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B Abstract

This article presents a review of recent contributions to mathematical
modelling of infectious diseases. Specifically, the review covers three of the most
consequential outbreaks of the present century — namely, the 2002 - 2004 SARS
epidemic, the 2014 - 2016 West African Ebola epidemic, and the ongoing COVID-
19 epidemic. Over 90 model-driven studies are summarized, and each outbreak is
associated with corresponding modelling techniques (e.g., deterministic
compartmental models for SARS, spatiotemporal models for Ebola, agent-based
models for COVID-19) and research topics (e.g., quarantine for SARS, travel
restrictions for Ebola, lockdowns for COVID-19) that were commonly adopted by
researchers in the wake of each event.
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1. Introduction

We are now approaching the 100th anniversary of A Contribution to the
Mathematical Theory of Epidemics, a 1927 paper in which W.O. Kermack and A.G.
McKendrick introduced deterministic compartmental models, a recurring infectious
disease modelling technique, as we know them today. That paper is a seminal
contribution to modern mathematical epidemiology, a discipline that employs
quantitative tools to create representations and predictions of contagious disease
outbreaks.

Since then, researchers have adapted the Kermack-McKendrick framework
to increasingly complex formulations, while novel techniques such as spatial
methods and individual-based methods have allowed modelers to circumvent the
limitations of the deterministic compartmental approach. Although some of these
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theoretical developments were already in place at the time of, say, the 1980s AIDS
crisis, it was not until the early 21st century that they were practically applied en
masse. Specifically, we can attribute the recent renaissance in infectious disease
modelling to two factors, namely (1) the birth of an interconnected medical
research community that generates and processes data at unparalleled speed; and
(2) the exponential growth in the processing power of commercial computers. Of
course, factor (2) is one of the causes, though not the only one, of factor (1).

Thanks to this newly established mathematical epidemiology community,
model-based forecasts of recent outbreaks have been produced within weeks of
the first few cases, as in the case of SARS (Lipsitch et al., 2003; Riley et al., 2003),
pandemic H1N1 influenza (Fraser et al., 2009), MERS (Breban et al., 2013), Ebola
(Nishiura and Chowell, 2014), and, most recently, COVID-19 (Kucharski et al.,
2020).

In this article, | present a review of model studies inspired by three of the
most consequential outbreaks of the past few years: the 2002 - 2004 Severe Acute
Respiratory Syndrome (SARS) outbreak, the 2014 - 2016 West African Ebola
outbreak, and the ongoing COVID-19 outbreak. Summarizing infectious disease
modelling studies according to the outbreak that they tackle is warranted because
it allows for a greater focus on the ‘practical’ side of this discipline, in that most of
the papers | review are essentially case studies on the application of certain
modelling techniques to one of three diseases. In this practical framework, we can
appreciate the immense power of mathematical epidemic models without having
to exhaustively discuss their theoretical underpinnings — something that most
papers already do in an ‘appendix’ section at the end of their reports, not to
mention the gallery of great textbooks (e.g., Keeling and Rohani, 2008) that cover
such topics more comprehensively than any 20-page review could ever hope to.
One additional advantage of maintaining a practical optics is that the ensuing
material is made more accessible, in that a grasp of mathematical epidemiology,
while helpful, is ultimately not imperative to our discussion.

Importantly, the papers | review were not selected with a particular
systematic rationale; they were chosen subjectively, on the basis of which ones |
found to be most interesting over the course of three and a half years as an active
researcher. I've cited over 100 papers, only one of which was published before
2002. Two papers are not peer-reviewed, namely Kai et al. (2020) and Peng et al.
(2020), but nonetheless come from authors in renowned universities and have
their findings supported through charts, GitHub code, and other evidence of
results. I've deliberately attempted not to quote findings summarized in the
abstract of each paper, and instead tried to mention some of the more nuanced,
‘obscure’ conclusions offered by each model. Further, I've chosen not to report too
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many reproduction numbers and other parameters because the literature is
already ripe with reviews of epidemiological data.

Table 1 summarizes common the modelling techniques and important issues
discussed in the review. Of course, mentioning a ‘common modeling approach’
does not imply that the technique mentioned was the only one used to analyze the
outbreak; for example, while compartmental models were particularly common in
SARS science, there are plenty of compartmental models for Ebola and COVID-19
as well. Likewise, the ‘important issues’ mentioned in the table were hotly debated
in more than one outbreak.

Table 1. Common modelling approaches and important issues in recent epidemics.

. . Common modelling .
Epidemic approach Important issues
Deterministic compartmental — Quarantine
SARS .
models — Superspreading
Ebola Spatiotemporal models — Travel restrictions
— Lockdowns
COVID-19 Agent-based models — Also quarantine and
superspreading

2. Modelling the 2002 - 2004 SARS Pandemic
2.1. Background

An atypical, unusually severe case of pneumonia was identified in Guangdong
province, southern China, on November 16, 2002. Over 300 similar cases were
identified in Guangdong from that date until February 9, 2003, one-third of them
in healthcare workers. Between late February and early March, outbreaks of the
novel disease were recognized in Hong Kong and Vietnam. On March 12, the WHO
issued a Global Health Alert, the first such measure in over a decade, and instituted
worldwide surveillance. In the same month, researchers at the Erasmus Medical
Center in Rotterdam, the Netherlands, identified a coronavirus as the causative
agent of the disease. Genetic sequencing of the virus soon followed. The new
disease was named Severe Acute Respiratory Syndrome (SARS) and a preliminary
case definition was provided.

SARS spread to more than two dozen countries in North America, South
America, Europe and Asia before it was contained. On July 5, 2003, the WHO
announced that the last known chain of human-to-human transmission had been
broken. The virus re-emerged in China at the end of 2003, but Chinese authorities
promptly isolated suspect cases and a combination of contact tracing and
quarantine measures served to effectively contain the virus. By the end of February
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2004, only three confirmed cases and one probable case had been confirmed, and
no chains of onward transmission were verified. According to the WHO's final
report, published in April 2004, the SARS outbreak involved 8096 known cases and
774 deaths (a mortality rate of 9.6%). Hong Kong was the most severely affected
city when incidence figures are adjusted for population size or land area, having
registered 1755 cases and 299 deaths (a mortality rate of 17%).

2.2. Model-Driven Studies of SARS

After several years of diminished activity, interest in deterministic compartmental
models rekindled during the SARS epidemic (Brauer, 2005). The compartmental
models that arose then differed from works motivated by, say, the AIDS crisis,
which had focused on long-term outcomes and relied heavily on demographic
effects (births and deaths).

One of the first compartmental-model-based studies of the SARS outbreak
is Chowell et al. (2003). Chowell’s team adopted a ‘SEIJR’ framework to investigate
the evolution of the epidemic in Ontario (Canada), Hong Kong, and Singapore.
Since they had only preliminary data, both in terms of epidemic numbers and
information about the virus, their ensuing model was somewhat crude. For one, it
considered differences in susceptibility via two compartments S;, for ‘most
susceptible’ individuals, and S», for “less so’ individuals, and the differences in risk of
infection between the two groups were related to an arbitrary parameter.
Nevertheless, Chowell’s model fit available data from the three regions well and
showed that efficient isolation and a high diagnostic rate could bring the
epidemics under control. In the following year, Chowell et al. (2004) conducted a
sensitivity analysis of the parameters that most affected Ro in the 2003 paper and
found that the model was particularly sensitive to transmission rate and the rate of
isolation of infectives.

