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Problem Distribution 
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5.3, 5.4, 5.7(a,b), 5.8, 5.9, 5.11a, 5.14, 

5.15, 5.18, 5.19, 5.22, 5.30 

6 
6.1, 6.3, 6.4, 6.6, 6.9, 6.11, 6.17, 6.20, 

6.25, 6.28, 6.29, 6.32(a, b)  

7 
7.4, 7.8, 7.12, 7.13, 7.19, 7.22, 7.25, 

7.27, 7.28, 7.30, 7.38, 7.39, 7.40, 7.41 

8 
8.1, 8.2, 8.4, 8.7, 8.8, 8.9, 8.10, 8.12, 

8.17, 8.19 
 

Problems 
◼ Chapter 5 – Neutron Diffusion and Moderation  
Problem 5.3 
Using equations (5.10) and (5.11), estimate the diffusion coefficients of (a) 
beryllium, (b) graphite, for monoenergetic 0.0253 eV neutrons. 

Problem 5.4 
The neutron flux in a bare spherical reactor of radius 50 cm is given by 

( )13 2sin 0.0628
5 10 neutrons/cm -sec

r
r

φ = ×  

where r is measured from the center of the reactor. The diffusion coefficient for 
the system is 0.80 cm.  
(a) What is the maximum value of the flux in the reactor? (b) Calculate the 
neutron current density as a function of position in the reactor. (c) How many 
neutrons escape the reactor per second?  

Problem 5.7 [(a) and (b) only] 
An isotropic point source emits S neutrons/sec in an infinite moderator. (a) 
Compute the net number of neutrons passing per second through a spherical 
surface of radius r centered on the source. (b) Compute the number of neutrons 
absorbed per second within the sphere.  

Problem 5.8 
Two infinite planar sources each emitting S neutrons/cm2 are placed parallel to 
one another in an infinite moderator at the distance a apart. Calculate the flux 
and current as a function of distance from a plane midway between the two.  

Problem 5.9 
Suppose the two planar sources in the preceding problem are placed at right 
angles to one another. Derive expressions for the flux and current as a function of 
distance from the line of intersection of the sources in a plane bisecting the angle 
between the sources. 
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Problem 5.11 [(a) only] 
An infinite bare slab of moderator of thickness 2a contains uniformly distributed 
sources emitting S neutrons/cm3-sec. (a) Show that the flux in the slab is given by 

( )cosh
1

cosha

x LS
x d

L

φ

 
 
 = −

+Σ   
    

 

where x is measured from the center of the slab.  
Hint: The solution to an inhomogeneous differential equation is the sum of 
solutions to the homogeneous equation plus a particular solution. Try a constant 
for the particular solution.  

 

Problem 5.14 
A sphere of moderator of radius R contains uniformly distributed sources emitting 
S neutrons/cm3-sec. (a) Show that the flux in the sphere is given by 

( )sinh
1

sinha

r LS R d
R dr

L

φ

 
 + = −

+Σ   
    

 

(b) Derive an expression for the current density at any point in the sphere.  
(c) How many neutrons leak from the sphere per second?  
(d) What is the average probability that a source neutron will escape from the 
sphere?  

Problem 5.15 
The three-group fluxes for a bare spherical fast reactor of radius R = 50 cm are 
given by the following expressions:  

( )
15

1
3 10 sin rr

r R
πφ ×  =  
 

 

( )
15

2
2 10 sin rr

r R
πφ ×  =  
 

 

( )
15

3
1 10 sin rr

r R
πφ ×  =  
 

 

 

The group-diffusion coefficients are D1 = 2.2 cm, D2 = 1.7 cm, and D3 = 1.05 cm. 
Calculate the total leakage of neutrons from the reactor in all three groups. [Note: 
Ignore the extrapolation distance.] 

Problem 5.18 
The thermal flux in a bare cubical reactor is given approximately by the function  

( ), , cos cos cosT
x y zx y z A

a a a
π π πφ      =      
       

 

where A is a constant, a is the length of a sided of the cube, 𝑎𝑎� is a plus 2d, d is the 
extrapolation distance, and x, y, and z are measured from the center of the 
reactor. Derive expressions for the (a) thermal neutron current as a function of 
position in the reactor; (b) number of thermal neutrons leaking per second from 
each side of the reactor; and (c) total number of thermal neutrons leaking per 
second from the reactor.  

Problem 5.19 
A planar source at the center of an infinite slab of graphite 2 meters thick emits 
108 thermal neutrons per cm2/sec. Given that the system is at room temperature, 
calculate the: (a) total number of thermal neutrons in the slab per cm2 at any time; 
(b) number of thermal neutrons absorbed per cm2/sec of the slab; (c) neutron 
current as a function of position in the slab; (d) total number of neutrons leaking 
per cm2/sec from the two surfaces of the slab; and (e) probability that a source 
neutron does not leak from the slab.  
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Problem 5.22 
The thermal flux in a bare spherical reactor 1 m in diameter is given approximately 
by  

( ) ( )14 2sin 0.0628
2.29 10 neutrons/cm -secT

r
r

r
φ = ×  

If the reactor is moderated and cooled by unit density water that takes up to one-
third of the reactor volume, how many grams of 2H (deuterium) are produced per 
year in the reactor? Assume that the water is only slightly warmed by the heat of 
the reactor.  

Problem 5.30 
An infinite slab of ordinary water 16 cm thick contains a planar source at its center 
emitting 108 thermal neutrons per cm2/sec. Compute and plot the thermal flux 
within the slab.  

◼ Chapter 6 – Nuclear Reactor Theory 
Problem 6.1 
Calculate the fuel utilization and infinite multiplication factor for a fast reactor 
consisting of a mixture of liquid sodium and plutonium, in which the plutonium is 
present to 3.0 w/o. The density of the mixture is approximately 1.0 g/cm3. 

Problem 6.3 
A bare-cylinder reactor of height 100 cm and diameter 100 cm is operating at a 
steady-state power of 20 MW. If the origin is taken at the center of the reactor, 
what is the power density at the point r = 7 cm, Z = −22.7 cm?  

Problem 6.4 
In a spherical reactor of radius 45 cm, the fission rate density is measured as 
2.5×1011 fissions/cm3-sec at a point 35 cm from the center of the reactor. (a) At 
what steady-state power is the reactor operating? (b) What is the fission rate 
density at the center of the reactor? 

Problem 6.6 
The core of a certain reflected reactor consists of a cylinder 10-ft high and 10-ft in 
diameter. The measured maximum-to-average flux is 1.5. When the reactor is 
operated at a power level of 825 MW, what is the power density in the reactor in 
kW/liter?  

Problem 6.9 
(a) Estimate the critical radius of a hypothetical bare spherical reactor having the 
same composition as the reactor in Problem 6.1. (b) If the reactor operates at a 
thermal power level of 500 MW, what is the maximum value of the flux? (c) What 
is the probability that a fission neutron will escape from the reactor? 

Problem 6.11 
A large research reactor consists of a cubical array of natural uranium rods in a 
graphite moderator. The reactor is 25 ft on a side and operates at a power of 20 
MW. The average value of Σ�𝑓𝑓 is 2.5×10-3 cm-1. (a) Calculate the buckling. (b) What 
is the maximum value of the thermal flux? (c) What is the average value of the 
thermal flux? 

Problem 6.17 
Consider a critical bare slab reactor 200 cm thick consisting of a homogeneous 
mixture of 235U and graphite. The maximum thermal flux is 5×1012 neutrons/cm2-
sec. Using modified one-group theory, calculate: (a) the buckling of the reactor; 
(b) the critical atomic concentration of uranium; (c) the thermal diffusion area; (d) 
the value of 𝑘𝑘∞; (e) the thermal flux and current throughout the slab; (f) the 
thermal power produced per cm2 of this slab. 

Problem 6.20 
A bare-spherical reactor 50 cm in radius is composed of a homogeneous mixture 
of 235U and beryllium. The reactor operates at a power level of 50 thermal 
kilowatts. Using modified one-group theory, compute: (a) the critical mass of 235U; 
(b) the thermal flux throughout the reactor; (c) the leakage of neutrons from the 
reactor; (d) the rate of consumption of 235U.  
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Problem 6.25 
A bare-thermal reactor in the shape of a cube consists of a homogeneous mixture 
of 235U and graphite. The ratio of atom densities is NF/NM = 1.0×10-5 and the fuel 
temperature is 250OC. Using modified one-group theory, calculate: (a) the critical 
dimensions; (b) the critical mass; (c) the maximum thermal flux when the reactor 
operates at a power of 1 kW. 

Problem 6.28 
The core of a spherical reactor consists of a homogeneous mixture of 235U and 
graphite with a fuel-moderator atom ratio NT/NM = 6.8×10-6. The core is 
surrounded by an infinite graphite reflector. The reactor operates at a thermal 
power of 100 kW. Calculate the: (a) value of 𝑘𝑘∞; (b) critical core radius; (c) critical 
mass; (d) reflector savings; (e) thermal flux throughout the reactor; (f) maximum-
to-average flux ratio. 

Problem 6.29 
Estimate the new critical radius and critical mass of a reactor with the same 
composition as described in Problem 6.20 when the core is surrounded by an 
infinite beryllium reflector. 

Problem 6.32 [(a) and (b) only] 
The core of an infinite planar thermal reactor consists of a solution of 238Pu and 
H2O with a plutonium concentration of 8.5 g/liter. The core is reflected on both 
faces by infinitely thick H2 reflectors. Calculate the (a) reflector savings; and (b) 
critical thickness of the core; 

◼ Chapter 7 – The Time-Dependent Reactor 
Problem 7.4 
Express the following reactivities of a 235U-fueled thermal reactor in percent: (a) 
0.001, (b) $2, (c) −50 cents.  

Problem 7.8 
A 235U-fueled reactor originally operating at a constant power of 1 milliwatt is 
placed on a positive 10-minute period. At what time will the reactor power level 
reach 1 megawatt? 

Problem 7.12 
The reactor in Problem 7.8 is scrammed by the instantaneous insertion of 5 dollars 
of negative reactivity after having reached a constant power level of 1 megawatt. 
Approximately how long does it take the power level to drop to 1 milliwatt? 

Problem 7.13 
When a certain research reactor operating at a constant power of 2.7 megawatts 
is scrammed, it is observed that the power drops to a level of 1 watt in 15 
minutes. How much reactivity was inserted when the reactor was scrammed? 

Problem 7.19 
An experimental reactor facility is a bare square cylinder 100 cm high, composed 
of small beryllium blocks with thin foils of 235U placed in between, so that the 
system can be considered to be a homogeneous mixture of Be and 235U. The 
reactor is to be controlled with a single black control rod 2.5 cm in radius and 
located along the axis of the system. (a) If the reactor is critical with the rod fully 
withdrawn, how much negative reactivity is introduced into the system when the 
rod is fully inserted? (b) Assuming that the rod moves into the reactor 
instantaneously, on what period does the reactor go? 

Problem 7.22 
A certain pressurized-water reactor is to be controlled by 61 cluster control 
assemblies, each assembly containing 20 black rods 1.15 cm in diameter. The 
reactor core is a cylinder 320 cm in diameter. The average thermal diffusion length 
in the core is 1.38 cm, D = 0.21 cm, and Σ𝑓𝑓 in the core material is approximately 
2.6 cm-1. Calculate the total worth of the rods. 

Problem 7.25 
Suppose the fast reactor described in Example 6.3 is controlled with 50 rods, each 
rod containing approximately 500 g of natural boron. Estimate the total worth of 
the rods. 

Problem 7.27 
A control rod 100 cm long has an integral worth of 50 cents when totally inserted. 
(a) How much reactivity is introduced into the reactor when the rod is pulled one-
quarter of the way out? (b) At what rate is reactivity introduced at this point per 
cm motion of the rod? 
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Problem 7.28 
Suppose that, at some time during its operating history, the reactor described in 
Example 7.7 is critical with the rod withdrawn one-half of its full length. If the rod 
is now suddenly withdrawn another 10 cm, (a) how much reactivity is introduced? 
(b) On what period does the reactor power rise? 

Problem 7.30 
An infinite 235U-fueled, water-moderated reactor contains 20% more 235U than 
required to become critical. What concentration of (a) boron in ppm or (b) boric 
acid in g/liter is required to hold down the excess reactivity of the system?  

