}{\left(120+2 C_{A}\right) \times 1.0} \tag{I}
\end{equation*}
$$

where we have substituted $C_{A, 0}=120 \mathrm{mmol} / \mathrm{liter}, V=1$ liter, and $\varepsilon_{A}=(3-1) / 1=$ 2.0. The data are processed in the following table.

| $v_{0}(\mathrm{~L} / \mathrm{min})$ | $C_{A}(\mathrm{mmol} / \mathrm{L})$ | $-r_{A}$ (Eq. I) | $\log \left(-r_{A}\right)$ | $\log C_{A}$ |
| :---: | :---: | :---: | :---: | :---: |
| 0.06 | 30 | 3.6 | 0.556 | 1.48 |
| 0.48 | 60 | 14.4 | 1.16 | 1.78 |
| 1.5 | 80 | 25.7 | 1.41 | 1.90 |
| 8.1 | 105 | 44.2 | 1.65 | 2.02 |

The next step is to plot $\log \left(-r_{A}\right)$ (the blue column) versus $\log C_{A}$ (the red column), as follows.


The line is described by the relation

$$
\log \left(-r_{A}\right)=\log k+n \log C_{A}
$$

where $n$ is the slope of the line (and the reaction order), which can be easily seen to be $n=2.0$. Thus,

$$
\log \left(-r_{A}\right)=\log k+2.0 \log C_{A}
$$

Substituting any of the data points available, we can determine rate constant $k$,

$$
\begin{gathered}
0.556=\log k+2.0 \times 1.48 \\
\therefore \log k=-2.40 \\
\therefore k=10^{-2.4}=0.004
\end{gathered}
$$

The appropriate expression for the reaction rate is

$$
-r_{A}=k C_{A}^{n}=0.004 C_{A}^{2} \mathrm{mmol} / \mathrm{lit} \cdot \mathrm{~min}
$$

- The correct answer is D.


## P. $12 \Rightarrow$ Solution

To begin, we write an expression for conversion $X_{A}$, as follows.

$$
\begin{gathered}
C_{A}=C_{A, 0}\left(1-X_{A}\right) \rightarrow X_{A}=1-\frac{C_{A}}{C_{A, 0}} \\
\therefore X_{A}=1-\frac{C_{A}}{100}(\mathrm{I})
\end{gathered}
$$

The reaction rate, in turn, is given by

$$
-r_{A}=\frac{v_{0} C_{A, 0} X_{A}}{V}=\frac{v_{0} \times 100 \times X_{A}}{1.0}=100 v_{0} X_{A} \quad \text { (II) }
$$

In order to establish the reaction order, we must plot $\log -r_{A}$ versus $\log C_{A}$. The data are processed in the following table.

| $v_{0}(\mathrm{~L} / \mathrm{min})$ | $C_{A}(\mathrm{mmol} / \mathrm{L})$ | $X_{A}$ (Eq. I) | $-r_{A}$ (Eq. II) | $\log \left(-r_{A}\right)$ | $\log C_{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 4 | 0.96 | 96 | 1.98 | 0.602 |
| 6 | 20 | 0.8 | 480 | 2.68 | 1.30 |
| 24 | 50 | 0.5 | 1200 | 3.08 | 1.70 |

The graph we are looking for is one $\log \left(-r_{A}\right)$ (the blue column) versus $\log C_{A}$ (the red column), as follows.


The slope of the line is approximately 1 . Thus, the reaction in question is a first-order reaction. It remains to compute the rate constant $k$, which is given by

$$
-r_{A}=k C_{A} \rightarrow k=\frac{-r_{A}}{C_{A}}
$$

Substituting one of the available data points, we obtain

$$
k=\frac{96}{4}=24 \min ^{-1}
$$

Thus, the rate equation is established as

$$
-r_{A}=24 C_{A} \frac{\mathrm{mmol}}{\mathrm{liter} \cdot \mathrm{~min}}
$$

- The correct answer is $\mathbf{B}$.


## P. $13 \Rightarrow$ Solution

Part 1: To begin, we tabulate values of $1 /\left(-r_{A}\right)$.

| $C_{A}(\mathrm{~mol} /$ liter $)$ | $-r_{A}(\mathrm{~mol} / \mathrm{liter} \cdot \mathrm{min})$ | $1 /\left(-r_{A}\right)$ |
| :---: | :---: | :---: |
| 0.1 | 0.1 | 10 |
| 0.2 | 0.3 | 3.33 |
| 0.3 | 0.5 | 2 |
| 0.4 | 0.6 | 1.67 |
| 0.5 | 0.5 | 2 |
| 0.6 | 0.25 | 4 |
| 0.7 | 0.10 | 10 |
| 0.8 | 0.06 | 16.7 |
| 1.0 | 0.05 | 20 |
| 1.3 | 0.045 | 22.2 |
| 2.0 | 0.042 | 23.8 |

Then, a rate-concentration plot of $1 /\left(-r_{A}\right)$ (the blue column) versus $C_{A}$ (the red column) is prepared.