Lipsitch et al. (2003) developed a simple ‘SEIR" framework to model the
early phase of the SARS outbreak. They stressed the importance of quarantine and
isolation, while summarizing some factors that would limit the effectiveness of one
or the other. Quarantine, they warned, could be compromised by factors such as
an inability to trace all infected contacts or individual noncompliance; the latter
turned out not to be an issue at least in Toronto, as only 27 out of 23,000 contacts
were issued a legally enforceable quarantine order owing to initial noncompliance
(Svoboda et al., 2004). Isolation, Lipsitch’s team argued, could be affected by the
speed of the isolation process and failures of infection control for isolated patients;
nosocomial infection would contribute overwhelmingly to the epidemic in the
ensuing months.
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In the same issue of Science as the study of Lipsitch et al. (2003), Riley et al.
(2003) introduced a stochastic metapopulation compartmental model to assess
the evolution of the epidemic in Hong Kong. A metapopulation approach was
warranted because the incidence of SARS varied substantially by geographical
district in Hong Kong; a stochastic model was chosen because, as one can glean
from other models discussed in this review, stochastic methods are better in
capturing the variability inherent to the initial stages of an epidemic, yielding a
clearer picture of which changes are caused by chance and which ones in fact
reflect the impact of interventions. Riley’s team alternated model assumptions
such as accounting for superspreading events and varying infectiousness of
hospitalized patients, and ultimately found that the basic reproduction number for
the local outbreak would be placed between 2.2 and 3.7. They went on to prepare
scenarios and noted that while onset-to-hospitalization times comparable to those
observed in the Hong Kong epidemic could achieve some reduction in
transmission, they did not suffice to control SARS; additional measures were
needed, such as improved infection control in hospitals and movement restrictions.

Gumel et al. (2004) is one of the most important modelling studies
published in the period following the SARS epidemic. Gumel’s team modelled the
impact of control measures on four of the areas that had been most affected by
the outbreak - Toronto, Hong Kong, Singapore, and Beijing. They worked with a
deterministic model made up of six compartments, as shown in Figure 1:
susceptible (S(t)), asymptomatic (E(t)), quarantined (Q(t)), symptomatic (/(t)),
isolated (J(t)), and recovered (R(t)). Demographics were allowed for, suggesting
that their model could be used for long-term control estimates. Gumel’s team
found that isolation and quarantine are effective control measures. Crucially, they
posited that if limited resources are available for investment in these two
strategies, then investing all resources in one of them would likely yield a better
outcome than investing partly in both.

Figure 1. Compartments in the Gumel et al. (2004) model.
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Trade-offs were also examined by Lloyd-Smith et al. (2003), who, unlike
Gumel’s team, worked with a stochastic model. Lloyd-Smith’s team found that the
potential for quarantining to aid in SARS containment increased with the basic
reproduction number. Quarantine had little effect at low Ry, but in a setting with
Ro =5, efficient quarantine implied that lower case isolation levels were needed to
bring the outbreak into control. Quarantine also had to be timely, as its
contribution to containment was markedly reduced when individuals were
quarantined ~ 5 days after exposure.

Ng et al. (2003) adapted the compartmental framework to a double
epidemic model in which individuals could be infected by two viruses, A and B.
Importantly, recovering from disease B conferred immunity to disease A, but not
vice versa. Ng's formulation was motivated in part by the fact that zoonotic
coronaviruses can have their tissue tropism modified by simple mutations, leading
to rapid development of pathogenic variants. Different strains of the original
coronavirus never turned out to be a problem in the SARS epidemic, but would,
years later, during the COVID-19 pandemic. Indeed, Ng’s observation, ‘The
innocuous epidemic might still be there and generate, from time to time, variants
that would have properties similar to those of SARS’, could very well have been
extracted from a paper written in 2020 or 2021.

Massad et al. (2005) fit the Hong Kong and Toronto epidemic data to a
simple SIR model. Massad’s team contended that omitting a compartment for
‘latent’ individuals, a characteristic of the SIR model, did not affect performance
significantly because the incubation period of SARS is short, most incubating cases
evolved to clinical cases, and cases were probably infectious before clinical
recognition. They estimated that, in the absence of control measures, the final
number of SARS cases would have been 320,000 in Hong Kong and 36,900 in
Toronto; control measures reduced the contact rate to 25% of its value in the
absence of intervention, decreasing the expected final number of cases to 1778 in
Hong Kong and 226 in Toronto.

McLeod et al. (2006) recognized an important limitation of many
compartmental models available at the time: the parameters they use can be
subject to change as a result of modifications in intervention measures and other
dynamic phenomena, but most workers adopted ‘stiff’ values with no time-wise
dependence. This may be unimportant for retrospective analysis, but constitutes
an important drawback when modelling an ongoing outbreak. Accordingly,
McLeod’s team adapted the model of Gumel et al. (2004) to include time-varying
parameters as a means of accounting for the gradual refinement of quarantine,
isolation, and hygienic precautions in response to a SARS outbreak. They went on
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to perform a sensitivity analysis to establish which parameters governed the
response to such a hypothetical epidemic.

Krumkamp et al. (2009) investigated intervention measure combinations to
establish which ones most pronouncedly lowered the effective reproduction
number of a SARS epidemic. Their model showed that merely isolating all cases 3
days after symptom onset and ensuring that hospital infection control prevented
90% of infections was enough to lower Re to 0.88 - a viable control strategy. If, in
addition to these two measures, 90% of exposed healthcare workers were contact-
traced, Re would be further reduced to 0.68. Tracing of close contacts of SARS
cases was also considered; if SARS cases were isolated 3 days after symptom onset,
50% of close contacts of all SARS cases were traced and 70% of hospital-based
infections could be avoided, a Re of 0.96 would result. Krumkamp’s team developed
several other scenarios, but the main idea they wanted to get across is that, if 90 -
100% of hospital-based transmission were prevented, an effective reproduction
number below unity could be attained with minimal supplementation by other
intervention measures.

Years after the epidemic, Wong et al. (2013), a group that studies the
interface between air pollution and respiratory illnesses, noted that
hospitalizations due to such diseases in Hong Kong’s healthcare system decreased
in the aftermath of the SARS epidemic. They attributed this effect to a greater
awareness of hygienic measures such as mask-wearing, as propagated by
government campaigns and mass media. Unfortunately, respiratory-disease-
related hospitalization levels increased rapidly afterwards and reverted back to pre-
SARS levels in six months’ time, illustrating the ‘forgetfulness’ of citizens as the
epidemic faded from collective memory.

2.3. The Quarantine Debate

During the SARS outbreak, because development of a treatment,
prophylaxis or vaccine was months into the future, governments had to rely
heavily on isolation and quarantine. Some of the model studies cited in the
previous section assessed the roles of isolation and quarantine; here, we mention a
few more.

Of note, around 30,000 people in the Greater Toronto Area were
quarantined, mostly in their homes; Beijing placed around the same number of its
citizens in quarantine. These figures are dwarfed by the Taiwanese experience, as
the Taipei government held about 131,000 people over the course of the outbreak
(DiGiovanni et al., 2004). Control measures included completely shuttering a
hospital with 930 staff members, 240 patients, and 129 visitors for a period of 14
days; movement into or out of the facility was carefully regulated, and a 2-week
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home quarantine was also mandated for discharged patients and the family
members of the hospital staff (Barbisch et al., 2015).

The Taiwanese government relied on two types of quarantine: Level A
quarantine was aimed at people suspected of having close contact with a
suspected SARS case, while Level B quarantine was aimed at travelers from
affected areas. In a retrospective study of the response to SARS in Taiwan, Hsieh
et al. (2007) noted that a modest Level A quarantine program, in which 4.7% of
asymptomatic individuals who should be quarantined were in fact quarantined,
sufficed to prevent more than 450 cases and more than 60 deaths. Table 2
indicates that even slightly greater quarantine rates would have led to significantly
reduced cases and deaths.

Table 2. Theoretical impact of Level A quarantine on case number and fatality with
various hypothetical quarantine rates g as compared with a quarantine rate of g =
0.047. A ‘+’ denotes additional cases/deaths, and a ‘—* denotes less cases/deaths.

From Hsieh et al. (2007).

g=0.0 g =0.025 g=0.1 g=0.6 g=1.0
Cases +461(81%) | +167(29%) | —214(—38%) | —477(—84%) | —500(—88%)
Deaths +62(63%) +24(24%) | —33(—33%) | —80(—81%) | —85(—86%)

Extracting qualitative conclusions from compartmental models that include
quarantine is made difficult by their odd mathematical behavior, which continues
to be a topic of active research. For example, Hethcote et al. (2002) showed that
even a simple SIQR model endowed with incidence terms adjusted for quarantine
can exhibit periodic solutions that occur by Hopf bifurcation. Hethcote’s team
attempted to use such periodic solutions to reproduce the oscillatory patterns in
the incidence of diseases such as measles, but were not successful.