Problem 7.38 
What is the effective half-life of 135Xe in a thermal flux of 1014 neutrons/cm2-sec at 
a temperature of 800oC?  

Problem 7.39 
Compute and plot the equilibrium xenon reactivity as a function of thermal flux 
from 𝜙𝜙𝑇𝑇 = 5×1012 to 𝜙𝜙𝑇𝑇 = 5×1014. 

Problem 7.40 
Using Fig. 7.14, plot the maximum post-shutdown xenon reactivity as a function 
of thermal flux from 𝜙𝜙𝑇𝑇 = 1013 to 𝜙𝜙𝑇𝑇 = 5×1014. 

Problem 7.41 
A 235U-fueled reactor operating at a thermal flux of 5×1013 neutrons/cm2-sec is 
scrammed at a time when the reactor has 5% in reverse reactivity. Compute the 
time to the onset of the deadtime and its duration.  

◼ Chapter 8 – Heat Removal from Nuclear Reactors 
Problem 8.1 
The nuclear ship Savannah was powered by a PWR that operated at a pressure of 
1750 psia. The coolant water entered the reactor vessel at a temperature of 
497oF, exited at 519oF, and passed through the vessel at a rate of 9.4×106 lb/hr. 
What was the thermal power output of this reactor?  

Problem 8.2 
An experimental LMFBR operates at 750 MW. Sodium enters the core at 400oC 
and leaves at 560oC. At what rate must the sodium be pumped through the core? 

Problem 8.4 
A BWR operates at a thermal power of 1593 MW. Water enters the bottom of the 
core at 526oF and passes through the core at a rate of 48×106 lb/hr. The reactor 
pressure is 1025 psia. Using the result of the previous problem, compute the rate 
in lb/hr at which steam is produced in this reactor. 

Problem 8.7 
A small PWR plant operates at a power of 485 MWt. The core, which is 
approximately 75.4 in. in diameter and 91.9 in. high, consists of a square lattice of 
23,142 fuel tubes of thickness 0.021 in. and inner diameter of 0.298 in. on a 0.422-
in. pitch. The tubes are filled with 3.40 w/o-enriched UO2. The core is cooled by 
water, which enters at the bottom at 496oF and passes through the core at a rate 
of 34×106 lb/hr at 2015 psia. Compute (a) the average temperature of the water 
leaving the core; (b) the average power density in kW/liter: (c) the maximum heat 
production rate, assuming the reactor core is bare.  

Problem 8.8 
The core of a BWR consists of 764 fuel assemblies, each containing a square array 
of 49 fuel rods on a 0.748-in. pitch. The fuel rods are 175 in. long, but contain fuel 
over only 144 in. of their length. The outside diameter of the fuel rods is 0.563 in., 
the cladding (fuel tube) is 0.032 in. thick, and the UO2 fuel pellets are 0.487 in. in 
diameter. This leaves a gap of (0.563 – 2 × 0.032 – 0.487)/2 = 0.006 in. between 
the pellets and the cladding. The UO2 has an average density of approximately 
10.3 g/cm3. The radius of the core is 93.6 in., and the reactor is designed to 
operate at 3293 MW. The peak-to-average power density is 2.62. Calculate for this 
reactor: (a) the total weight of UO2 and uranium in the core; (b) the specific 
power in kW/kg U; (c) the average power density in kW/liter; (d) the average 
linear rod power 𝑞𝑞avg′  in kW/ft; (e) the maximum heat production rate.   
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Problem 8.9 
The core of an LMFBR consists of a square lattice of 13,104 fuel rods 0.158 in. in 
diameter, 30.5 in. long, on a 0.210-in. pitch. The fuel rods are 26 w/o-enriched 
uranium clad in 0.005-in. stainless steel. Liquid sodium enters the core at 
approximately 300oC and passes through the core at an average speed of 31.2 
ft/sec. The core produces 270 MW of thermal power, with a maximum-to-average 
power density of 1.79. Calculate: (a) the maximum heat production rate; (b) the 
maximum neutron flux.  

Problem 8.10 
The variation of the neutron flux and/or heat production rate along the z-direction 
in the core of a reflected reactor is often approximated by the function 
 

constant cos z
H
πφ  = ×  
 

 

 

where 𝐻𝐻� is the distance between the extrapolated boundaries and is somewhat 
larger than 𝐻𝐻, the actual height of the core. Show that the maximum-to-average 
heat production ratio in the z-direction, Ω𝑧𝑧, is given by 
 

( )
2

sin 2z
H H

H H
π
π

Ω =



 

Problem 8.12 
The core of a fast reactor is a cylinder 38.8 cm in radius and 77.5 cm high. Two-
dimensional (r,z) multigroup calculations show that the power density distribution 
in the core can be represented approximately by the expression  
 

( ) 0

2

, 1 cos
51 109
r zP r z P π    = −    

     
 

 

where P0 is a constant and r and z are the distances in centimeters from the axis 
and the midplane of the core, respectively. (a) Evaluate P0 in terms of the total 
core power P. (b) What is the maximum-to-average power ratio in the core? (c) 
Calculate the maximum-to-average power ratios in the radial and axial directions.  

Problem 8.17 
The reactor core in Problem 8.12 produces 400 MW, of which 8 MW is due to 𝛾𝛾-
ray heating of the coolant. The total heat transfer area of the fuel is 1,580 ft2. 
Compute (a) the average power density in the core in kW/liter and kW/ft3; (b) the 
average heat flux; (c) the maximum heat flux. 

Problem 8.19 
The temperature at the center of the fuel rod in Problem 8.9, where q’’ is the 
largest, is 1220oF. Calculate the temperatures at the fuel-cladding interface and at 
the outer surface of the cladding.  

Solutions 

◼ P5.3 
Part (a): Referring to Table II.3, Σ𝑠𝑠 = 0.7589 cm-1 for beryllium. Given the atomic 
number A = 4 for this element, we substitute into (5.12) to obtain 

2 2 0.167
3 3 4A

µ = = =
×

 

Referring to equation (5.11),  

( ) ( )tr
1 1 1.58 cm

1 0.7589 1 0.167s

λ
µ

= = =
Σ − × −

 

Substituting into (5.10),  

tr 1.58 0.527 cm
3 3

D λ
= = =  

Part (b): Referring to Table II.3,  Σ𝑠𝑠 = 0.3811 cm-1 for carbon. The process to 
calculate the diffusion coefficient is identical to part (a):  
 

2 2 0.111
3 3 6A

µ = = =
×
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( ) ( )tr
1 1 2.95 cm

1 0.3811 1 0.111s

λ
µ

= = =
Σ − × −

 

tr 2.95 0.983 cm
3 3

D λ
= = =  

◼ P5.4 
Part (a): The maximum flux occurs in the center of the spherical reactor, that is, in 
r → 0. Noting that 

( )
0

sin
lim
x

kx
k

x→
=  

we proceed to write 

( ) ( ) ( ) ( )13 13 12 2
max 0 0

sin 0.0628
lim lim 5 10 5 10 0.0628 3.14 10 n/cm s
r r

r
r r

r
φ φ

→ →

 
= = × = × × = × ⋅ 

 
 

Part (b): The neutron current density is given by the usual relation J(r) = 
−Dd𝜙𝜙(r)/dr, which in the present case yields 
 

( ) ( ) ( ) ( )13 13
2

sin 0.0628 0.0628cos 0.0628 sin 0.0628
0.80 5 10 4 10

r r rdJ r
dr r r r

   
= − × × = − × −   

   
 

Part (c): The leakage rate is obtained by integrating the neutron current density 
over the surface of the spherical reactor:  
 

( ) ( ) ( )2 2 13
2

0.0628cos 0.0628 sin 0.0628
4 4 4 10rA

R R
J dA R J R R

R R
π π

   = = − × −  
   

∫  

( ) ( )2 13
2

0.0628cos 0.0628 50 sin 0.0628 50
4 50 4 10

50 50rA
J dA π

  × ×  ∴ = × × − × −  
   

∫  

151.58 10 n/secrA
J dA∴ = ×∫  

◼ P5.7 
Part (a): Per equation (5.33), the flux associated with a point source emitting S 
neutrons per second isotropically in an infinite medium is  
 

( )
4

r LSer
Dr

φ
π

−

=  

 

The current density is identical to the result given on page 243,  

( ) 2
1 1

4
r LSJ r e

rL rπ
− = + 

 
 

The net number of neutrons passing per second through a spherical surface of 
radius r centered at the point source is 

( )2 2
2

1 14 4 1
4

r Lr LS rr J r r e S e
rL r L

π π
π

−−   = × + = +   
   

 

Part (b): In this part, we first set up the integral  
 

( ) 2

0 0 0
4

4
r r r

a
a a

r L
r LSSer dV r dr re dr

Dr D
φ π

π

−
−Σ

Σ = Σ × =∫ ∫ ∫  

The rightmost integral can be evaluated using integration by parts; we can speed 
things up using Mathematica:  

 

As shown,  
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( ) ( )2 2

0

r
a

a
r L r LSr dV Lre L e L

D
φ − −Σ

Σ = − − +∫  

Simplifying,  

( )
2

0
1 1

r
a

a
r LSL rr dV e

D L
φ −Σ   Σ = − +    

∫  

◼ P5.8 
The flux afforded by an infinite planar source is given by equation (5.29),  

2
x LSL e

D
φ −=  

Setting x = a/2 and doubling the flux to account for both planar sources,  

( )
( )2

20 2
2

aa
LLSL SLx e e

D D
φ

 − 
 

−
= = × =  

Now, note that the current vectors in a region midway between the two planes 
have the same magnitude and opposite directions. As a result, the current density 
at x = 0 is zero.  

( )0 0J x = =  

◼ P5.9 
The flux at a distance r from the line of intersection of the sources is 

( ) 2
2

r L r LSL SLr e e
D D

φ − −= × =  

The current density associated with either of the two planar sources is 

1 2
1

2 2
r L r Ld SL SLJ J D e D e

dr D D L
− −   = = − = − × × −   

   
 

1 2
1
2

r LJ J Se−∴ = =  

The total current density can be established with the law of cosines:  
 

( )2 2 2 2
1 2 1 1 1 1 12 cos 2 2 cos 2 1 cosJ J J J J J J Jθ θ θ= + − − = + = +  

12 1 cos
2

r LJ Se θ−∴ = × × +  

2 1 cos
2

r LJ Se θ−∴ = +  

where 𝜃𝜃 is the angle between the sources. 

◼ P5.11 
The ODE that describes neutron diffusion in an infinite bare slab is  

2

2 2
1 (I)d S

dx L D
φ φ− = −  

The solution to the homogeneous form of this ODE is 

( ) sinh coshh
x xx A B
L L

φ    = +   
   

 

In turn, we follow the hint in the problem statement and take a constant C as the 
particular solution:  

( )p x Cφ =  

Substituting 𝜙𝜙𝑝𝑝 into (I) and solving for C, we get 
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2
10 SC
L D

− × = −  

2SLC
D

∴ =  

so that  

( ) ( ) ( )
2

sinh coshh p
x x SLx x x A B
L L D

φ φ φ    = + = + +   
   

 

Next, we use the symmetry boundary condition 𝜙𝜙(a + d) = 𝜙𝜙(−(a + d)), giving 

( ) ( )2 2

sinh cosh sinh cosh
2

a d a da d a d SL SLA B A B
L L D L D

 +   + + +   + + = − + − +      
       

 

( ) ( )sinh cosh sinh cosh
2

a d a da d a dA B A B
L L L

 +   + + +   ∴ + = − + −      
       

 

But sinh(−x) = −sinh(x) (i.e., the hyperbolic sine is an odd function) and cosh(−x) = 
cosh(x) (i.e., the hyperbolic cosine is an even function), hence 

( ) ( )sinh cosh sinh cosh
2

a d a da d a dA B A B
L L L

 +   + + +   + = − +      
       

 

2 sinh 0a dA
L
+ ∴ = 

 
 

0A∴ =  

Then, the solution 𝜙𝜙(x) further reduces to  

( )
2

cosh x SLx B
L D

φ  = + 
 

 

Next, we employ the boundary condition 𝜙𝜙(a + d) = 0,  

( )
2

cosh 0a d SLa d B
L D

φ + + = + = 
 

 