It can be easily seen that the time required to produce the concentration drop in question is given by

$$
t=\int_{C_{A, f}, f}^{C_{A, 0}} \frac{d C_{A}}{-r_{A}}
$$

The result in the right-hand side is the area below the graph between abscissae $C_{A f}=0.3 \mathrm{~mol} / \mathrm{L}$ and $C_{A, 0}=1.3 \mathrm{~mol} / \mathrm{L}$, which, using numerical integration, is found to equal 12.7 min. Accordingly,

$$
t=\int_{C_{A, f}}^{C_{A, 0}} \frac{d C_{A}}{-r_{A}} \approx 12.7 \mathrm{~min}
$$

## Note

In Mathematica, a quick way to go is to combine the Integrate and Interpolation commands. We first type the data,

$$
\begin{gathered}
\text { dataSet }=\{\{0.1,10\},\{0.2,3.33\},\{0.3,2\},\{0.4,1.67\},\{0.5,2\},\{0.6,4\},\{0.7,10\} \\
\{0.8,16.7\},\{1 ., 20\},\{1.3,22.2\},\{2 ., 23.8\}\}
\end{gathered}
$$

Then, we type
Integrate[Interpolation[dataSet][x], $\{x, 0.3,1.3\}]]$
This returns 12.6978

- The correct answer is $\mathbf{B}$.

Part 2: The rate-concentration curve is replotted below.


The final concentration is, in this case

$$
C_{A}=C_{A, 0}\left(1-X_{A}\right)=1.5 \times(1-0.8)=0.3 \mathrm{~mol} / \mathrm{L}
$$

For a plug flow reactor of constant density, we write

$$
\tau=C_{A, 0} \int_{0}^{X_{A, f}} \frac{d X_{A}}{-r_{A}}=-\int_{C_{A, 0}}^{C_{A, f}} \frac{d C_{A}}{-r_{A}}
$$

However, the space time $\tau=C_{A, 0} V / F_{A, 0}$, so that

$$
\tau=\frac{C_{A, 0} V}{F_{A, 0}}=-\int_{C_{A, 0}}^{C_{A, f}} \frac{d C_{A}}{-r_{A}} \rightarrow V=\frac{F_{A, 0}}{C_{A, 0}}\left[-\int_{1.5}^{0.3} \frac{d C_{A}}{-r_{A}}\right]
$$

The integral in brackets equals the area below the rate-concentration curve between abscissae $\mathrm{C}_{\mathrm{A}, 0}=1.5 \mathrm{~mol} / \mathrm{L}$ and $\mathrm{C}_{\mathrm{A}, \mathrm{f}}=0.3 \mathrm{~mol} / \mathrm{L}$. Using numerical integration, the result is found to be 17.2 min . Accordingly, the reactor volume becomes

$$
V=\frac{(1000 / 60)}{1.5} \times 17.2=191 \mathrm{~L}
$$

- The correct answer is $\mathbf{C}$.


## P. $14 \rightarrow$ Solution

Since there are $20 \%$ inerts in the feed, $p_{A, 0}=0.8 \times 1.0=0.8 \mathrm{~atm}$. For $95 \%$ conversion, the pressure at the outlet must be $p_{A, f}=0.05 \times 0.8=0.04 \mathrm{~atm}$. For mixed flow, we must first find the rate at the exit conditions. Then we can proceed to determine the reactor size. Accordingly, we draw a $p_{A}$ versus $t$ curve and find the slope (and hence the rate) at $p_{A}=0.04 \mathrm{~atm}$.


The slope at $p_{A}=0.04 \mathrm{~atm}$ can be approximated as

$$
\text { rate }=\frac{0.02-0.08}{420-260}=-\frac{0.06}{160} \mathrm{~atm} / \mathrm{s}
$$

The space time, written in pressure units, follows as

$$
\tau=\frac{p_{A, 0}-p_{A}}{-r_{A}}=\frac{0.8-0.04}{(0.06 / 160)}=2030 \mathrm{~s}
$$

The molar feed, taking the flow of inerts into account, is $n_{\text {feed }}=$ $100 \times 100 / 80=125 \mathrm{~mol} / \mathrm{hr}$. The volumetric flow rate can be obtained from the ideal gas law,

$$
v=\frac{n_{\mathrm{feed}} R T}{p}=\frac{125 \times 0.0821 \times 373}{1.0}=3830 \mathrm{~L} / \mathrm{hr}
$$

Finally, the reactor volume is calculated to be

$$
V=\tau v=2030 \times\left(3830 \times \frac{1}{3600}\right)=2160 \mathrm{~L}
$$

- The correct answer is D.


## \ANSWER SUMMARY

| Problem 1 | $\mathrm{T} / \mathrm{F}$ |
| :---: | :---: |
| Problem 2 | B |
| Problem 3 | D |
| Problem 4 | A |
| Problem 5 | D |
| Problem 6 | C |
| Problem 7 |  |
| Problem 8 |  |
| Problem 9 |  |
| Problem 10 |  |
| Problem 11 |  |
| Problem 12 |  |
| Problem 13 | C |
|  | Problem 14.1 |  |
| 13.2 |  |

## REFERENCES

- FOGLER, H. (2018). Essentials of Chemical Reaction Engineering. 2nd edition. Upper Saddle River: Pearson.
- LEVENSPIEL, O. (1999). Chemical Reaction Engineering. 3rd edition. Hoboken: John Wiley and Sons.

Got any questions related to this quiz? We can help!
Send a message to contact@montogue.com and we'll answer your question as soon as possible.