In view of the complex dynamics of models with quarantine, it is no surprise
that research has produced evidence both in favor and against this measure. Yan
and Zou (2008) used control theory to show that timely implementation of an
‘optimal’ or a ‘sub-optimal’ quarantine/isolation strategy are both effective
countermeasures. Interestingly, their ‘sub-optimal’ strategy, in addition to being
cheaper and simpler than the ‘optimal’ strategy, was also nearly as effective.

On the other hand, Safi and Gumel (2010) conducted a rigorous analysis of a
‘SEIQHRS” model that includes quarantine and isolation and found that, depending
on the value of the reduction in infectiousness of hospitalized individuals, as
represented by a parameter 1, resorting to quarantine and isolation may actually
raise the control reproduction number and increase the disease burden in a
community. A similarly detailed analysis was conducted by Hsu and Hsieh (2006),
whose own compartment model suggested that implementation of a quarantine
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program that is not sufficiently comprehensive could have the adverse effect of
causing a system that would have approached disease-free equilibrium without
quarantine to converge to an endemic equilibrium instead.

Some authors have studied the costs of quarantine programs, which are
inherently expensive. For instance, the Singaporean government allocated about
USD 5.2 million to its quarantine operations during the SARS outbreak (Ooi, 2005).
The Canadian government, in turn, set up de novo infrastructure such as a
computer database to keep track of contacts, information and surveillance
hotlines, and staff to monitor quarantined individuals’ status. Still, a simple cost
analysis by Gupta et al. (2005) indicated that the direct cost associated with the
Canadian quarantine measures, which was placed at C$12 million (C$ = Canadian
dollars), was greatly offset by the savings they entailed, which they estimated at
over C$ 200 million. On a global scale, retrospective analysis revealed that the
economic impact of the SARS pandemic turned out to be much less than initially
feared (Keogh-Brown and Smith, 2008).

Using a statistical model, Day et al. (2006) argued that SARS is likely to be
effectively contained in the absence of quarantine only if very stringent and
effective isolation measures are in place. Fraser et al. (2004), in turn, argued that
control policies involving isolation and contact tracing were effective for SARS
because of its low reproduction number and the low proportion of transmission
occurring prior to symptoms or asymptomatically; this may not be the case with
future emerging pathogens.

There is some debate on possible alternatives to quarantine. Peak et al.
(2017) argued for greater reliance on symptom monitoring, a management
strategy in which health workers check on traced contacts one or two times a day
and isolate them if symptoms occur. Symptom monitoring is of course less
conservative, cheaper, and more palatable than quarantine, but, as Peak’s team
showed in a comparative assessment reminiscent of Fraser et al. (2004), does not
constitute a perfect replacement for quarantine.

2.4. Super-Spreading

Super-spreading events (SSEs) are rare events where, in a particular setting, an
individual may generate many more than the average number of secondary cases.
SSEs were found to have fueled the SARS outbreaks in Hong Kong, Beijing,
Toronto, and Singapore. Of note, SSEs have been reported for several other
infectious diseases. Stein (2011) tells that in 1989, at a high school in Finland, a
single student infected 22 others with measles, even though eight of the contacts
were vaccinated. During the 1995 Ebola outbreak in the Democratic Republic of
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the Congo, two individuals, both exhibiting gastrointestinal hemorrhage, are said
to have been the source of infection for over 50 secondary cases.

SSEs were pivotal for the spread of SARS. A detailed study of a Beijing
hospital revealed that one patient with 74 close contacts generated 33 secondary
cases, and these secondary cases in turn generated a further 43 cases before the
chain of transmission petered out (Shen et al., 2003). Another extreme example
stemmed from Hong Kong (Stein, 2011). In the Prince of Wales Hospital, a 26-
year-old man was admitted on March 4, 2003 and was administered
bronchodilators via a nebulizer. Overcrowding and an outdated ventilation system
are thought to have facilitated the spread of SARS-CoV. Within the next two
weeks, 156 individuals, among hospital staff, patients, and visitors, were admitted
to the hospital, all of them traceable to this patient, and SARS was diagnosed in
138 of them.

Li et al. (2004) used a statistical model to study the SARS super-spreader
issue. Li's team used the model to estimate the daily numbers of newly infected
cases, and plotting the daily number of newly infected cases allowed them to
identify peaks or aggregates of infections that could serve as indicators of SSEs.
Their results reproduced the SSEs that were well-documented at the time and
indicated the existence of a few more that had not yet been identified. Further,
their analysis indicated the outsize contribution of SSEs to the two outbreaks, with
71.1% of cases in Singapore and 74.8% of cases in Hong Kong being attributable
to super-spreading.

Lloyd-Smith et al. (2005) further expanded the theoretical understanding of
super-spreading. They introduced the individual reproductive number, v, which is
the expected number of secondary cases transmitted by a particular primary case,
and went on to show that SSEs can be naturally accommodated in the right-hand
tail of a distribution for this parameter. The representation of the individual
reproductive number depends on the particular model’s treatment of individual
heterogeneity. In a generation-based model with no individual variation, v = Ro
(that is, the individual reproductive number equals the basic reproduction number)
and the number Z of secondary infections caused by each case redounds to a
Poisson distribution with rate Ro (that is, Z ~ Poisson(Ro)). More generally, if v is
gamma-distributed with mean Ro and dispersion parameter k, then Z is
represented by a negative binomial distribution (i.e., Z ~ negative binomial (Ro,k)).
The negative binomial model includes the conventional Poisson (k = o) and
geometric (k = 1) models as special cases. The variance is Ro(1 + Ro/k), so smaller
values of k indicate greater heterogeneity. After fitting possible models to the
SARS outbreaks in Singapore and Beijing, Lloyd-Smith’s team found that the
negative binomial is indeed a viable choice for Z. The value of k for Singapore’s
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representative negative binomial model was estimated at 0.16, indicating a highly
over-dispersed epidemic. Indeed, in Singapore a majority of SARS cases (73%) were
barely infectious (v < 1), but a small proportion (6%) were highly infectious (v > 8)
(Chun, 2016).

The earliest attempt to model super-spreading deterministically is Kemper
(1980), who adapted compartmental SIR and SIS models to include two classes of
infectives, /7 and I2, to which he assigned different transmission rates;
superspreading was represented by a class of infectives with transmission rate
several times greater than that of the other class. Kemper’s approach was
theoretical and did not include any practical applications.

In the same vein as Kemper (1980), Mkhatshwa and Mummert (2010)
modified the SIR model to include two types of infectives, one for ‘typical’ infected
individuals and another for super-spreaders. In contrast to Kemper’s work,
however, they associated both classes with the same transmission rate.
Mkhatshwa and his colleague noted that, as per Li et al. (2004), in the SARS
outbreaks ‘the daily infection rate did not correlate with the daily total number of
symptomatic cases but with the daily total number of symptomatic cases who
were not admitted to a hospital within 4 days of onset of symptoms.” Accordingly,
super-spreaders could be defined as individuals that were not timely isolated and
hence had more time to spread the disease. In their model, this was represented by
assigning different removal rates to the two classes of infectives. It was shown
that, with the proper parameter-fitting procedure, their adapted compartmental
model could apply to either a small-scale outbreak such as Hong Kong’s Amoy
Gardens SSE or a large-scale outbreak such as the entirety of Hong Kong itself.