( )
2

cosh
SLB

D a d L
∴ = −

 +  
 

Lastly,  

( ) ( ) ( )2 cosh cosh
1 1

cosh cosha

x L x LSL Sx
a d a dD

L L

φ

   
   
   = − = −

+ +Σ      
            

 

◼ P5.14 
Part (a): The ODE we need to solve is  
 

2 2
1 d d Sr
r dr dr L D

φ φ  − = − 
 

 

Letting w = r𝜙𝜙, the equation simplifies to 

2

2 2
1d w Srw

dr L D
− = −  

The general solution to this equation is 

sinh coshh
r rw A B
L L

   = +   
   

 

or, equivalently,  
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( ) sinh coshh
A r B rr
r L r L

φ    = +   
   

 

where A and B are constants. To find the particular solution, we try w = Cr, where 
C is a constant, so that 

2

2 2 2
1 0d w Sr Cr Srw

dr L D L D
− = − → − = −  

2

p
SrLw

D
∴ =  

2

p
SL
D

φ∴ =  

The final solution has the form  

( )
2

sinh cosh (I)h p
A r B r SLr
r L r L D

φ φ φ    = + = + +   
   

 

As an initial boundary condition, lim
𝑟𝑟→0

𝜙𝜙 must be finite. In the right-hand side of (I), 

this limit is defined for the first and third terms but not for the one in the middle, 
because:  

 

Thus, for the boundary condition to hold, we must have B = 0. Then, (I) simplifies 
to  

( )
2

sinh (II)h p
A r SLr
r L D

φ φ φ  = + = + 
 

 

The second boundary condition is 𝜙𝜙(R + d) = 0. Substituting in (II) and solving for 
A,   

( )
2

sinh 0A R d SLr R d
R d L D

φ + = + = + = +  
 

( )
2

sinhA R d SLr R d
R d L D

φ + ∴ = + = = − +  
 

2

sinhA R d SL
R d L D

+ ∴ = − +  
 

2

sinh

SL R dA
R dD

L

+
∴ = −

+ 
 
 

 

Finally,  

( )
2 21 sinh

sinh
h p

SL R d r SLr
R dD r L D

L

φ φ φ +  = + = + +   
 
 

 

( ) ( )
( )

sinh
1

sinha

r LS R dr
r R d L

φ
 + ∴ = − Σ  +    

 

In the final passage, we’ve used the definition of diffusion area L2 = D/Σ𝑎𝑎.  
Part (b): The current density is given by equation (5.8), 

 

( ) ( )
( )

sinh
1

sinha

r Ld S R dJ r D D
dr r R d L

φ
 + = − ∇ = − × − Σ  +    
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The rightmost derivative can be obtained with Mathematica:  

 

Thus,  

( ) ( )
( )2

1 cosh sinh
sinha

S d R r rJ r D D r L
Lr L Ld R L

φ
+     = − ∇ = × −    Σ  +       

 

Part (c): The leakage rate is given by 
 

( )
( )

2
2

2

4 14 cosh sinh
sinha

R DS d R r rR J r L
Lr L Ld R L

π
π

+     × = −    Σ  +       
 

Part (d): The number of neutrons that escape per cm2/sec is given by the leakage 
rate determined in part (c):  
 

( )
( )

2

2

4 1 cosh sinh
sinha

R DS d R r rr L
Lr L Ld R L

π +     −    Σ  +       
 

The number of neutrons emitted per cm2/sec is simply S. We proceed to compute 
the probability that a neutron escapes:  

No. that escape per cm²/secProbability that a neutron escapes
No. emitted per cm²/sec by the source

=  

( )
( )

2

2

4 1 cosh sinh
sinhProbability that 

a neutron escapes
a

R DS d R r rr L
Lr L Ld R L

S

π +     −    Σ  +         ∴ = 
 

 

( )
( )

2

2

Probability that 4 1 cosh sinh
a neutron escapes sinha

R D d R r rr L
Lr L Ld R L

π +      ∴ = −      Σ  +         
 

◼ P5.15 
The total leakage of neutrons is given by 

( )2 2 2 2
1 1 2 2 3 3 (I)D D D Dφ φ φ φ− ∇ = − ∇ − ∇ − ∇∑  

We begin by computing ∇2𝜙𝜙1 

( )
2 15

2 15
1 2

3 103 10 sind r
dr r R

πφ
 ×  ∇ = ×   

  
 

( )
2

2 15
1 2 3 2

2 23 10 cos sin sinr r r
r R R r R rR R
π π π π πφ

      ∴∇ = × − + −      
      

 

Substituting r = R brings to 

( )2 15
1 2 3

2 23 10 cos sin
r R

R R
R R R R R

π π πφ
=

× ×   ∇ = × − +   ×    

2

2 sin R
R R R
π π × −  ×  

 
 
  

 

( )2 15
1 3

23 10
r R R

πφ
=

∴∇ = × ×  

15
2

1 3
6 10

r R R
πφ

=

×
∴∇ =  

Similarly for ∇𝜙𝜙2 and ∇𝜙𝜙3,  
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( )
15

2 15
2 3 3

2 4 102 10
r R R R

π πφ
=

×
∇ = × × =  

( )
15

2 15
3 3 3

2 2 101 10
r R R R

π πφ
=

×
∇ = × × =  

Substituting in (I), we obtain 

( )
15 15 15

2
3 3 3

6 10 4 10 2 102.2 1.7 1.05
50 50 50

D π π πφ
     × × ×

− ∇ = − × − × − ×     
     

∑  

( )2 115.55 10 neutronsD φ∴ − ∇ = − ×∑  

◼ P5.18 
Part (a): The neutron current density is given by 𝐽𝐽(x,y,z) = −∇𝜙𝜙, which can be 
written vectorially as 

( ) ( ) ( ) ( ), , , , , , , ,x y z D x y z D x y z D x y z
x y z
φ φ φ∂ ∂ ∂

= − − −
∂ ∂ ∂

J i j k  

( )
sin cos cos cos sin cos

, ,
cos cos sin

DA x y z DA x y z
a a a a a a a a

x y z
DA x y z

a a a a

π π π π π π π π

π π π π

               − −                               =  
       −               

i j
J

k

       

   

 

Part (b): Due to symmetry, the No. of neutrons leaking per second is the same for 
any of the six sides of the cubical reactor. To find this leakage rate Q, we integrate 
the neutron current density over the area of any of the faces; for example:  
 

( )
Surface

2

2

2

2
, , sin cos cos

2
a

a

a

a
DA y zQ J x y z dA dydz

a a a
π π π π

− −
     = =      
     ∫ ∫ ∫







   
 

2

2

2

2
cos cos

a

a

a

a
DA y zQ dydz

a a a
π π π

− −
   ∴ =    
   ∫ ∫







  
 

2
2

2
2

cos sin
y a

a

a
y a

DA z a yQ dz
a a a
π π π

π

=

−
=−

   ∴ = ×   
   ∫







  
 

2

2
2cos

a

a
DA z aQ dz

a a
π π

π−
 ∴ = × 
 ∫



 
 

2

2

2sin
z a

z a

DA a z aQ
a a
π π

π π

=

=−

 ∴ = × × 
 





 

 
 

2 2DA a aQ
a
π

π π
∴ = × ×

 


 

4 neutrons/secaADQ
π

∴ =
  

Part (c): To find the total No. of thermal neutrons leaking per second from the 
reactor, we multiply the leaking rate obtained in part (b) by six, which is the 
number of faces of a cubical reactor:  
 

Total
46 24 neutrons/secaAD aADQ
π π

= × =
   

◼ P5.19 
Part (a): For the situation at hand, a = 200/2 = 100 cm, S = 108 n/cm2-sec, L = 59 
cm (Table 5.2), 𝐷𝐷� = 0.84 cm (Table 5.2), and d = 2.13𝐷𝐷� = 2.13 × 0.84 = 1.79 cm 
(equation 5.22). Substituting into equation (5.36) yields 
 

( )
( )

sinh
2 cosh

a d x LSL
D a d L

φ
 + − =
 +  
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( )
( )

8 sinh 100 1.79 5910 59
2 0.84 cosh 100 1.79 59

x
φ

 + −×  ∴ = ×
×  +  

 

( ) ( )91.21 10 sinh 1.73 0.0170x xφ∴ = × −  

Integrating this relationship over the slab thickness, we have:  

 

That is,  
12 21.03 10 n/cm secTφ = × ⋅  

Dividing by v = 2200×102 cm/s, 

12
6 2

2
1.03 10 4.68 10 n/cm
2200 10

T
N v

φρ ×
= = = ×

×
 

Part (b): Taking Σ�𝑎𝑎 = 2.4×10-4 cm-1 from Table 5.2, we have  
 

( ) ( )4 12 8 22.4 10 1.03 10 2.47 10 n/cm sa Tφ
−Σ = × × × = × ⋅  

Part (c): To express current density as a function of position, first recall that  
 

( ) ( )d x
J x D

dx
φ

= −  

Replacing 𝜙𝜙(x) with the expression obtained in part (a) and carrying out the 
differentiation,  

( ) ( ) ( )90.84 1.21 10 sinh 1.73 0.0170
d x dJ x D x

dx dx
φ

 = − = − × × −   

( ) ( ) ( )90.84 0.0170 1.21 10 cosh 1.73 0.0170J x x∴ = − × − × × −  

( ) ( )71.73 10 cosh 1.73 0.0170J x x∴ = × −  

Part (d): The rate at which neutrons leak from the two surfaces of the slab is 2 × 
J(x = 100), that is,  

( ) ( )7 7 22 100 2 1.73 10 cosh 1.73 0.0170 100 3.46 10 n/cm -secJ x  = = × × − × = ×   

Part (e): Taking the rate of emission S = 108 neutrons/cm2-sec and the leakage 
rate calculated in part (d), the probability that a source neutron will not leak from 
the slab becomes  

( ) 7

8

2 3.46 10Pr 1 1 0.654
10

J a
S

×
= − = − =  

◼ P5.22 
The number density of ordinary water may be taken as  

( )23
22 3

H O2

1.0 6.02 10
3.342 10 cm

18.0153
N −

× ×
′ = = ×  

If the water takes up to one-third of the reactor volume, the number density may 
be corrected as 

( )22 22 3
H O H O2 2

1 1 3.342 10 1.114 10 cm
3 3

N N −′= = × × = ×  

The corresponding density of protium atoms is 

( )22 22 3
H O2

2 2 1.114 10 2.228 10 cmHN N −= = × × = ×  

Referring to Table II.2, we read 𝜎𝜎𝑎𝑎(1H) = 333 mb = 0.333 b. The macro absorption 
cross-section follows as 
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( ) ( ) ( )1 22 24 1H 2.228 10 0.333 10 0.00742 cmH aa N σ − −Σ = = × × × =

We proceed to compute the hydrogen absorption rate: 

( )
50 2

0
Absorption rate 4a T r r drφ π= Σ ×∫  

( ) ( )50 14 2

0

sin 0.0628
Absorption rate 0.00742 2.29 10 4

r
r dr

r
π

 
∴ = × × × 

 
∫

( ) ( )
5013

0
Absorption rate 2.135 10 sin 0.0628r r dr∴ = × × ×∫

The rightmost expression can be evaluated in Mathematica: 

That is, Absorption rate ≈ 1.701×1016 sec-1. Noting that 1 year = 86,400 × 365 sec, 
we have 

( )16 23 1Absorption rate 1.701 10 86,400 365 5.364 10 yr−= × × × = ×

Lastly, noting that the molar mass of deuterium ≈2 g/mol, the 2H production rate 
becomes  

( )2 23
23

2.0H production rate 5.364 10 1.782 g/yr
6.02 10

= × × =
×

The reactor outputs approximately 1.78 grams of 2H each year. 
◼ P5.30
The neutron flux for a bare slab is given by equation (5.36), with the proper
adaptations for thermal neutrons:

( )
( )

sinh
2 cosh

TT
T

T

a d x LSL
D a d L

φ
 + − =
 +  

Here, S = 108 cm2/sec, a = 8 cm, LT = √8.1 = 2.85 cm (Table 5.2), and d = 2.13𝐷𝐷� = 
2.13 × 0.16 = 0.341 cm (equation 5.22), giving  

( )
( ) ( )