Since SSEs are basically an individual-level phenomenon, they are not well-
captured by deterministic compartmental models. Small and Tse (2004, 2005)
successfully accounted for these phenomena by introducing a small-world model
that replaces the homogeneous, fully-connected population of deterministic
models with a computational arrangement of nodes (individuals) interconnected
by a finite number of links. The probability of contact is greater for adjacent nodes
than for distant ones, leading to patterns that realistically mimic infection clusters
and SSEs. In Small’s small-world framework, a super-spreader is not a highly
infectious individual but rather a highly connected individual, which occurs
naturally in the model and requires no special modifications.
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3. Modelling the 2014 - 2016 West African Ebola Epidemic
3.1. Background

Ebola and its associated pathogen were first characterized in 1976, following two
near-simultaneous outbreaks that occurred around Yambuku in Zaire (now
Democratic Republic of the Congo) and Nzara in Sudan (now South Sudan). The
Zaire outbreak involved 318 cases with a case-fatality ratio (CFR) of 88%, whereas
the Sudan outbreak involved 284 cases with a CFR of 53%. These epidemics were
shown to be caused by two distinct species of ebolavirus, a fact not recognized
until years later.

Although several more Ebola outbreaks would occur in Africa over the next
few decades, the most devastating one, by far, took place in the western portion
of the continent between 2014 and 2016. Starting with an index case in the village
of Méliandou in Guinea, ebolavirus would eventually spread throughout the rest of
the country and, in particular, the neighboring nations of Liberia and Sierra Leone.
Following the report of the Méliandou case in December 2013, several further
cases occurred in southeastern Guinea and on March 23, 2014, with 49 confirmed
cases and 29 deaths, the WHO officially declared an outbreak of Ebola. Cases in
neighboring Liberia and Sierra Leone were reported shortly afterwards, and on
August 8, 2014 the WHO declared the outbreak a Public Health Emergency of
International Concern (PHEIC).

In May 2015, Liberia became the first of the three most affected West
African nations to be declared Ebola-free, but more cases were discovered less
than six months later. The country was again declared Ebola-free in January 2016.
Sierra Leone and Guinea themselves were also declared Ebola-free only to register
new cases months later, but by June 2016 the epidemic had subsided in the whole
of West Africa. The outbreak reportedly involved 28,646 reported cases and
11,323 deaths (for a case fatality ratio of 39.5%), but, because underreporting was
a persistent issue, the real toll is probably far higher.

3.2. Before the 2014 - 2016 Crisis

Ebola had already motivated some mathematical epidemiology research before the
2014 crisis. In one example, Chowell et al. (2004) used data from two well-
documented Ebola outbreaks, one in Congo in 1995 and the other in Uganda in
2000, to calculate the respective basic reproductive numbers in the absence of
control interventions; the results were Ro = 1.83 for the Congo event and Ro = 1.34
for the Uganda event. Chowell’s team used a simple SEIR model and evaluated the
sensitivity of the final epidemic size to the time at which interventions begin. As
shown in Figure 2, the final epidemic size increased exponentially with the time of
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Figure 2. Sensitivity of the final epidemic size to the time of start of
interventions in the 1995 Congo and 2000 Uganda outbreaks. Negative numbers
represent the number of days before the actual reported intervention date and
positive numbers represent a delay after the actual reported intervention date.
From Chowell et al. (2004).
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start of interventions, reaffirming the notion that timely identification of an
outbreak remains the strongest determinant of final outbreak size.

Lekone and Finkenstadt (2006) used a stochastic SEIR model to perform a
retrospective study of the 1995 Ebola outbreak in Congo. They estimated the basic
reproduction number at 1.4, which is lower than the 1.83 result of Chowell et al.
(2004). Importantly, Lekone and his colleague obtained a much greater standard
deviation for Ro, which they interpreted as inherent to an approach of stochastic,
discrete nature. By modelling the impact of intervention, they estimated that
control measures reduced the duration of the epidemic from approximately 950
days to about 200 days and the final size from about 3.5 million cases to the
observed size of just over 300 cases.

Legrand et al. (2007) noted that the retrospective estimate of Ro in Chowell
et al. (2004) for the Congo and Uganda outbreaks had not accounted for the
contribution of different settings in transmission dynamics. Accordingly, Legrand’s
team developed a stochastic model that, in addition to the typical SEIR
compartments, also included hospitalized individuals and deceased individuals who
may have transmitted the disease in funerals. They estimated the basic
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reproduction numbers of both the 1995 Congo outbreak and the 2000 Uganda
outbreak at 2.7 (albeit with large confidence intervals), which is substantially
greater than the estimates of Chowell et al. (2004) and Lekone and Finkenstadt
(2006). Further, Legrand’s team performed a sensitivity analysis and concluded
that epidemic size in both the Congo and Uganda events are linked to time to
deployment of intervention measures, hospitalization rate, and the mean time
between onset of symptoms and hospitalization.

3.3. Spatiotemporal Modelling

One could argue that the Ebola crisis should have been easier to predict than, say,
the SARS epidemic, because the latter involved an emerging pathogen whereas the
former involved a virus that had been known since the late 1970s. However, the
natural history of ebolavirus spread is convoluted, as it has caused over 20
outbreaks between 1976 and 2008, ranging from a few dozen to several hundred
cases. Camacho et al. (2014) used a model built with data from the original 1976
Yambuku outbreak to demonstrate some of the difficulties associated with Ebola
forecasting.

Although Ebola cases have occurred in many parts of Guinea, Liberia, and
Sierra Leone, the geographical spread of the epidemic was not as sweeping as one
might think; in the first 9 months of the epidemic, 24 of the more than 60 districts
that constitute the three countries had no confirmed cases, and more than 90% of
cases had been reported from just 14 districts (WHO Ebola Response Team, 2014).
An exploratory data analysis by Suchar et al. (2018) also indicated that the
outbreak was fairly localized for several weeks. The peculiar spatial distribution of
infections has important implications for the modelling of intervention measures,
as it has been suggested that intervention in Liberia had significant indirect
protective effects on the epidemic dynamics of Guinea and Sierra Leone (D'Silva
and Eisenberg, 2017). Simply put, the dissemination of the Ebola virus during the
2014 - 2016 crisis is a nuanced problem that calls for use of spatiotemporal tools
that until recently were not commonly employed in mathematical epidemiology.

Rainisch et al. (2015) analyzed case counts, population data, and distances
between affected and nonaffected districts in Guinea (where such spatial units are
actually termed prefectures), Liberia (counties), and Sierra Leone (districts).
Regression models were created to compute the weekly risk of a district being
affected as a function of various variables. Rainisch’s team found that the risk of
becoming affected by Ebola was significantly higher for nonaffected districts that
had a larger population and that were closer to affected districts with higher case
counts. Dudas et al. (2017) also implicated greater population size and small
distance to nearby urban settlements as important factors in Ebola proliferation,
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and Fang et al. (2016) found that invasion of Ebola in chiefdoms in Sierra Leone
was closely associated with the chiefdom’s density of primary and secondary roads.
Accordingly, Rainisch et al. (2015) argue that, in the appropriate situations,
prediction of which regions would next become affected during the epidemic could
be based on data on population size and distance to highly affected districts.

Kucharski et al. (2015) used variation in the number of treatment beds to
investigate the epidemic dynamics in Sierra Leone. Kucharski’s team used a
stochastic model that allowed for time-varying transmission rate through a
sigmoid function, so that reduction in infection achieved by extra beds could be
disentangled from other effects. Although not inherently spatial in nature, their
model was stratified by district and afforded some geographic insight; for example,
it was observed that, as the outbreak waned, the drop in cases was greater in the
northern and eastern portions of the country.

Drake et al. (2015) conceived one of the first major modelling studies of the
2014 outbreak that did not have the calculation of basic reproduction numbers as
an overarching goal. Working with data from the Liberian outbreak, Drake’s team
used a discrete, stochastic multi-type branching process model that offered great
flexibility to investigate a wide range of intervention scenarios for different
combinations of individual behavior and hospitalization rate. They found that a
hospitalization rate consistently maintained at 85% may have ensured near
complete containment of the Liberian epidemic sometime between March and
June 2015.

Merler et al. (2015) developed an agent-based spatial Markov chain Monte
Carlo (MCMC) model that, they argued, would achieve more accurate predictions
than models with homogeneous population and no spatial structure. Indeed, their
approach accurately reproduced the decrease of incidence registered in Liberia in
the second half of 2014, and captured some of the dynamics that may have
accounted for this transition; for example, the high proportion of cases generated
in hospitals early in the outbreak was followed by a consequent decrease of
transmission in hospitals as more beds in Ebola treatment units became available,
in consonance with data reported by the WHO.

lvorra et al. (2015) introduced a novel spatiotemporal model, Be-CoDiS
(‘Between-Countries Disease Spread’), to assess the international spread of
diseases such as Ebola. The model combines an individual-based framework (in
which countries are the individuals) for between-country interactions with a
deterministic compartmental approach for within-country disease spread. Be-
CoDiS accounts for the movement of people between countries, models the
effects of control measures, and allows for the temporal evolution of epidemics
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through time-varying parameters. lvorra’s team validated the model with data
from the Ebola crisis.

Backer and Wallinga (2016) developed a spatiotemporal model that affords
a precise portrait of the evolution of incidence dynamics and effective
reproductive numbers across the three affected countries. The model is mostly
descriptive (as opposed to predictive or designed for forecasting), but nonetheless
constitutes an important integration of an old concept (that is, effective
reproduction numbers) to an approach that has only recently drawn considerable
attention (namely, spatiotemporal methods).

Santermans et al. (2016) also combined old and new in their own study.
Specifically, they introduced a spatiotemporal growth rate model to assess the
district-specific epidemics in the affected West African countries, and, for some
districts, complemented this approach with a classical SEIR compartmental model.
While the heat maps afforded by the district-specific analysis gives decision-makers
a detailed spatial framework with which to better allocate resources, the SEIR
model yields valuable additional information such as effective reproduction
numbers.

Kramer et al. (2016) adopted a network model and exhaustively tested 16
types of weighting of network links that incorporated data such as distance
between locations and population density. The model that led to the best fit of
observed Ebola spread was a gravity model in which population density
contributed heavily to link weighting. The second and third models that fared best
were also gravity models, underscoring the value of this technique in
spatiotemporal epidemic modelling. Interestingly, a model that relied on mobility
data from cell phone records yielded some of the worst results, which goes
counter to the growing predilection towards models that make use of such data
(see below).

D’Silva and Eisenberg (2017) created a gravity compartmental model to
revisit the impact of intervention measures during the crisis. Following the
approach of Legrand et al. (2007), their compartment division included groups for
‘funeral” individuals and two stages of infection. The model was used to evaluate
the effectiveness of both country-level and district-level interventions in the three
Ebola-stricken West African countries. Their deterministic model was found to
accurately replicate the general patterns of outbreak data for cases and deaths in
each district, as shown in Figure 3. Although the model was primarily deterministic,
a stochastic variant based on Tau-leaping was used to assess district-level
interventions. The deterministic and stochastic district-level gravity models led to a
reasonably accurate approximation of the dynamics of the outbreak.

Infectious Disease Modelling nl6
in Recent Epidemics



Lucas M. Nogueira

Figure 3. Final size of the outbreak in West Africa, as predicted by D’Silva and
Eisenberg (2017); comparison of deterministic model values (x-axis) and data (y-
axis).
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In the wake of the Ebola crisis, authors have called for a greater emphasis on
models that incorporate population mobility patterns (e.g., Halloran et al. (2014)).
Cellphone activity is a powerful candidate source for mobility data, because the
global mobile phone penetration rate (that is, the ratio of active subscriptions to
the population) nowadays exceeds 90% even in nations with substandard
telecommunications infrastructure (Wesolowski, 2014). Peak et al. (2018) used
phone call detail records (CDRs) to develop a detailed picture of human mobility
dynamics in Sierra Leone between March and July 2015 - a period that included
imposition of a lockdown by the local government in an effort to eradicate Ebola.
Peak’s team noted that the impact of travel restrictions on mobility was
expressive, reducing trips longer than 30 km by 76%. Peak’s team concluded that
CDRs constitute an inexpensive, reliable tool for monitoring and evaluating travel
restriction policies within national boundaries. With the possibility of measuring
the impact of travel restrictions on human mobility now well-established, it
remains to better integrate these models with the issues of disease spread, effect
on commerce, human rights, and so forth.

3.4. Deterministic Compartmental Models

Deterministic compartmental models such as the ones employed in the
SARS epidemic were not as enthusiastically pursued after the Ebola crisis, because
they are somewhat limited in capturing spatial variation (Keeling and Rohani,
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Figure 4. Compartments in the model by Chowell et a/. (2016).
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2008); but there are important exceptions. Chowell et al. (2016) assessed the
impact of early diagnosis of pre-symptomatic individuals on the transmission
dynamics of Ebola virus disease. Their deterministic model consisted of six
compartments (Figure 4): susceptible (5(t)), non-detectable latent (E1(t)),
detectable latent (Ex(t)), infectious (/(t)), isolated (J(t)), and recovered (R(t)).
Chowell’s team performed a sensitivity analysis of the control reproduction
number, R, for several parameters. It was found that Rc declined appreciably in
response to an increased fraction of pre-symptomatic individuals diagnosed and
isolated, fr, provided that isolation is highly effective. Further, Chowell’s team
provided a threshold formula for a fraction f; of diagnosed/isolated pre-
symptomatic individuals, above which the effective control of Ebola can be
achieved.

Another noteworthy compartmental model for Ebola was introduced by
Diaz et al. (2017). In contrast to similar endeavors, Diaz’'s team emphasized how
their model could inform the allocation of resources in the epidemic-stricken West
African countries. Through sensitivity analysis, they found that the basic
reproduction number Ro was most pronouncedly affected by a greater
hospitalization of infected individuals. Analyzing the outbreak data in Sierra Leone
and Liberia, their local metrics indicated that Liberia would benefit the most from a
greater hospitalization rate. However, additional analysis using an active subspace
method indicated that it was Sierra Leone that would experience a greater
decrease in Ro through greater hospitalization rate.

In Ebola, not all symptomatic hosts are equally symptomatic; an infected
individual may progress through different stages: firstly, there is a stage with non-
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specific symptoms (fever, headache and myalgia); secondly, there is a
gastrointestinal stage (diarrhea, vomiting, abdominal symptoms and dehydration);
thirdly, the patient progresses to a deterioration stage (collapse, neurological
manifestations and bleeding) or recovery. Some of the peculiarities of Ebola in
epidemic dynamics were captured in the age-of-infection deterministic model of
Webb and Browne (2016). The most successful such endeavor, however, is
probably Hart et al. (2019), who worked with a deterministic model that included
individual compartments for infectives in the three aforementioned symptomatic
stages; they went on to compare the performance of this model, which they called
the variable symptoms model, relatively to a model with a single compartment for
infectives irrespective of disease stage, which they called the constant symptoms
model. Crucially, they found that both models fit Ebola epidemic data efficiently,
but, when used to forecast the impact of certain interventions, the two models
gave rise to very different results. For instance, when predicting the effect of
intensified surveillance in the 2018 - 2019 Democratic Republic of Congo
(specifically, the city of Beni) Ebola epidemic, the constant symptoms model
underestimated the number of cases by 24% relatively to the more medically
realistic variable symptoms model. Thus, in order to achieve greater forecasting
accuracy, deterministic models of Ebola may benefit from a framework that allows
for variations in symptoms during infection.

One aspect in which the Ebola crisis diverged from, say, the SARS epidemic
was the outsize role that traditional/cultural beliefs played in shaping individuals’
response to control measures, leading to resistance and, at times, outright hostility
towards healthcare workers (e.g., BBC, 2014). It has been suggested that
community behaviors such as avoidance and denial may hinder the capacity of an
epidemic control strategy to achieve the outcomes predicted by mathematical
modelling (Drake et al., 2015). Agusto et al. (2015) provided a quantitative
assessment of the role that traditional beliefs may have played in the Ebola crisis.
Using data from Guinea, Agusto’s team developed a compartmental model that
included the dynamics of healthcare workers and, most importantly, accounted for
the strength of traditional belief systems and customs. Their sensitivity analysis
showed that the disease burden when traditional beliefs and customs are taken
into account is at least 50% greater than that for the case when these systems and
customs do not induce any detrimental effect.