8
7

sinh 8 0.341 2.8510 2.85 9.52 10 sinh 0.351 8.341
2 0.16 cosh 8 0.341 2.85T

x
xφ

 + −×    = × = × − ×  +  

The boxed equation can be plotted with the following MATLAB code: 

phi_T = @(x) 9.52e7 * sinh(0.351*(8.341 - abs(x))); 
fplot(phi_T, [0 8], 'LineWidth', 2, 'Color', 'red') 
ylim([0 9e8]) 
grid on 

0 1 2 3 4 5 6 7 8

x (cm)

0

1

2

3

4

5

6

7

8

9 108
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◼ P6.1 
The fuel utilization factor can be determined with equation (6.9), which we restate 
as 

1 (I)
1

aF aF

aSa aF aS

aF

f Σ Σ
= = =

ΣΣ Σ + Σ +
Σ

 

The ratio of macro cross-sections in the denominator is given by 

aF S aS S aSF

a F aF F S aF

N M
N M

σ ρ σ
σ ρ σ

Σ
= =

Σ
 

In view of the specified mixture composition, we have 

( )0.03 1 0.03 0.03F
F S

S F

ρ ρ ρ
ρ ρ

= → − =
+

 

0.97 32.3
0.03

S

F

ρ
ρ

∴ = =  

Further, MF = 239 (approximate molar mass of plutonium-239), MS = 23 (MM of 
sodium), 𝜎𝜎𝑎𝑎𝑎𝑎 = 2.11 b (micro absorption cross-section of 239Pu; Table 6.1), and 𝜎𝜎𝑎𝑎𝑎𝑎 
= 0.0008 b (MACS of Na; also from Table 6.1). It follows that  

239 0.000832.3 0.127
23 2.11

aF

a

Σ
= × × =

Σ
 

Substituting in (I) brings to 

1 0.887
1 0.127

f = =
+

 

Taking 𝜂𝜂 = 2.61 from the last column of Table 6.1, the infinite multiplication factor 
becomes  

2.61 0.887 2.32k fη∞ = = × =  

◼ P6.3 
Referring to Table 6.2, the flux equation for a finite cylinder reads  

( ) 0
3.63 2.405, cos

R F

P r zr z J
VE R H

πφ    =    Σ    
 

Multiplying through by ER Σ𝐹𝐹  gives the power density distribution:  

( ) ( ) 0
3.63 2.405, , cosR F

P r zP r z E r z J
V R H

πφ    = Σ =    
   

 

The power rating of the reactor is P = 20 MW = 2×107 W. The volume of the 
reactor is V = 𝜋𝜋R2H = 𝜋𝜋 × 502  × 100 = 785,400 cm3. Substituting above, along 
with r = 7 cm and z = −22.7 cm, we obtain 

( ) ( ) ( )7

0

3.63 2 10 22.72.405 77, 22.7 cos
785,400 50 100

P r z J
π× ×  × − × = = − = × ×   

   
 

( ) 37, 22.7 67.9 W/cmP r z∴ = = − =  

◼ P6.4 
Part (a): We have neither the macro cross-section Σ𝐹𝐹 nor constant A, but we can 
use the given information to solve for the product Σ𝐹𝐹A:  
 

( ) ( ) 11

35

sin
35 2.5 10F F

r

r R
R r A

r
π

φ
=

= Σ = = Σ = ×  

( ) 11

0.0184

sin 35 45
2.5 10

35F A
π

=

×
∴Σ = ×


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11
132.5 10 1.36 10

0.0184F A ×
∴Σ = = ×  

Noting that ER = 200 MeV = 3.2×10-11 J, we proceed to write  

( ) 2

0

1 sin 4
R

R F R FV

rP E r dV E A r dr
r R

πφ π = Σ = Σ × 
 ∫ ∫  

0
4 sin

R

R F
rP E A rdr

R
ππ  ∴ = Σ  
 ∫  

The rightmost integral can be determined with integration by parts; we can use 
Mathematica to speed things up:  

 

Therefore,  

( ) ( )
2

11 13 6454 3.2 10 1.36 10 3.53 10 W 3.53 MWP π
π

−= × × × × × = × =  

Part (b): To find the fission rate density at the center of the reactor, we compute 
the limit 

( ) ( )
0 0

sin
lim limF F Fr r

r R
r A A

r R
π πφ

→ →
Σ = Σ = Σ ×  

( ) ( )13 11 3

0
lim 1.36 10 9.50 10 fissions/cm -sec

45Fr
r πφ

→
∴ Σ = × × = ×  

◼ P6.6 
As a first step, we solve the power equation for the volume-integrated flux:  

R F V V
R F

PP E dV dV
E

φ φ= Σ → =
Σ∫ ∫  

The average flux follows from the mean value theorem for integrals:  

avg
1

V
dV

V
φ φ= ∫  

We were given the maximum-to-average flux ratio Ω = 1.5. To find the maximum 
power density, we write  

max max avg1.5 1.5R F
R F R F V

EP E E dV
V

φ φ φΣ
= Σ = Σ × = × ∫  

max
R FE

P
Σ

∴ = 1.5
R F

P
V E

×
Σ

 

3

max 2 3
1.5 1.5 825 MW 0.0353 ft 1000 kW1.58 55.8 kW/

5 10 ft 1 L 1 MW
PP

V π
×

∴ = = = × × =
× ×

  

◼ P6.9 
Part (a): For completeness, we will repeat the calculations for thermal utilization 
and infinite multiplication factor even though the results are unchanged relatively 
to Problem 6.1. We first compute the number densities for plutonium and sodium; 
the data used are the same as in Problem 6.1:  
 

( )23
22 2

6.02 10 0.97
2.54 10 n/cm

23FN
× ×

= = ×  

( )23
19 2

6.02 10 0.03
7.56 10 n/cm

239MN
× ×

= = ×  

Using the same cross-sections as in Problem 6.1, we proceed to determine the 
thermal utilization:  
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aF F aF

aF aM F aF M aM

Nf
N N

σ
σ σ

Σ
= =
Σ + Σ +

 

( ) ( )
( ) ( ) ( ) ( )

19 24

19 24 22 24

7.56 10 2.11 10
0.887

7.56 10 2.11 10 2.54 10 0.0008 10
f

−

− −

× × ×
∴ = =

× × × + × × ×
 

Taking 𝜂𝜂 = 2.61 from Table 6.1, 𝑘𝑘∞ becomes  

2.61 0.887 2.32k fη∞ = = × =  

With reference to Table 6.1, we read 𝜎𝜎tr,Na = 3.3 b and 𝜎𝜎tr,F = 6.8 b, so that  

( ) ( ) ( ) ( )19 24 22 24 1
tr 7.56 10 6.8 10 2.54 10 3.3 10 0.0843 cm− − −Σ = × × × + × × × =  

and  

tr

tr

1 1 3.95 cm
3 3 3 0.0843

D λ
= = = =

Σ ×
 

The diffusion area is 

( ) ( ) ( ) ( )
2 2

19 24 22 24

3.95 21,960 cm
7.56 10 2.11 10 2.54 10 0.0008 10a

DL
− −

= = =
Σ × × × + × × ×

 

The bare critical radius is  

2 21,960 405.2 cm
1 2.32 1c

LR
k

π π
∞

= = × =
− −

  

and d = 2.13D = 2.13 × 3.95 = 8.41 cm, so that  

405.2 8.41 396.8 cmc cR R d= − = − =  

Part (b): In general, the neutron flux is described by 

( ) ( )
2

sin
4 R f

r RPr
E R r

π
φ =

Σ


 

To find the maximum flux, we write  

( )
max 2 20

1

sin
lim

4 4R f R f
r

r RP P
E R R r R E R R

ππ πφ
π→

=

= × =
Σ Σ



  


 

( )
( ) ( ) ( )

6

max 11 19 24 2

500 10

4 3.2 10 7.56 10 1.4 10 396.8 405.2

π
φ

− −

× ×
∴ =

 × × × × × × × × 
 

15 2
max 1.82 10 n/cm secφ∴ = × ⋅  

Note that 𝜎𝜎𝑓𝑓 = 1.4 b = 1.4×10-24 cm2 was read from Table 6.1. 
Part (c): We first resort to equation (6.15) to compute the product of buckling 
and diffusion area:  

2 1 2.32 1 1.32B L k2
∞= − = − =  

so that  

2 2
1 1 0.431

1 1 1.32
P

B L
= = =

+ +
 

The probability that a fission neutron will escape from the reactor is then 

Pr 1 0.431 0.569= − =  
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◼ P6.11 
Part (a): Noting that a = b = c = 25 ft, the buckling is straightforwardly obtained as 
 

2 2 2 2
23 0.0474 ft

25
B

a b c
π π π π       = + + = =       
       

 

Part (b): The flux afforded by a rectangular parallelepiped, of which the cubical 
reactor is a special case, is 

( ), , cos cos cosx y zx y z A
a b c
π π πφ      =      
     

 

The maximum flux occurs in the centroid of the reactor, that is, at (x,y,z) = (0, 0, 
0), giving  

( )max 0,0,0 Aφ φ= =  

Referring to Table 6.2, we have 

( )
( ) ( ) ( )

6
12 2

max 11 33
3.87 20 103.87 2.19 10 n/cm -s

25 30.48 3.2 10 2.5 10R f

PA
VE

φ
− −

× ×
= = = = ×

Σ × × × × ×
 

Part (c): Noting that a = 25 × 30.48 = 762 cm, the average flux 𝜙𝜙avg follows from 
the mean value theorem:  
 

381 381 381

avg 381 381 381

1 cos cos cos
762 762 762

A x y zdV dx dy dz
V V

π π πφ φ
− − −

     = =      
     ∫ ∫ ∫ ∫  

( )

12
11 2

avg
3

3
1 2.19 10 485.1 5.65 10 n/cm -s

25 30.48
dV

V
φ φ ×

∴ = = × = ×
×∫  

◼ P6.17 
Part (a): The reactor buckling is  
 

2 4 2
2 2

2.47 10 cm
200

B
a
π π − −   = = = ×   
   

 

Part (b): Assuming operation takes place at room temperature, we can refer to 
Table 6.3 and read 𝜂𝜂𝑇𝑇 = 2.065. From Table 5.2, 𝐿𝐿𝑇𝑇2  = 3500 cm2. From Table 5.3, 𝜏𝜏𝑇𝑇 = 
368 cm2.  Inserting these data into equation (6.83), we obtain 
 

( ) ( ) ( )
( )

2 2 4

2 4

1 1 2.47 10 3500 368
2.01

1 2.065 1 2.47 10 368
TM TM

T TM

B L
Z

B
τ

η τ

−

−

+ + + × × +
= = =

− − − − × ×
 

 

From Table 3.4, 𝜎𝜎𝑎𝑎𝑎𝑎 = 680.8 b; from Table II.2, 𝜎𝜎𝑎𝑎𝑎𝑎 = 3.4 mb = 0.0034 b; from Table 
3.2, 𝑔𝑔𝑎𝑎𝑎𝑎(20oC) = 0.9780. The density of graphite is ≈1.6 g/cm3. We proceed to 
compute 𝜌𝜌𝐹𝐹:  

( )
( )

0

20º C
F aMF aFF

M M aM M aF aF

M EMZ Z
M M g

σσρ
ρ σ σ

= =  

4 3235 0.00341.60 2.01 3.22 10 g/cm
12 0.978 680.8Fρ

−×
∴ = × × = ×

× ×
 

Part (c): We first compute the thermal utilization f:  

2.01 0.668
1 2.01 1

Zf
Z

= = =
+ +

 

Then, we substitute into equation (6.82) to obtain  

( ) ( )2 2 21 1 0.668 3500 1160 cmT TML f L= − = − × =  

Part (d): The infinite multiplication factor is  
 

2.065 0.668 1.38Tk fη∞ = = × =  

Part (e): The thermal flux is given by the appropriate formula from Table 6.2:  
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( ) 12
th max cos 5 10 cos

200
x xx

a
π πφ φ    = = ×   
   

 

The current density follows as 

( ) ( ) 12
th 5 10 sin

200 200
d D xJ x D x
dx

π πφ  = − = × ×  
 

 

Part (f): Referring to Table 3.2, we have 𝑔𝑔𝑓𝑓(200C) = 0.9759. With reference to 
Table 3.4, we read 𝜎𝜎𝑓𝑓 = 582.2 b. The macro fission cross-section Σ𝑓𝑓 is 