3.5. Travel Restrictions

An influenza pandemic scenario by Cooper et al. (2006) suggested that even a 99%
restriction of air travel in affected cities yields a low probability of delaying a
widespread outbreak. Further, experience gained during the SARS epidemic
indicates that travel restrictions have negative economic effects, especially in the
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tourism and transportation sectors. Thus, there are important epidemiologic and
economic issues in travel restriction measures, which were hotly debated as
countries across the world assessed how to shield themselves from the spread of
Ebola in Guinea, Liberia and Sierra Leone circa August 2014. Restrictions ranged
from partial cancellation of international flights coming from these countries to
outright closure of international borders to passengers from the affected
countries; most nations that adopted the latter approach were in the African
continent. At the apex of the crisis, Royal Air Maroc and Brussels Airline were the
only two large commercial airlines still operating flights to the epidemic-stricken
West African countries (Ferrell and Agarwal, 2018).

There is important infectious disease modelling research to inform the
travel restrictions debate. Bogoch et al. (2014) suggested that exit screening at
international points of departure would offer greater efficiency than entry
screening all flights arriving directly from affected countries; a November 2014
document by the WHO provided guidance on exit screening procedures for
airports (WHO, 2014). In a simulation study, Poletto et al. (2014) assessed the
impact that travel restrictions imposed during the crisis had on the global spread
of Ebola, and found that a total estimated reduction of 60% of airline passenger
traffic connecting the rest of the world to the West African countries most
affected by the disease provided relatively small delays, mostly no greater than one
month, in the risk of case importation. Using a hazard-based statistical model,
Otsuki and Nishiura (2016) also pointed to a low effectiveness of travel restrictions
in reducing risk of importation of Ebola cases, especially among European
countries. A recent review of the relationship between travel restrictions and
infectious disease outbreaks can be found in Vaidya et al. (2020).

4. Modelling the 2019 - (Ongoing) COVID-19 Pandemic
4.1. Background

On December 31, 2019, the government of Wuhan, Hubei province, China,
confirmed that health authorities were treating dozens of cases of an unknown
respiratory disease. About a week later, a Chinese state broadcaster confirmed
that a coronavirus had been detected in 15 of the people who fell ill. On January
11, 2020 the first known death from the disease was reported: a 61-year-old man
who had been a regular customer of Wuhan’s Huanan Seafood Wholesale Market,
a local marketplace that concentrated several of the initial cases. Japan, South
Korea, and Thailand soon confirmed their own cases of the novel disease.

On January 30, the WHO declared the newly established disease a Public
Health Emergency of International Concern, and on February 11 it proposed
‘COVID-19’, short for ‘coronavirus disease 2019, as a name for the emerging
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disease. Over the course of February, COVID-19 infections would be reported in
France, Italy, Iran, and Brazil. In March, following advice from infectious disease
experts, several western governments implemented a spectrum of intervention
measures to slow the spread of the virus, including restrictions on mass gatherings
and school closures. By April 2, the outbreak, now a full-blown pandemic, had
sickened more than one million people in 171 countries and killed over 50,000.

Restrictions and other intervention measures would be periodically loosened
and reinstated for many months, as the world tried to reconcile issues such as
economic damage, individual freedom, coronavirus variant strains, vaccination
rollouts, and more. As of March 14, 2022, the global toll of COVID-19 stands at
over 458 million cases and over 6.04 million deaths, though a recent study has
indicated that up to three times as many deaths, as measured by excess mortality,
could be attributed to the pandemic (COVID-19 Excess Mortality Collaborators,
2022).

4.2. The Early Pandemic Literature

Ferguson et al. (2020) is one of the first model-driven studies of the COVID-19
pandemic. Informed by data for deaths in Great Britain through March 14, 2020,
coupled with estimates for basic reproduction number and other parameters
derived from the Chinese experience, Ferguson’s team recommended population-
wide social distancing, home isolation of cases, and school/university closure as
parts of a package to quickly achieve the reproduction number = 1 threshold and
reduce case incidence (Figure 5). They added that such measures needn’t
necessarily be sustained until the introduction of a vaccine, but may be
alternatively eased and reinstated in case of a rebound in infection numbers. The
model from which they derived such recommendations was an individual-based
stochastic framework akin to the one that Halloran et al. (2008) had used to
simulate an influenza pandemic in a population of size similar to that of Chicago.
Individual-based models such as the one adopted by Halloran’s team would turn
out to be a mainstay of COVID-19 modelling (see below).

Ferguson and colleagues at Imperial College London, Johns Hopkins
University and elsewhere had been studying pandemic scenarios for years. In
Ferguson et al. (2005), the reaction to an emerging influenza pandemic in
Southeast Asia was assessed. A high probability of successful containment was
shown to be associated with rapid identification of the original case cluster;
population cooperation with the containment strategy; and international
cooperation in policy development, epidemic surveillance and control strategy
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Figure 5. COVID-19 mitigation strategy scenarios for Great Britain as predicted by
Ferguson et al. (2020). The black line refers to the evolution of the epidemic with
no interventions at all. Colored lines indicate epidemic scenarios for various
intervention combinations. The shaded region is the period during which the
measures remain in place.
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implementation. A year later, Ferguson et al. (2006) discussed ways to proceed in
the containment of an influenza pandemic in Great Britain and the United States.
Since, however, the two papers dealt with influenza pandemics, most of the
scenarios outlined were not immediately applicable to the COVID-19 crisis; for
instance, the mitigation patterns described in Ferguson et al. (2006) ascribe an
important role to antiviral drugs - of which there were none in early 2020 - and
assume an inherently greater danger of development of clinical cases in children as
opposed to the elderly - which would be expected in a flu outbreak, but happened
to be the opposite with SARS-CoV-2.

Some stakeholders, both inside and outside of the scientific community,
have taken aim at the Ferguson et al. (2020) paper and other model-driven papers
published early in the pandemic. Critics argue that, because some of the
predictions in these studies never materialized, the models they employ are
inherently flawed and thus should not be relied upon in policymaking. This is
wrong; these earlier models were flawed because they were informed by very
limited data, both in the level of case reporting and in the more fundamental level
of epidemic characteristics, as parameters such as incubation period were not well-
established at the time. Holmdahl and Buckee (2020) name three important
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parameters that hindered accurate COVID-19 predictions, especially in the first few
months of the outbreak. First, until recently there was limited information on the
extent of protective immunity after a SARS-CoV-2 infection, a limitation that is
especially important for long-term or periodic epidemic forecasting. Second, the
extent of transmission and immunity among people with no or minimal symptoms,
including children, was poorly understood. Third, measuring and modelling contact
rates between susceptible and contagious persons was particularly problematic
early in the pandemic due to the scant information on individual behavior under
physical distancing policies, especially in locations that had no recent experience
with such policies.

Kucharski et al. (2020) authored one of the most cited data-driven models
of COVID-19. Kucharski’s team developed a stochastic transmission dynamic model
to assess the spread of SARS-CoV-2 in Wuhan during the first few weeks of the
outbreak. The model was shown to accurately reproduce the temporal trend of
cases in the city, but it predicted ten times more symptomatic cases in late January
2020 than were reported as confirmed cases, and it did not output the slowdown
in cases that was observed in February. They went on to investigate the possibility
that an exported case from Wuhan could initiate an outbreak elsewhere, and
noted that the introduction of four or more infections in a location sufficed to
place the risk of an outbreak at over 50%.

Contemporarily to Kucharski’s study, a mobility-data-based model by Lai et
al. (2020) also painted a worrying picture of the risk that outgoing travelers from
Wuhan had for spreading SARS-CoV-2 both inside and outside of China. They
estimated that up to 834 airline travelers may have been infected with the novel
coronavirus from Wuhan two weeks prior to the city’s lockdown. Further, they
forecast that, in order to mitigate the risk of case importation, the number of
airline travelers who should have been screened for COVID-19 in the three months
from February to April 2020 exceeded 6 million.