( ) ( )020º CA
f fF fM F fF f

F

N g E
M

ρ σΣ = Σ + Σ = ×  

( ) ( )
23

4 24 4 16.02 103.22 10 0.9759 582.2 10 4.69 10 cm
235f

− − − −×
∴Σ = × × × × × = ×  

Per Table 6.2, the power and the maximum flux in an infinite slab reactor are 
related by  

max
1.57

R f

PA
aE

φ= =
Σ

 

Solving for power,  

max
max

1.57
1.57

R f

R f

aEP P
aE

φ
φ

Σ
= → =

Σ
 

( ) ( ) ( )12 11 4
2

5 10 200 3.2 10 4.69 10
9.56 W/cm

1.57
P

− −× × × × × ×
∴ = =  

◼ P6.20 
Part (a): The buckling of a spherical reactor is given by 

2 2
2 20.00395 cm

50
B

R
π π −   = = =   

   
 

Assuming operation takes place at room temperature, we can refer to Table 6.3 
and read 𝜂𝜂𝑇𝑇 = 2.065. From Table 5.2, 𝐿𝐿𝑇𝑇2  = 480 cm2. From Table 5.3,  𝜏𝜏𝑇𝑇 = 102 cm2. 
Substituting into equation (6.83), we get 

( ) ( )2 2

2

1 1 0.00395 480 102
4.98

1 2.065 1 0.00395 102
TM TM

T TM

B L
Z

B
τ

η τ

+ + + × +
= = =

− − − − ×
 

The density of beryllium may be taken as 1.85 g/cm3. The mass of moderator (Be) 
follows as 

3 3 54 4 50 1.85 9.69 10 g
3 3M Mm Rπ ρ π= = × × = ×  

Further, 𝜎𝜎𝑎𝑎𝑎𝑎 = 680.8 b (Table 3.4) and 𝜎𝜎𝑎𝑎𝑎𝑎 = 0.0092 b (Table II.3). Referring to 
Table 3.2, we have 𝑔𝑔𝑎𝑎(200C) = 0.9780. The critical mass of fuel follows as 

( ) ( ) ( )5

0

4.98 0.0092 235 9.69 10 1740 g
0.9780 680.8 9

aM F
F M

aF aF M

Mm Z m
g T E M

σ
σ

× ×
= = × × =

× ×
 

 

Part (b): Referring to Table 3.2, we have 𝑔𝑔𝑓𝑓𝑓𝑓(200C) = 0.9759. With reference to 
Table 3.4, we read 𝜎𝜎𝑓𝑓 = 582.2 b. We proceed to calculate macro cross-section Σ𝑓𝑓:  
 

( ) ( )02
F A

f fF fF
F

m N E g T
M V

π σΣ =  

( ) ( )
23

24 1

3

1740 6.02 10
582.2 10 0.9759 0.00429 cm

4 2235 50
3

f
π

π

− −
× ×

∴Σ = × × × × =
 × × 
 

 

Using the appropriate results from Table 6.2, we obtain the flux distribution 
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( ) 2
1 1sin sin

4 R f

r P rr A
r R R E r R

π πφ    = =   Σ   
 

( ) ( )2 11

50,000 1 sin
504 50 3.2 10 0.00429

rr
r

πφ
−

 ∴ =  × × × ×  
 

( ) 13 13.64 10 sin
50

rr
r

πφ  ∴ = ×  
 

 

Part (c): Before computing the leakage rate, we need the current density at the 
surface of the spherical reactor (note that we have taken diffusivity 𝐷𝐷 = 0.50 cm 
from Table 5.2):  
 

( ) ( ) ( )13 10.5 3.64 10 sin
50 r R

r R
d d rJ r R D r
dr dr r

πφ
=

=
  = = − = − × × ×     

 

( ) ( )13
2

10.5 3.64 10 cos sin
50 50 50

R RJ r R R
R

π ππ    ∴ = = − × × × −        
 

( ) ( )13
2

1 50 500.5 3.64 10 50 cos sin
50 50 50 50

J r R π ππ × ×   ∴ = = − × × × × × −    ×     
 

( ) 10 22.29 10 n/cm -secJ r R∴ = = ×  

Therefore,  

( ) ( )2 2 10 14Total leakage 4 4 50 2.29 10 7.19 10 n/secR J Rπ π= = × × × = ×  

Part (d): The consumption rate is  
 

( ) ( ) ( )3Consumption rate 1.05 1 1.05 1 0.169 50 10Pα −= + = × + × ×  

Consumption rate 0.0614 g/day∴ =  

◼ P6.25 
Part (a): Interpolating data from Table 3.2, we have 𝑔𝑔𝑓𝑓𝑓𝑓(2500C) = 0.9416. With 
reference to Table 3.4, we read 𝜎𝜎𝑎𝑎𝑎𝑎 = 680.8 b. Resorting to Table II.2, we have 𝜎𝜎𝑎𝑎𝑎𝑎 
= 3.4 mb = 0.0034 b. To establish the fuel utilization f, we first write 
 

( )5 0.9416 680.81.0 10 1.885 1.89
0.0034

F aF

M aM

NZ
N

σ
σ

− ×
= = × × = ≈  

so that  

1.89 0.654
1 1 1.89

Zf
Z

= = =
+ +

 

Taking 𝜂𝜂𝑇𝑇 = 2.065 from Table 6.3, the infinite multiplication factor 𝑘𝑘∞ becomes  

2.065 0.654 1.35Tk fη∞ = = × =  

Taking 𝐿𝐿𝑇𝑇2  = 3500 cm2 from Table 5.2 and 𝜏𝜏𝑇𝑇 = 368 cm2 from Table 5.3, we can 
determine the buckling B2:  

( ) ( )
2 4 2

2 2
1 1 1.35 1 2.22 10 cm

1 1 0.654 3500 368T T T

k kB
M f L τ

− −∞ ∞− − −
= = = = ×

− + − × +
 

But B2 = 3(𝜋𝜋/a)2 for a cubic reactor. Solving for dimension a,  

2 2
2 2

2
33B B

a a
π π = → = 
 

 

2 4
3 3 365 cm

2.22 10
a

B
π π −∴ = = × =

×
 

Part (b): To find the critical mass, we first estimate the number of grams 𝜌𝜌𝐹𝐹 of 
fuel in the mixture (note that we are using 𝜌𝜌𝑀𝑀 ≈ 1.6 g/cm3 as the density of 
graphite):  
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( )5 4 32351.6 1.0 10 3.13 10 g/cm
12

F F
F M

M M

N M
N M

ρ ρ − −= = × × × = ×  

The critical mass is then 

( )4 33.13 10 365 15,220 g 15.2 kgM Fm Vρ −= = × × = ≈  

Part (c): We must now determine the macro fission cross-section Σ𝑓𝑓. Taking 𝜎𝜎𝑓𝑓 = 
582.2 b from Table 3.4, we write 

( ) ( )0250º CA
f F f f

F

N g E
M

ρ σΣ = ×  

( ) ( )
23

4 24 4 16.02 103.13 10 0.9416 582.2 10 4.4 10 cm
235f

− − − −×
∴Σ = × × × × × = ×  

With reference to Table 6.2, the maximum flux is related to power as 

( ) ( )
9 2

max 3 11 4

3.87 3.87 1000 5.65 10 n/cm
365 3.2 10 4.4 10R f

PA
VE

φ
− −

×
= = = = ×

Σ × × × ×
 

◼ P6.28 
Part (a): With reference to Table 3.4, we read 𝜎𝜎𝑎𝑎𝑎𝑎 = 680.8 b. Resorting to Table 
II.2, we have 𝜎𝜎𝑎𝑎𝑎𝑎 = 3.4 mb = 0.0034 b. From Table 3.2, we read 𝑔𝑔𝑎𝑎𝑎𝑎(E0) = 0.9780. 
To compute the fuel utilization f, we first write  
 

( )6 0.9780 680.86.8 10 1.33
0.0034

aFF

M aM

NZ
N

σ
σ

− ×
= = × × =  

so that  

1.33 0.571
1 1.33 1

Zf
Z

= = =
+ +

 

Taking 𝜂𝜂𝑇𝑇 = 2.065 from Table 6.3,  

2.065 0.571 1.18Tk fη∞ = = × =  

Part (b): Taking 𝐿𝐿𝑇𝑇2  = 3500 cm2 from Table 5.2. we have 

( ) ( )2 2 2
, ,1 1 0.571 3500 1502 cmT c T ML f L= − = − × =  

The reactor buckling is then 

2 4 2
2

,

1 1.18 1 1.19 10 cm
1502T c

kB
L

− −∞ − −
= = = ×  

Next, we take 𝐿𝐿𝑇𝑇 = √3500 = 59 cm. Since the moderator and reflector are the 
same, we can avoid using transcendental equations and instead appeal to 
equation (6.100):  

( ) 1cot
r

B BR
L

= −  

( )
4

1 1cot 1.55
1.19 10 59r

BR
BL −

∴ = − = − = −
× ×

 

We can solve for x = BR using the following MATLAB code:  

>> f = @(x) cot(x)+1.55; 
x0 = 2 
fzero(f,x0) 

ans = 

    2.5686 

That is, BR ≈ 2.57. Solving for R,  

4

2.57 2.57 236 cm
1.19 10

R
B −

= = =
×
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Part (c): The amount 𝜌𝜌𝐹𝐹 of grams of fuel per unit volume of mixture is  
 

( )6 4 32351.6 6.8 10 2.13 10 g/cm
12

F F
F M

M M

N M
N M

ρ ρ − −= = × × × = ×  

Multiplying this by the reactor volume gives the critical mass mF:  

( )4 342.13 10 236 11,730 g 11.7 kg
3F Fm Vρ π−= = × × × = =  

Part (d): Noting that  

0
0

B R
R B
π π

= → =  

0 4
288 cm

1.19 10
R π

−
∴ = =

×
 

the reflector savings follow as 

0 288 236 52 cmR Rδ = − = − =  

Part (e): The first step here is to determine the macro fission cross-section Σ𝑓𝑓; 
taking gF(20oC) = 0.9759 from Table 3.2 and 𝜎𝜎𝑓𝑓 = 582.2 b from Table 3.4, we have 
 

( ) ( ) ( ) ( )
4 23

24
2.13 10 6.02 10

20º C 0.9759 582.2 10
235

F A
f F f

F

N g
M
ρ σ

−
−

× × ×
 Σ = = × × ×   

4 13.10 10 cmf
− −∴Σ = ×  

Inserting this and other data into equation (6.103) brings to 

( ) ( )
2

4 sin cosR f

PBA
E BR BR BRπ

=
Σ  −  

 

( )
( ) ( ) ( ) ( )

4

11 4 4 4 4

100,000 1.19 10

4 3.2 10 3.1 10 sin 1.19 10 236 1.19 10 236cos 1.19 10 236
A

π

−

− − − − −

× ×
∴ =

 × × × × × × × − × × × ×  

 

13 13.52 10 cmA −∴ = ×  

Then, the neutron flux is described by 

( ) ( ) ( )13sin sin
3.52 10c

Br Br
r A

r r
φ = = ×  

Part (f): The maximum flux is given by the usual limit  
 

( ) ( ) ( ) ( )13 13
max 0 0

sin
lim 3.52 10 lim 3.52 10
r r

Br
r B

r
φ φ

→ →

 
= = × = × × 

 
 

( )13 4 11 2
max 3.52 10 1.19 10 3.84 10 n/cm -secφ −∴ = × × × = ×  

The average flux, in turn, is 

( ) ( )
11 2

avg
3 11 4

1 100,000 1.83 10 n/cm -sec
4 236 3.2 10 3.1 10
3

cV
R f

PdV
V VE

φ φ
π − −

= = = = ×
Σ  × × × × × 

 

∫  

Finally, we compute the ratio 

max

avg

3.84 2.10
1.83

φ
φ

Ω = = =  

◼ P6.29 
Firstly, Z remains unchanged at 4.98, so the fuel utilization becomes  

4.98 0.833
1 4.98 1

Zf
Z

= = =
+ +
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The infinite multiplication factor is 

2.065 0.833 1.72Fk fη∞ = = × =  

Also,  

( ) ( )2 2 21 1 0.833 480 80.2 cmTC TML f L= − = − × =  

The updated buckling is  

2 2
2

1 1.72 1 0.00898 cm
80.2TC

kB
L

−∞ − −
= = =  

10.00898 0.0948 cmB −∴ = =  

Taking LTr = 21 cm for beryllium (Table 5.2), we appeal to equation (6.100):  