4.3. Deterministic Compartmental Models

Several pieces of model-oriented research on COVID-19 have resorted to the ages-
old deterministic compartmental approach. A number of these studies worked
with the situation in China, which was the origin of the outbreak and quickly
contained its first wave through stringent intervention measures; as a result, the
Chinese experience is particularly amenable to modelling. Anastassopoulou et al.
(2020) fit preliminary data to a SIDR model (the D stands for the ‘dead’
compartment) to forecast the Chinese outbreak through the end of February
2020. Peng et al. (2020) expanded the classical SEIR model to include quarantine
and a population of susceptibles that gradually decreased as a result of compliance
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with control measures such as use of face masks. This time-wise decrease is one
simple example of how researchers, devoid of relevant data, tweaked
compartmental models to account for early intervention measures.

Spain and Italy were some of the first countries outside Asia to face a
sweeping COVID-19 outbreak, and their researchers were also some of the first to
publish model-oriented studies on the pandemic. Lopez and Rod6 (2021) adapted
the modified SEIR model of Peng et al. (2020) to study the spread of SARS-CoV-2
in Spain, reporting that, in the absence of stricter control measures, up to 100,000
deaths would occur nationwide in the first few months of the epidemic. Lépez and
Rodo further analyzed all the 17 Spanish administrative regions and found that
regions closest to the initial foci of the national outbreak were expected to witness
earlier peaks, whereas more distant ones were expected to lag a few days behind.
|dentifying regions in which the epidemic was still incipient was important, as
timely deployment of social isolation measures in these regions reportedly would
have a greater effect than elsewhere in the country.

Working with the situation in Italy, Giordano et al. (2020) proposed a
sophisticated deterministic model with eight compartments akin to the one that
Gumel et al. (2004) had developed for SARS. Giordano’s team predicted that, over
a 350-day horizon, with no further policy changes, 0.06% of the Italian population
would die from COVID-19. This fraction would rise to 0.12% if the lockdown that
the Italian government had imposed were suddenly weakened, or decrease to
0.04% if stricter measures were implemented instead. Giordano’s team argued for
a more restrictive lockdown and adoption of widespread testing and contact
tracing.

Of course, Western Europe concentrates high-income countries whose
demographic structure is very different from the developing world. For example, it
has been reported that the household is a key setting for the transmission of SARS-
CoV-2 (see below), and the average size of households that have a resident over 65
years — a particularly vulnerable group - is substantially higher in low-income
countries than in middle- and high-income nations (Walker et al., 2020). Walker et
al. (2020) used an age-structured SEIR framework to investigate epidemic
dynamics under different mitigation/suppression scenarios and health system
capacity constraints. Walker’s team noted that larger household sizes, a feature of
developing nations, may enhance household-based transmission and limit the
impact of self-isolation. Further, while they predicted lower demand for critical
care in lower-income settings because of developing countries’ younger
populations, this supposed advantage was greatly offset by their limited medical
resource supply.
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Oliveira et al. (2021) is an outstanding example of model-driven COVID-19
research in the developing world. Oliveira’s team assessed the spread of SARS-CoV-
2 in the Brazilian state of Bahia, a region characterized by large population and
unequal distribution of medical resources. Theirs was an eight-compartment
‘SEIIHURD’" model that includes asymptomatic and hospitalized individuals.
Oliveira’s model showed that in the absence of the intervention measures imposed
by Bahia’s government, ICU bed occupancy numbers would rise over six-fold and
exceed 1100, greatly outstripping the statewide capacity of 422 beds. They further
warned that a reduction in transmission rate of 25%, enforced 7 days before the
predicted collapse of the system, would produce a delay in ICU bed overload no
greater than 8 days. A 50% reduction in transmission sustained for 30 days or a
75% reduction for 14 days would be more effective, delaying exhaustion of both
clinical and ICU beds by about 40 days.

Workers around the world have innovated in deterministic compartmental
models. Kim et al. (2020) used a SEIR model with compartments for quarantined
individuals and ‘behavior-changed susceptibles’, that is, individuals that are
complying with preventative measures such as social distancing. Tomochi and
Kono (2020) adapted a SIR model to include two types of infectives and noted that
such a modification increases the herd-immunity threshold. Dehning et al. (2020)
used the spreading rate of a SIR model to quantify the impacts of interventions in
Germany. Moein et al. (2020) put some pandemic SIR models to the test and
showed that while they fitted first-wave case numbers across the world reliably,
they generally failed to predict subsequent surges.

Several authors have warned against overreliance on deterministic
compartmental models, but few have gone on to illustrate their limitations in
practical terms. One exception is a paper by Raimundez et al. (2021), who
emphasized the problem of parameter estimation. Using a SEIRD model informed
by early COVID-19 data, Raimundez’s team showed that uncertainty in parameter
estimates can lead to very flawed predictions and results that fail to cover
reported data. For example, Bayesian analysis using MCMC sampling of one of their
SEIRD models led to a 99%-credibility interval for incubation period ranging from
23.4 to 257.6 days, when WHO data available at the time indicated a mean
incubation time of 5 - 6 days. Still, Raimundez’s team noted that refined models
and improved data were bound to improve results, as studies such as Giordano et
al. (2020, discussed above) showed in the ensuing months.

4.4, Individual-Level and Household-Stratified Models

Deterministic compartmental models are well-established, but fail to capture social
heterogeneity and other individual-level features that may contribute appreciably
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Figure 6. Evolution of COVID-19 cases in Australia as predicted by Chang et al. (2020). The charts
refer to (a) incidence; (b) prevalence; (c) cumulative incidence; and (d) daily growth rate of
cumulative incidence. A combination of case isolation (Cl) and home quarantine (HQ) measures
delays epidemic peaks and reduce their magnitude, whereas school closures (5Cs) have short-term
effect. The strategy with school closures combined with case isolation lasts 49 days, beginning at
the vertical dashed line.
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to an ongoing epidemic. As an alternative, one may instead resort to purely data-
driven (or ‘big data’) approaches, which have gained traction with the exponential
growth of computing power witnessed in recent years. However, these models
require a steady stream of reliable data, and pervasive underreporting in the Ebola
crisis showed that this is a luxury that the mathematical epidemiologist often
cannot count on. Agent-based models (ABMs), on the other hand, strike the right
balance between modelling and real data and are thus increasingly preferred to
their compartmental and statistical counterparts (Venkatramanan, 2018).

In one of the pandemic’s best examples of intervention-measure analysis
through ABMs, Chang et al. (2020) used a large-scale ABM to evaluate the
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effectiveness of non-pharmaceutical interventions in Australia. Chang’s team
posited that case isolation and home quarantine could appreciably delay the
epidemic spread and reduce its peak, but adding school closures yielded only
marginal benefits (Figure 6). On the other hand, an 80 to 90% compliance with
social-distancing, in conjunction with case isolation, home quarantine, and
restrictions on international arrivals, would suffice to suppress incidence to
negligible values within less than 20 weeks.

Hoertel et al. (2020) used a stochastic ABM to examine the COVID-19
situation in France as it exited from its national lockdown. They warned that a
lockdown, on its own, would not prevent a rebound of infections. Moreover,
adhesion to mask-wearing and physical distancing would not suffice to prevent an
overwhelming second wave, but, when coupled with shielding of vulnerable
people, may lower cumulative incidence, mortality, and number of ICU beds
required, with the result that a second lockdown ultimately may not be needed.

Mask-wearing is difficult to model through classical deterministic models
because it is fundamentally an individual effort, and, as already mentioned,
individual nuance is not well represented in SEIR models and their variants. Agent-
based models can easily circumvent this limitation. Kai et al. (2020) used an ABM to
demonstrate that universal mask wearing instituted at the onset of an outbreak
could lead to a rapid, near-total suppression of infection spread. Kai’s team
acknowledged that most countries outside of East Asia had already missed that
time window, but ABM simulations showed that introduction of universal mask
wearing at day 50 of an outbreak still led to expressive reductions in infection rate.

Although ABMs can be hard to code and computationally intensive, some
workers have made strides in converting them into more accessible tools. For
example, Kerr et al. (2021) developed Covasim, a Python-based ABM that can be
used to simulate COVID-19 spread scenarios and guide policymaking. The program
can be used to model intervention measures such as physical distancing, contact
tracing, and contact quarantine. Covasim has remarkable computational efficiency:
Kerr’s team note that a scenario involving tens of thousands of infections among a
susceptible population of hundreds of thousands of people, for a duration of 12
months, can be processed with a personal laptop within less than a minute. Kerr’s
team close their introduction to the program by noting that future iterations
should support variant SARS-CoV-2 strains and vaccine rollout.