1 1cot cot
Tr Tr

B BR BR
L BL

= − → = −  

1cot 0.502
0.0948 21

BR∴ = − = −
×

 

We can solve for x = BR using the following MATLAB code:  

>> f = @(x) cot(x) + 0.502; 
x0 = 2; 
fzero(f,x0) 

ans = 
    2.0360 

That is, BR = 2.036. Solving for radius,  

2.0362.036BR R
B

= → =  

2.036 21.5 cm
0.0948

R∴ = =  

Using mF = 1740 g from Problem 6.20, we can determine the amount 𝜌𝜌𝐹𝐹 of fuel 
per unit volume of mixture:  

3 3

3

1740 3.32 10 g/cm4 50
3

Fρ π
−= = ×

×
 

The critical mass is 

( )334 21.5 3.32 10 138 g
3Fm π − = × × × = 

 
 

◼ P6.32 
Part (a): As usual, the first step is to compute the fuel utilization f; to do so, we 
need parameter Z. Taking 𝑔𝑔𝑎𝑎𝑎𝑎(20oC) = 1.0723 from the penultimate column of 
Table 3.2, 𝜎𝜎𝑎𝑎𝑎𝑎 = 1011.3 b from Table 3.4, and 𝜎𝜎𝑎𝑎𝑎𝑎 = 0.664 b from Table II.2, we 
may write 

( ) ( )38.5 10 18 1.0723 1011.320º C
1.045

1.0 239 0.664
F M aF aF

M F aM

M g
Z

M
ρ σ

ρ σ

−× × × ×
= = =

× ×
 

so that  

1.045 0.511
1 1 1.045

Zf
Z

= = =
+ +

 

Then, taking 𝐿𝐿𝑇𝑇2  = 8.1 cm2 for water (Table 5.2), we have 

( ) ( )2 2 21 1 0.511 8.1 3.96 cmT TML f L= − = − × =  

and, with 𝜏𝜏𝑇𝑇 ≈ 27 cm2 (Table 5.3), we compute the thermal migration area  

2 22 3.96 27 30.96 cmT T TM L τ= + = + =  

The reflector savings follow from equation (6.107):  
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( ) ( )27.2 0.10 40.0 7.2 0.1 30.96 40 6.30 cmTMδ = + − = + − =  

Part (b): Solving equation (6.105) for reflected core thickness,  
 

0
0 2 (I)

2 2
a a a aδ δ= − → = −


  

We can relate the unreflected core thickness 𝑎𝑎�0 to reactor buckling:  

2
0 0

2
2 2

1

T

k
B

a a M
π π ∞    −

= → =   
    

 

2 2
0

2 1

T

k
a M
π ∞ −∴ =


 

2 2
0

2 1T

T

f
a M

ηπ −
∴ =


 

2

0

2 30.96 87.5 cm
1 2.035 0.511 1

T

T

M
a

f
π

π
η

∴ = = =
− × −

  

where 𝜂𝜂𝑇𝑇 = 2.035 was taken from Table 6.3. Substituting in (I),  

87.5 2 6.30 74.9 cma = − × =  

◼ P7.4 
Part (a): Obviously, 0.001 = 0.1%. 
Part (b): With reference to Table 7.2, the delayed neutron fraction for 235U in 
thermal neutron fission is 𝛽𝛽 = 0.0065. The reactivity r in dollars is related to the 
decimal reactivity 𝜌𝜌 by r = 𝜌𝜌/𝛽𝛽, so that 

r rρ ρ β
β

= → =  

0.0065 $2 0.013 1.3%ρ∴ = × = =  

Part (c): The same reasoning for part (b) applies here as well:  
 

r rρ ρ β
β

= → =  

( )0.0065 $0.5 0.00325 0.325%ρ∴ = × − = − = −  

◼ P7.8 
The power Π rises exponentially with time and has a period T = 10 minutes; 
mathematically,  

( ) ( ) ( )6 3
0 exp 10 10 exp 10t t T t−Π = Π → =  

( )910 exp 10t∴ =  

9ln10
10
t

∴ =  

910 ln10 207 mint∴ = × =  

The power level will reach 1 MW within three hours and 27 minutes.  

◼ P7.12 
For a 235U-fueled reactor, 5 dollars of negative reactivity amount to 𝜌𝜌 = −5 × 
0.0065 = −0.0325. This added reactivity will cause the power to drop to a level 𝑃𝑃𝐽𝐽 
such that 

( ) ( )
0

1 0.0065 1 0.0325
1.0 0.172 MW

0.0065 0.0325JP P
β ρ
β ρ
− × +

= = × =
− +

 

Upon being lowered to 0.172 MW, the power decreases further according to the 
exponential law  
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( ) 6exp 0.172 10 exp
80 80J
t tP t P    = − = × −   

   
 

The time T0 required for the power to drop to 1 mW = 10‒3 W is determined as 

( ) 3 6 0
0 10 0.172 10 exp

80
T

P T −  = = × − 
 

 

3
0

6

10 exp
800.172 10
T−  ∴ = − ×  

 

3
0

6
10ln

0.172 10 80
T− 

∴ = − × 
 

3

0 6
1080 ln 1517 sec 25.3 min

0.172 10
T

− 
∴ = − × = = × 

 

The power will drop to 1 mW within less than half an hour.  
◼ P7.13 
After the reactor was scrammed, its power was lowered from P0 = 2.7 MW to P1, 
which is unknown. Fifteen minutes later, the reactor drops from P1 to P2 = 1 W. 
We can use this latter information to determine P1:  

( ) ( )2 1 1 2exp expP P t T P P t T= − → =  

( )1 1.0 exp 15 60 80 76,880 WP∴ = ×  ×  =   

Then, we can estimate the reactivity 𝜌𝜌 inserted when the reactor was scrammed: 

( ) ( )0 1
1 0

0 1

1 P P
P P

P P
ββ ρ

ρ
β ρ β

−−
= → =

− −
 

( )
( )
6

6

2.7 10 76,880 0.0065
0.287 $44.15

0.0065 2.7 10 76,880
ρ

× − ×
∴ = = − = −

× × −
 

◼ P7.19 
Part (a): The reactor buckling B0 is 
 

2 3 2
0

2 2 2 22.405 2.405 3.30 10 cm
50 100

B
R H

π π − −       = + = + = ×       
       

 

To compute the fuel utilization, we take 𝐿𝐿𝑇𝑇𝑇𝑇2  = 480 cm2 (Table 5.2), 𝛾𝛾𝑇𝑇𝑇𝑇 = 102 cm2 
(Table 5.3), and 𝜂𝜂𝑇𝑇 = 2.065 (Table 6.3), giving 

( ) ( ) ( )
( )

2 2 3
0

2 2 3
0

1 1 3.3 10 480 102
0.800

2.065 3.3 10 480
TM TH

T TM

B L
f

B L

γ

η

−

−

+ + + × × +
= = =

+ + × ×
 

The thermal migration area is 

( ) ( )2 2 2 21 1 0.8 480 102 198 cmT T T TM TM L f Lγ γ= + = − + = − × + =  

Taking 𝐷𝐷� = 0.50 cm (Table 5.2) and the total macro cross-section Σ𝑓𝑓 = Σ𝑎𝑎 + Σ𝑠𝑠 = 
0.001137 + 0.7589 = 0.760 cm-1 (Table II.3), we substitute into (7.56) to obtain 

0.9354 2.5 0.760 0.93542.131 2.131 0.5 1.25 cm
0.5098 2.5 0.760 0.5098

f

f

a
d D

a
Σ + × +

= = × × =
Σ + × +

 

Substituting all pertaining data into (7.57) gives 

( )
2

2 2 2
0

17.43
0.116 ln

2.4051
T

T

M R d
a aB M Rωρ

−
  = + +  +   
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( )3 2

1
7.43 198 50 1.250.116 ln 0.130 13.0%

2.405 2.5 2.51 3.30 10 198 50ωρ −

−
 ×  = + + = =  ×   + × × ×   

 

Part (b): The infinite multiplication factor is  
 

1 1 1.15
1 1 0.13

k
ρ∞ = = =

− −
 

Taking 𝐼𝐼𝑝𝑝 = 3.9×10-3 sec from Table 7.1 and 𝛽𝛽 = 0.0065 from Table 7.2, the reactor 
period becomes  

( ) ( )
33.9 10 0.0274 s

1 1 1 0.0065 1.15 1
pI

T
kβ

−

∞

×
= = =

− − − × −
 

or 27.4 msec.  
◼ P7.22 
The radius Rc of a control cell is calculated as 

( )2
2320 2

61 20cR
π

π
×

=
×

 

4.58 cmcR∴ =  

Also, a = 1.15/2 = 0.575 cm, y = a/LT = 0.575/1.38 = 0.417, and z = RC/LT = 
4.58/1.38 = 3.32. We proceed to compute extrapolation distance d, which is given 
by (7.56):  

0.9354 0.575 2.6 0.93542.131 2.131 0.21 0.543 cm
0.5098 0.575 2.6 0.5098

f

f

a
d D

a
Σ + × +

= = × × =
Σ + × +

 

Substituting into equation (6.116),  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
0 1 0 1

1 1 1 1

,
2

I y K z K y I zz yE y z
y I z K y K z I y

 +−
=  

− 
 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

2 2
0 1 0 1

1 1 1 1

0.417 3.32 0.417 3.323.32 0.417, 6.79
2 0.417 3.32 0.417 3.32 0.417

I K K I
E y z

I K K I
 +−

∴ = × = 
× − 

 

Inserting results into (7.60) gives the rod utilization:  

( )
( )

( )2 2 2 23.32 0.417 0.5431 , 6.79 11.9
2 2 0.575R

z y d
E y z

f a

− − ×
= + = + =

×
 

1 0.0840
11.9Rf∴ = =  

The total worth 𝜌𝜌∞ follows as 

0.0840 0.0917 9.17%
1 0.0840

ρ∞ = = =
−

 

◼ P7.25 
The worth of the rods is given by  

aB

aF aC
ωρ

Σ
=
Σ + Σ

 

Here, Σ𝑎𝑎𝑎𝑎 = 8.33×10-3 cm-1 and Σ𝑎𝑎𝑎𝑎 = 1.9×10-5 cm-1 have been established in 
Problem 6.3. To compute Σ𝑎𝑎𝑎𝑎, note first that the total mass of boron in 50 rods is 
50 × 500 = 25,000 g, and the corresponding No. of atoms is  

( )23 2725,000 6.02 10 1.39 10
10.811Bn = × × = ×  

Noting that the critical radius in Example 6.3 was determined to be 49.5 cm, the 
number density of B atoms becomes  
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27
21 3

3

1.39 10 2.74 10 cm
4 49.5
3

AN
π

−×
= = ×

×
 

Given the absorption cross-section 𝜎𝜎𝑎𝑎𝑎𝑎 = 0.276 b, we have  

( ) ( )21 24 4 12.74 10 0.276 10 7.56 10 cmaB
− − −Σ = × × × = ×  

Finally,  
4

3 5

7.56 10 0.0905 9.05%
8.33 10 1.9 10

aB

aF aC
ωρ

−

− −

Σ ×
= = ≈ =
Σ + Σ × + ×

 

◼ P7.27 
Part (a): The worth of a partially inserted rod can be estimated with equation 
(7.63):  

( ) ( ) 1 2sin
2

x xx H
H Hω ω

πρ ρ
π

  = −     
 

Noting that 𝜌𝜌𝜔𝜔(H) = 50 cents, the worth associated with x = 3H/4 is 

3 3 450
4
H H

Hωρ
  = × 
 

1 2 3sin
2

Hπ
π

×
−

4
H

45.5 cents
  

=  
   

 

 

Part (b): To find the rate at which reactivity is introduced at the point in question 
per cm motion of the rod, we differentiate (7.63) with respect to x:  

( ) ( ) 32 43 1 cos 0.5 cents/cm4

HHd H
dx H H

ω
ω

πρ
ρ

  ×
  = − =
  

  

 