Silva et al. (2020) developed an agent-based model, COVID-ABS, that
integrates intervention scenarios with simple assessments of economic impact.
Their simulations showed that a total or conditional lockdown was the best
approach to save the most lives, albeit with significant economic impact. Further,
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they showed that a policy based on 50%-social isolation with mask-wearing and
physical distancing - a package more palatable than full-fledged lockdowns - could
save numerous lives and minimize economic harm.

With the purpose of adding heterogeneity to an infectious disease model,
the epidemiologist does not necessarily have to focus on the individual scale;
COVID-19 lockdowns have led citizens to spend more time in their homes, and
research has shown that infection risk of household contacts is several-fold higher
than other contacts (Lei, 2020). Accordingly, a viable alternative, which may
complement but not necessarily substitute individual-scale modelling, is to assess
disease spread at the household level.

One crucial variable to calibrate household-level models is the household
secondary attack rate (SAR). An early review by Madewell et al. (2020) placed this
parameter at 16.6%, which is considerably higher than the values reported for the
original SARS coronavirus (7.5%) and MERS coronavirus (4.7%), but within mid-
range when compared to the 1 - 38% reported for influenza (values quoted in
Madewell et al., 2020). The same authors revisited the same parameter in mid-
2021 and updated the household SAR to 18.9% (Madewell et al., 2021).

Fung et al. (2021) proposed an estimate of 17.1% for household SAR and
noted that studies that tested contacts more frequently tended to generate larger
SARs. Reuters et al. (2022), in turn, noted that many secondary attack rate studies
published until then used a rather poor individual assessment strategy, as they only
tested household contacts with COVID-19-related symptoms, relied only on
reverse-transcription polymerase chain reaction (RT-PCR) in nasopharyrngeal
swabs, and did not perform any follow-up. In contrast, Reuters’s team used a more
clear-cut approach, wherein all household contacts were tested as soon as possible
after a laboratory-confirmed infection in the household was established and
subsequently followed up for 4 - 6 weeks. Of note for the present review, they also
analyzed their data through a stochastic SEIR model. The estimated household
infection SAR was 43%, which is substantially higher than most other estimates
and exemplifies the observation of Fung et al. (2021) that more frequent testing
and follow-up may lead to greater SAR values.

Liu et al. (2021) used a discrete-time stochastic model to investigate the
effect of different household size distributions on COVID-19 transmission
dynamics. Specifically, Liu’s team employed the same model to two regional health
authorities of the Greater Vancouver area in Canada. The two regions, Fraser
Health and Vancouver Coastal Health, had different COVID-19 case count numbers
and, most importantly, different average household sizes: 2.68 for the former and
2.31 for the latter. Through scenario-making, they found that keeping 55% of
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individuals isolating at home could bring cases into a decline under the household
size distribution of the Vancouver Coastal Health region while the number of cases
continued to increase at a moderate rate under the household size distribution of
the Fraser Health region. Simply put, home isolation is more effective in regions
with smaller household sizes than in regions with large household sizes.

Such a finding is also evidenced in Nande et al. (2021), who used a network
model to obtain more granular details on the transmission dynamics of COVID-19.
Nande’s model indicated that risk of infection is significantly greater for individuals
in large households than for individuals living alone. Further, Nande’s team also
assessed the increased risk faced by households with ‘essential workers’, that is,
workers that maintained contacts in their ‘work’ networks in spite of widespread
social distancing; individuals living in households with such workers had much
greater risk of infection than those living in households where everyone was social
distancing.

4.5. After the First Wave

After the first few months of the pandemic were brought to a close, researchers
began to assess the effect of nonpharmacological measures retrospectively. Lai et
al. (2020) used a stochastic SEIR model based on travel networks to simulate
before-and-after scenarios in hundreds of Chinese cities subjected to three NPIs,
namely (1) restriction of intercity population movement; (2) identification and
isolation of cases; and (3) contact restrictions and social distancing measures. Lai’s
team found that in the absence of NPIs, the number of infections by 29 February,
2020 would have increased 51-fold in Wuhan and 125-fold in cities outside of
Hubei province. There were also differential impacts for the three types of NPI,
with early detection and isolation of cases preventing more infections than the
introduction of contact reduction and social distancing. However, combinations of
NPIs worked better to avert infections and spread than any individual approach on
its own. Earlier, a paper by Chinazzi et al. (2020) had contended that the travel
restrictions imposed in Wuhan had delayed the growth of the Chinese epidemic by
no more than 3 - 5 days.

Pei et al. (2020) used a dynamic metapopulation model informed by human
mobility datato investigate the experience with NPIs in the United States. Pei’s
team ran counterfactual simulations and found that, had the control measures
adopted across the country been implemented a week earlier, the US would have
avoided over 600,000 cases and 32,000 deaths nationwide by May 2020; the
numbers were even greater for a scenario in which the intervention measures were
adopted two weeks earlier. Pei’s team also found that over 95% of the US
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population remained susceptible as of May 2020, revealing an absence of herd
immunity and indicating the possibility of additional COVID-19 waves.

Friedman et al. (2021) took up the issue of differences in mortality figures
of seven COVID-19 forecasting models, which, they noted, could differ by more
than one order of magnitude, even within a 6-week forecasting window.
Nonetheless, they found that the mortality predictions for the United States
converged in their predictions for the June 2020 - August 2020 period; disparities
were greater in the November 2020 - February 2021 period because many models
did not consider seasonality. Further, Friedman’s team noted that models that
relied on an exponential growth in transmission had a greater tendency to
overestimate mortality numbers.

In a paper that was widely quoted in mass media, Niu et al. (2021) used a
SEIAR model to evaluate the response of 160 countries to the first few months of
the pandemic. The countries that had the strongest national control capability
were mostly in Europe, as 76.4% of European nations were able to control COVID-
19 within 60 days from their first discovered case. In terms of continuous control,
the Western Pacific region fared better, with 73.76% of its countries registering a
steady low level of cases through August 22, 2020.

More recently, COVID-19 National Preparedness Collaborators (2022)
conducted an exploratory data analysis in an attempt to link 177 countries’
differential outcomes in registered cases and deaths to variables such as
population density, gross domestic product (GDP) per capita, and body mass index
(BMI). Their study was motivated by findings such as those of Haider et al. (2020),
who had noted a weak correlation between COVID-19 mortality outcomes and
countries’ Global Health Security Index (GHSI) and WHO Joint External Evaluation
(JEE) scores, two well-established metrics for health security. The COVID-19
Collaborators’ research corroborated the fact that neither GHSI nor JEE are
associated with standardized infection rates or infection-fatality ratios (IFRs). Their
most striking findings, however, are that high levels of trust in government, high
interpersonal trust, and low government corruption all have significant
associations with fewer infections. Nations with high indicators in these areas,
such as Denmark, have weathered the pandemic with greater success than others.

5. Conclusion

Each of the outbreaks reviewed have offered novel challenges to mathematical
epidemiologists, who in turn have responded with ever more sophisticated
representations of reality. SARS tested modelers’ ability to show whether
quarantine can help drop effective reproduction numbers below unity and thereby
bring an epidemic under control. Ebola tested modelers’ ability to show how an

Infectious Disease Modelling
in Recent Epidemics =30



Lucas M. Nogueira

infectious disease can diffuse through porous borders or, internally, through
complex arrangements of rural areas and dense population centers. Finally, COVID-
19 tested modelers’ ability to personalize their mathematical formulations,
describing an epidemic that has affected hundreds of millions at the level of a
single individual. Complexity issues aside, the models produced in the wake of
these events have informed policymakers and are sure to have reduced the burden
of disease in countries across the world. Certainly, the next pandemic may pose an
even greater threat than SARS, Ebola or even COVID, but the proper combination
of good models and mathematical ingenuity is bound to keep humankind one step
ahead of any emerging pathogen.

— L.M.N.
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