◼ P7.28 
Part (a): Let H = 70 cm. In Example 7.7, we calculated 𝜌𝜌𝜔𝜔(H/2) = 0.065. With 
reference to Figure 7.11, we have 𝜌𝜌𝜔𝜔(H) = 2 × 𝜌𝜌𝜔𝜔(H/2) = 0.130. We are looking for 
the reactivity associated with H/2 + 10 = 45 cm. Appealing to equation (7.63), we 
write 

( ) ( ) 1 2sin
2

x xx H
H Hω ω

πρ ρ
π

  = −     
 

( ) ( ) 45 1 2 4545 sin 0.0997 9.97%
70 2 70

Hω ω
πρ ρ

π
 × ∴ = − = =    

 

Part (b): The period in question is given by (7.50),  

1 1 0.0848 0.851 sec
0.0997i i

i
T tβ

ρ
= = × =∑  

◼ P7.30 
Part (a): Taking 𝜂𝜂𝑇𝑇 = 2.065 from Table 6.3, we compute the steady-state fuel 
utilization f:  

T
T

k
k f fη

η
∞

∞ = → =  

1.0 0.484
2.065

f∴ = =  

Referring to Table II.3, we can read Σ𝑎𝑎 = 0.0220 cm-1 for water. It follows that  

10.0220 0.0195 cm
2aM
π −Σ = × =  

 

The corresponding macro absorption cross-section for fuel is  

1
aF

aF aM
aF aM

ff
f

Σ
= → Σ = Σ
Σ + Σ −
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10.484 0.0195 0.0183 cm
1 0.484aF

−∴Σ = × =
−

 

If we have 20% more 235U than is required to become critical, the fuel utilization 
becomes  

1.2 0.0183 0.530
1.2 0.0183 0.0195

aF

aF aM

f
Σ ×

= = =
Σ + Σ × +

 

 
The corresponding infinite multiplication factor is 

2.065 0.530 1.094Tk fη∞ = = × =  

and the worth 𝜌𝜌𝜔𝜔 is  
1 1.094 1 0.0859

1.094
k

kωρ
∞

∞

− −
= = =  

The concentration of boron required to sustain this system is determined as 

( ) ( )3 3

0.0859 95.2 ppm
1.92 1 10 1.92 1 0.530 10

C
f
ωρ

− −= = =
− × × − ×

 

Part (b): The molar mass of boric acid is 3 × 1 + 1 × 10.8 + 3 × 16 = 61.8 g/mol. It 
follows that the concentration of H3BO3 required to sustain the system in focus is 
 

( ) ( )
( )
3 3

3 3

H BO 61.8H BO 95.2 95.2 545 ppm 0.545 g/L
B 10.8

M
c

M
= × = × = =  

◼ P7.38 
Referring to Table 7.8, we read 𝜆𝜆𝑋𝑋 = 2.09×10-5 sec-1. With reference to Table II.3, 
we read 𝜎𝜎𝑎𝑎 = 24.5 b. From the fourth column of Table 3.2, we read 𝑔𝑔𝑎𝑎(800oC) = 
0.9887. Substituting into the effective half-life formula given on page 379, we 
obtain 
 

( )
( )

1 2 eff
5 14

1
2

0.693 0.693

2932.09 10 0.9887 24.5 10
2 1073

X aX T

T
λ σ φ π−

= =
+  × + × × × × 

 

 

( ) 16
1 2 eff

6.18 10 s 0.618 fsT −∴ = × =  

As discussed in the text, the half-life of 135Xe is quite short.  
◼ P7.39 
The micro cross-section of 135Xe is 2.65×106 b (page 377) and 𝜆𝜆𝑋𝑋 = 2.09×10-5 
(Table 7.6). It follows that  
 

( )
5

12
6 24

2.09 10 7.89 10
2.65 10 10

X
X

aX

λφ
φ

−

−

×
= = = ×

× ×
 

 

From Table 7.5, we have 𝛾𝛾𝐼𝐼 = 0.0639 and 𝛾𝛾𝑋𝑋 = 0.00237. For 235U, 𝜈𝜈 = 2.42 and p = 𝜀𝜀 
= 1.0. With reference to equation (7.98), we write 
 

12
0.0639 0.00237

2.42 1.0 1.0 7.89 10
I X T T

X T Tp
γ γ φ φρ
ν ε φ φ φ
+ +

= − = − ×
+ × × × +  

120.0274
7.89 10

T

T

φρ
φ

∴ = −
× +  

 

This equation can be plotted for 𝜙𝜙𝑇𝑇 ∈ (5×1012, 5×1014) with help of the following 
MATLAB code; for better visualization, I’ve chosen to truncate the lower bound at 
5×1013 instead of 5×1012:  

rho = @(phi) -0.0274*(phi/(7.89e12 + phi)); 
fplot(rho, [5e13, 5e14], 'LineWidth', 2, 'Color', 'red') 
grid on 
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◼ P7.40
This is basically an eyeballing exercise. Figure 7.14 has four curves describing
negative reactivity as a function of time after shutdown. For 𝜙𝜙𝑇𝑇 = 1013 n/cm2-sec,
the negative reactivity peaks at ≈0.02. For 𝜙𝜙𝑇𝑇 = 5×1013, the NR peaks at ≈0.06.
For 𝜙𝜙𝑇𝑇 = 1014, the NR peaks at ≈0.11. Finally, for 𝜙𝜙𝑇𝑇 = 5×1014 the NR peaks at
≈0.53. The four data points are plotted below; we see that the maximum xenon-
135 buildup increases steadily with thermal flux.

phiT = [1e13, 5e13, 1e14, 5e14]; 
rho = [0.02, 0.06, 0.11, 0.53]; 
plot(phiT, rho, 'LineWidth', 2, 'Marker', '.', 'MarkerSize', 20) 
xlim([0, 6e14]); 
ylim([0, 0.65]); 
grid on 

◼ P7.41
The reactivity equivalent of xenon is given by equation (7.103), which we repeat
here for convenience:

( ) ( )1 XI X T t tI T X I

X T I X

te e e
p

λ λλγ γ φ γ φ
ρ

ν ε φ φ φ φ
− −− + 

= − + − + − 
 

Here, we have 𝜈𝜈 = 2.42, p𝜀𝜀 = 1, 𝛾𝛾𝐼𝐼 + 𝛾𝛾𝑋𝑋 = 0.0663 (Table 7.5), 𝛾𝛾𝐼𝐼 = 0.0639 (Table 7.5), 
𝜙𝜙𝑇𝑇 = 5×1013 n/cm2-sec (given), 𝜙𝜙𝑋𝑋 = 0.77×1013 n/cm2-sec (equation (7.97)), 𝜙𝜙𝐼𝐼 = 
1.055×1013 n/cm2-sec (equation (7.104)), 𝜆𝜆𝑋𝑋 = 0.0753 hr-1 (Table 7.6), and 𝜆𝜆𝐼𝐼 = 
0.1035 hr-1 (Table 7.6), so that  

0.5 1 1.5 2 2.5 3 3.5 4 4.5
1014

-0.027

-0.0265

-0.026

-0.0255

-0.025

-0.0245

-0.024

0 1 2 3 4 5
T 10

14
0

0.1

0.2

0.3

0.4

0.5

0.6
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( )

( )
( ) ( ) ( )

13

13 13

13
0.0753 0.1035

13 13

0.07530.0663 5 10

0.77 10 5 101
0.0639 5 102.42 1.0

1.055 10 0.77 10
tt

te

e e
ρ

− −

− ×
 × ×
 

× + × 
= − ×  × ××  + × −

 × − × 

 

0.07550.10350.463 0.487 tte eρ −−∴ = −  

Setting 𝜌𝜌 = −0.05, we can solve for t with the following MATLAB code:  

>> rho = @(t) 0.463*exp(-0.1035*t) - 0.487*exp(-0.0755*t) + 0.05; 
t0 = 1; 
fzero(rho, t0) 

ans = 
    3.1977 

That is, t ≈ 3.20 h; this is the time to the onset of deadtime. The second nearest 
root of rho is t ≈ 19.59 h, which I found by inspecting the graph of rho and 
running fzero with an initial guess t0 = 20. The duration of deadtime is then  

19.59 3.20 16.4 ht∆ = − =  

◼ P8.1 
Referring to Table IV.1, we read saturated liquid enthalpies of 475.9 Btu/lb and 
487.7 lb/hr for temperatures of 490oF and 500oF, respectively. Interpolating 
between these two values yields ≈484.2 Btu/lb, as shown in the following 
MATLAB code:  
 

x = [490, 500]; 
v = [475.9, 487.7];  
interp1(x, v, 497) 

ans = 
  484.1600 
 

Proceeding similarly with a temperature of 519oF, we interpolate linearly between 
h(510) = 499.6 Btu/hr and h(520) = 511.7 Btu/hr to obtain h(519) ≈ 510.5 Btu/hr. 
Then, the power output of the reactor is determined as 
 

 

( ) ( ) ( )6 8
out in 9.4 10 510.5 484.2 2.47 10 Btu/hq w h h= − = × × − = ×   

72.4 MWq∴ =  
 

where we have used 1 Btu/hr = 2.93×10-7 MW.  
◼ P8.2 
With the appropriate unit conversions, we see that the sodium enters the core at 
752oF and leaves at 1040oF. With reference to Table IV.5, we see that the enthalpy 
of sodium at 752oF is 381.4 Btu/lb. In turn, we can interpolate between h(T = 932) 
= 436.0 Btu/lb and h(T = 1112) = 490.1 Btu/lb to obtain h(T = 1040) = 468.46 ≈ 
468.5 Btu/lb. The reactor operates at 750 MW or 2.56×109 Btu/hr. It remains to 
compute the rate 𝑤̇𝑤 at which the sodium must be pumped:  
 

( )out in
out in

qq w h h w
h h

= − → =
−


    

9
72.56 10 2.94 10 lb/hr

468.5 381.4
w ×

∴ = = ×
−

  

◼ P8.4 
With reference to Table IV.1, interpolating between hf(520oF) = 511.7 and 
hf(530oF) = 523.9 Btu/lb gives hin = 519.0 Btu/lb. Referring to Table IV.2, we 
interpolate between hf(1000 psia) = 542.4 and hf(1100 psia) = 557.4 Btu/lb to 
obtain hf = 546.2 Btu/lb. From the same table, we interpolate between hfg(1000 
psia) = 650.0 and hfg(1100 psia) = 631.0 Btu/lb to find hfg = 645.3 Btu/lb. Noting 
that q = 1593 MW = 5.436×109 Btu/hr, we can substitute the pertaining data into 
the formula derived in Problem 3 to yield  
 

( ) ( ) ( )9 6
in 6

5.436 10 48 10 546.2 519.0
6.40 10 lb/hr

645.3
f

g
fg

q w h h
w

h
× − × × −− −

= = = ×

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◼ P8.7 
Part (a): Interpolating data from Table IV.1, we find hin(496oF) = 483.0 Btu/lb. The 
reactor operates at 485 MWt or, equivalently, 1.64×109 Btu/hr, and the mass flow 
rate of water is 34×106 lb/hr. We can use this information to compute heat value 
hout:  

out in

9

6
1.64 10 483.0 531.2 Btu/lb
34 10

qh h
w

×
= + = + =

×



 

 

With reference to Table IV.1, we glean that T(h = 523.9) = 530oF and T(h = 536.4) 
= 540oF. Interpolating between these two values gives T(h = 531.2) = 535.8 ≈ 
536oF. This is the average temperature of water leaving the core. 
Part (b): The inner diameter of a fuel tube is a = 0.298 in.; the number of fuel 
tubes is n = 23,142; the height of the core is H = 91.9 in.: the power rating of the 
reactor is P = 485 MW = 485,000 kW; a conversion factor 1/(30.48 × 2) = 0.0164 
must be included for dimensional homogeneity. We proceed to compute the 
average power density 𝑞𝑞avg′′′ :  

avg 2 2
485,000 199.4 kW/liter
0.2980.0164 0.0164 91.9 23,142

4 4

qq
a Hnπ π

′′′ = = =
×

× × ×


 

 
Part (c): Assuming that Ed = 180 MeV and ER = 200 MeV,  
 

( ) 2.32 2.32 485 1800 0.0443 MW 151,200 Btu/hr
23,142 200

d

R

PEq
nE

× ×
= = = =

×
 

 

The maximum heat production rate follows as 
 

( )
( ) ( )

8 3
max 2 2

0 151,200 1.56 10 Btu/hr ft
2 2 75.4 12 0.298 2 1 12

q
q

Ha
′′ = = = × ⋅

× × ×
 

 
◼ P8.8 
Part (a): The total number of fuel rods is 764 × 49 = 37,436. Noting that 1 in.3 = 
5.79×10-4 ft3, the total volume of fuel in the BWR is found as 
 

3
4 3

3

20.487 ft37,436 144 5.79 10 581 ft
2 inFV π −

  = × × × × × =  
   

 

 

or 1.65×107 cm3. Multiplying this volume by the density of UO2 gives the mass of 
uranium dioxide in the core:  
 

( ) ( )7 8
2UO 10.3 1.65 10 1.70 10 g 374,800 lbFm Vρ= = × × = × =  

 

Assuming 3% enrichment, the average atomic mass of uranium may be taken as 
 

( )2

10.03 0.97UO 237.91
235 238

M
−

 = + = 
 

 

 

so that the proportion of U in a given amount of UO2 may be estimated as 
 

( )
( )2

U 237.91 0.881
UO 237.91 2 16

M
M

= =
+ ×

 

giving  

( ) ( )8 8U 0.881 1.70 10 1.5 10 g 331,000 lbm = × × = × =  

Part (b): The specific power is given by 
 

33293 10 kW 22.0 kW/kg U
150,000 kg Us

×
Π = =  

 

Part (c): The average power density is 
 

3

avg 7

3

3
3293 10 kW cm1000 200.0 kW/liter

liter1.65 10 cmF

Pq
V

×′′′ = = × =
×

 

Part (d): Noting that 175 in. = 14.6 ft and that there are 37,436 fuel rods, the 
average linear rod power becomes  
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3

r,avg
3293 10 6.02 kW/ft

37,436 14.6
q ×′ = =

×
 

 

Part (e): Appealing to equation (8.15) and noting that 1 kW ≈ 3412 Btu/hr,  
 

( ) ( )32.32 3293 10 1802.320 3412 626,700 Btu/hr
37,436 200

I
r

R

PEq
nE

× × ×
= = × =

×
 

 

Finally,  

( ) ( )
( )

7 3
2 2

0 626,7000 1.30 10 Btu/hr-ft
2 2 14.6 0.487 12

r
r

q
q

Ha
′′′ = = = ×

× ×
 

◼ P8.9 
Part (a): The reactor operates at 270,000 kW, or 9.21×108 Btu/hr. Also, recall that 
1 in.3 = 0.000579 ft3. The maximum heat production per unit volume is given by 
equation (8.12):  

( )
( )

8
8 3

max 2 2

1.16 9.21 10 1801.16 6.66 10 Btu/hr-ft
30.5 0.158 2 0.000579 13,104 200

d

R

PEq
Ha nE

× × ×
′′′ = = = ×

 × × × × 

 

 

Part (b): Taking 𝜌𝜌𝐹𝐹(235U) = 19.1 g/cm3 as the density of uranium-235 and noting 
that the fuel rods are enriched at 26 w/o, the number density of 235U atoms 
becomes  

( ) ( )23
235 22 3

0.26 19.1 6.02 10
U 1.27 10 cm

235
N −

× × ×
= = ×  

 

The fission micro cross-section of 235U is 582.2 b, and the corresponding macro CS 
is 

( ) ( )22 24 1
fr 1.27 10 582.2 10 7.39 cm− −Σ = × × × =  

 

Taking 𝑔𝑔𝑓𝑓 = 0.9309 by interpolating data from Table 3.2, we can correct the CS 
above for a temperature of 300oC (= 573 K):  
 

1
fr

1 22930.9309 7.39 4.36 cm
2 273 300
π − Σ = × × × = + 

 

 

Finally, the maximum neutron flux is  
3

8 7
3 3 13 3max

max
fr

Btu MeV/sec-cm6.66 10 6.46 10
hr-ft Btu/hr-ft 5.48 10 n/cm -sec

4.36 180d

q
E

φ
× × ×′′′

= = = ×
Σ × ×

 

◼ P8.10 

Let C denote the constant that multiplies cos(𝜋𝜋z/𝐻𝐻�) in the flux function we were 
given. It is immediately apparent that  
 

( )max 0z Cφ φ= = =  
 

The average flux, in turn, is determined as 
 

( )
22

22
avg 2

2

cos
(I)

HH

HH
H

H

zC dzz dz H
Hdz

π
φ

φ
−−

−

 
 
 = =

∫∫
∫


 

 

Writing down the integral in the numerator separately,  
 

2

2

2

2

2cos sin sin
2

H

H

H

H

z H z H Hdz
H H H
π π π

π π−
−

     = =     
     ∫

 

  
 

 

Substituting in (I),  
2

2

avg

cos
2 sin

2

H

H

zC dz
CH HH

H H H

π
πφ

π
−

 
    = =  

 

∫ 


 

 

Lastly, we have the ratio Ω𝑧𝑧:  
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max

avg
z

Cφ
φ

Ω = =
2 C ( )

2
sin 2sin

2

H H
H H H H

H H

π
π π

π

=
 
 
 



 



 

◼ P8.12 
Part (a): We first integrate the power distribution over the reactor volume: 
 

( )
2

0 2 0

2

, 2 1 cos
51 109

H

V

R

H

r zP P r z dV P rdrdzππ
−

    = = −    
     

∫ ∫ ∫  

 

Writing down the first integral separately,  
 

3 4
2

0 0 02 20 0

2

0

2 1 2
51 51 2 51

R R
R

r r rP rdr P r dr P rπ π π
      − = − = −       ×       

∫ ∫  

4
2

0 0 20

2

2 1
51 2 51

R r RP rdr P Rπ π
    ∴ − = −     ×     

∫  

4
2

0 0 020

2 38.82 1 38.8 3361
51 2 51

R rP rdr P Pπ π
    ∴ − = − =     ×     

∫  

 

Carrying out the second integration,  
 

2 2

0 0 22 0

2

2 1 cos 3361 cos
51 109 109

H H

H

R

H

r z zP rdrdz P dzπ ππ
−−

      − =      
       

∫ ∫ ∫  

2
2

0 0
2

2 0

2 1092 1 cos 3361 sin
51 109 109

H
H

H

R

H

r z zP rdrdz Pπ ππ
π −

−

      ∴ − = ×      
       

∫ ∫  

2

0 02 0

2 2182 1 cos 3361 sin
51 109 218

H R

H

r z HP rdrdz Pπ ππ
π−

      ∴ − = ×      
       

∫ ∫  

2

0 02 0

2 218 77.52 1 cos 3361 sin
51 109 218

H R

H

r zP rdrdz Pπ ππ
π−

  ×     ∴ − = ×      
       

∫ ∫  

2

0 02 0

2

2 1 cos 209,600
51 109

H R

H

r zP rdrdz Pππ
−

    ∴ − =    
     

∫ ∫  

 

Expressing P0 in terms of total power P, we obtain 

0 0209,600
209,600

PP P P= → =
 

6
0 4.77 10P P−∴ = ×  

 

Part (b): The maximum power Pmax occurs at the centroid of the cylindrical 
reactor, that is, at (r = 0, z = 0):  
 

( )max 00, 0P P r z P= = = =  
 

The average power Pavg follows from the mean value theorem for integrals:  
 

( )avg 2
1 ,

V
P P r z dV

R Hπ
= ∫  

 

In part (a), we’ve established that the rightmost integral above equals 209,600P0 ; 
therefore,  

0 0
max 02 2

209,600 209,600 0.572
38.8 77.5

P PP P
R Hπ π

×
= = =

× ×
 

 

The ratio that we’re looking for is  
 

max 0

avg 0

1.748
0.572

P P
P P

Ω = = =  

 
Part (c): The radial component of power is given by 
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( ) ,0

2

1
51rr
rP r P

  = −  
   

 

 

and clearly reaches a maximum such that Pr,max =  Pr,0. The average radial 
component of power is given by the ratio   
 

( )
( ) ,0 ,0

,02 2,avg
3361 3361

0.711
38.8

r r
rr

P r dA P P
P r P

RdA π π
= = = =

×
∫
∫

 

so that  

,0,max

,avg

rr
r

r

PP
P

Ω = =
,00.711 rP

1.406=  

 

To find the corresponding ratio Ω𝑧𝑧 for the axial direction, we can avoid more 
tedious integration by evoking the relationship Ω = Ω𝑟𝑟Ω𝑧𝑧:  
 

z z
r

r
Ω

Ω = Ω Ω → Ω =
Ω

 

1.748 1.243
1.406z∴Ω = =  

◼ P8.17 
Part (a): The reactor produces 400 – 8 = 392 MW of power. The radius and height 
are 38.8 cm and 77.5 cm, respectively. We proceed to compute the average power 
density 𝑃𝑃avg:  

( ) ( )avg 2
1 1, ,

V V
P P r z dV P r z dV

V R Hπ
= =∫ ∫  

3
avg 2

1 392 0.00107 MW/cm
38.8 77.5

P
π

∴ = × =
× ×

 

 

Noting that 1 MW = 1000 kW and 1 ℓ = 1000 cm3,  
 

3

avg 3
MW kW cm0.00107 1000 1000 1070 kW/
cm MW liter

P = × × =   

 

Noting that 1 liter = 0.0353 ft3, it follows that 
 

3
avg 3

kW 11070 30,300 kW/ft
0.0353 ft

P = × =



 

Part (b): The average heat flux can be established by multiplying 𝑃𝑃avg, which we 
determined in part (a), by the heat transfer length 𝜆𝜆:  
 

avg avg (I)q P λ′′ =  
 

To find 𝜆𝜆, we compare the cylinder volume with the product 1580 × 𝜆𝜆, giving 
 

( ) ( )5238.8 77.5 3.53 10 1580π λ−× × × × = ×  

0.00819 ftλ∴ =  

where we have used 1 cm3 ≈ 3.53×10-5 ft3 in the first passage. Substituting in (I),  
 

avg
230,300 0.00819 248 kW/ftq′′ = × =  

Part (c): To find the maximum heat flux, we first use our result from Part (a) of 
Problem 8.12 to estimate the maximum power Pmax:  
 

( )6 2 6 2
max 4.77 10 4.77 10 392 38.8 77.5 685 MWP P R Hπ π− −= × = × × × × × =  

 

Then, we divide 𝑃𝑃max by the heat transfer area while noting that 1 ft2 = 929 cm2:  
 

4 2 2
max

685 4.67 10 MW/cm 0.467 kW/cm
1580 929

q −′′ = = × =
×

 

◼ P8.19 
The fuel rods have radius a = 0.158/2 = 0.079 in. and the cladding thickness is b = 
0.005 in. The fuel rod length is H = 30.5 in = 2.54 ft. Referring to Table IV.6, we see 
that the thermal conductivity of uranium fuel at 1220oF can be obtained by 
interpolating between k(T = 1200oF) = 21.20 and k(T = 1400oF) = 22.00 to give 
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≈21.28 Btu/hr-ft-oF. The thermal resistance of the fuel then becomes (equation 
8.48) 

31 1 1.47 10 ºF-hr/Btu
4 4 2.54 21.28f

f

R
Hkπ π

−= = = ×
× ×

 

In turn, the thermal resistance of the cladding is given by equation (8.51); the 
thermal conductivity of steel, kc ≈ 13.5 Btu/hr-ft-oF, may be taken from Table IV.6:  

 

( ) ( ) 4ln 1 ln 1 0.005 0.079
2.85 10 ºF-hr/Btu

2 2 2.54 13.5c
c

b a
R

Hkπ π
−+ +

= = = ×
× ×

 

 

Using 𝑞𝑞max′′′  = 6.66×108 Btu/hr-ft3 as determined in Problem 8.9, we compute the 
power 

( )2 8
210.079 2.54 6.66 10 230,300 Btu/hr

12
q a Hqπ π  ′′′= = × × × × × = 

 
  

 

The temperature Ts at the fuel-cladding interface is  
 

f
f

m s
s m

T T
q T T qR

R
−

= → = −  

( )31220 230,300 1.47 10 882º FsT −∴ = − × × =  
 

In turn, the temperature Tc at the outer surface of the cladding is  
 

( )f
f

m s
s m c

c

T T
q T T q R R

R R
−

= → = − +
+

 

( ) ( )3 41220 230,300 1.47 10 2.85 10 816º FsT − − ∴ = − × × + × =   
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