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Tutorial MAT4 
Kalman Filters with 

MATLAB 

Lucas Monteiro Nogueira 
• Summary • 

Problem 1 A function used to implement the basic Kalman filter 

Problem 2 An univariate example of Kalman filter in MATLAB: The 
combustion chamber problem 

Problem 3 A multivariate example of Kalman filter in MATLAB: The 
falling paper wad problem 

 

A MATLAB Files 
The MATLAB codes for this tutorial can be found in one of Montogue’s 

Google Drive folders; access it here.  
A PROBLEMS 
 [ Problem 1 – A function used to implement the basic Kalman filter 

Following Barreto et al. (2021), we begin by developing a MATLAB 
function that implements the computations associated with both the prediction 
phase and the correction (or update) phase of a single iteration of the discrete 
Kalman filter. An iteration of the Kalman filter requires us to first obtain a 
preliminary estimate of the state vector. If the current state vector is x(t), the 
estimate of the state vector predicted by the model will be x(t + 1). Likewise, the 
predicted uncertainty of the estimate, P(t + 1), is obtained from P(t). Updated 
matrices are obtained with the following prediction equations: 

( ) ( ) ( ) ( ) ( )1t t t t t+ = +Mx F x G u  

( ) ( ) ( ) ( ) ( )1 Tt t t t t+ = +MP F P F Q  

As shown, in order to implement these equations we also need matrices 
F(t), G(t), and Q(t). If we are dealing with a time-varying model, we would need 
to ascertain the correct values of F(t) and G(t) for that given time. Although the 
formulation of the Kalman filter allows for this possibility, it is common to deal 
with time-invariant systems where the matrices F(t) and G(t) in the model are 
constant. Similarly, in principle we also need the external uncertainty matrix 
Q(t), but we often have access to a unique, constant characterization of this 
uncertainty.  

If this system actually receives “control inputs” at every iteration, the 
current values of those signals would need to be provided in the vector u(t). Of 
course, some systems receive no “control inputs,” while for others the values in 
vector u(t) might be constants.  

Once the prediction phase has been carried out and the values of xM(t + 
1) and PM(t + 1) have been determined, we may employ these estimates as prior 
information for the correction phase. We first perform a simple assignment of 
variables: 

( )1t= +B Mx x  

( )1t= +B MP P  

Here, the subindex B (“before”) is used to indicate that xB and PB are used 
not in a time progression from t to t + 1, but rather as a refinement that will 
convert these “prior” estimates (before) to enhanced “posterior” estimates 
(after) in a Bayesian framework. Equipped with xB and PB, we may write the 
following correction equations: 

( ) 1T T
G

−
= +B BK P H HP H R  

( )= + −A B G Bx x K z Hx  

https://drive.google.com/drive/folders/1fIV0ni-FyY3T0xFzxr-qgd0hktxhBDpH?usp=sharing
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G= −A B BP P K HP  

The first equation is used to compute the Kalman gain matrix KG, which is 
then used in the next two equations. The equations also call for the substitution 
of H, the matrix that relates measurements to state variables as z(t) = H(t)x(t). 
Importantly, if H(t) varies with time, we may need to provide the correct value 
of H(t) for that point in time, specifically. However, although the Kalman filter 
framework allows for such a case, the relationship between measurements and 
state variables is often constant, so the same matrix H can be used for all 
iterations. A similar reasoning applies to measurement uncertainty term R(t), 
which can be taken as a matrix of constant entries if the nature of the 
uncertainty affecting the measurements does not change with time. 

The flow of information in a single Kalman filter iteration is illustrated in 
the following diagram. The largest box represents the processor implementing 
the algorithm. The two smaller boxes represent the prediction and correction 
phases. The vertical lines represent the instantaneous data that may be required 
for the computation of that particular iteration of the algorithm. The lines for F, 
G, Q, H, and R are dashed and lead to internal boxes with these variable names 
in them, because, if the systems are time invariant and the statistics of the 
variables involved are constant, these parameters need not be read in every 
iteration (i.e., they will be fixed values that need only be initialized once). 

 
The vertical line labeled z is solid because a newly acquired set of 

measurements must be read in every iteration, as they are necessary to 
implement the correction phase of the algorithm. The line for u is dashed 
because, as we have explained before, some situations will not have a “control 
input” applied to the system.  

The vertical line at the bottom of the biggest box represents the fact 
that, in each iteration, the process will generate a final, improved estimate of 
the state of the system, xA; an estimate of PA is also available at the end of every 
iteration.  

The horizontal lines coming into the process from the left represent the 
previous estimates of x and P obtained in the previous iteration of the algorithm 
(or provided as initial values). The horizontal lines leaving the biggest rectangle 
refer to the posterior values of xA and PA, which will be passed on to the next 
iteration of the filter.  

The MATLAB code onedkf.m implements the first iteration of the discrete 
Kalman filter.  

% Function onedkf - Implements a single iteration of the discrete-time 
% Kalman filter algorithm. 
% Syntax: [PA, xA, KG] = onedkf(F, G, Q, H, R, P, x, u, z); 
% Uses (receives) matrices F, G for the model equations 
% Uses (receives) the process noise covariance matrix, Q 
% Uses (receives) matrix H for the measurement equation 
% Uses (receives) the measurement noise cov. matrix, R 
% The following are expected to change in every iteration: 
% Receives the state vector, x, and is cov. matrix, P, from the 
previous iteration of the algorithm 
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% Receives the current vector of inputs, u.  
% Receives the current vector of measurements, z. 
% Performs the Prediction and Correction phases. 
% Returns the POSTERIOR estimation of state vector, xA 
% and its covariance matrix, PA. 
% It also returns the calculated KG matrix.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function [PA, xA, KG] = onedkf(F,G,Q,H,R,P,x,u,z) 
%% PREDICTION PHASE, using the model 
%The model predicts the new x:  
FT = transpose(F); 
xM = F*x + G*u; 
 
%The model predicts the new P: 
PM = F*P*FT + Q; 
 
%Change of variables to clearly separate the 2 phases: 
xB = xM;  
PB = PM; 
 
%%CORRECTION (UPDATE) PHASE 
%Finding POSTERIOR (A = After) parameters, from PRIOR (B = Before), 
%through Bayesian estimation 
HT = transpose(H); 
%First calculate the Kalman gain (KG) for this iteration 
KG = PB*HT*(inv(H*PB*HT+R)); 
 
%Calculate POSTERIOR ESTIMATE of the state vector 
xA = xB + KG*(z-H*xB); 
%Calculate POSTERIOR ESTIMATE of state vector's covar. matrix 
PA = PB - KG*H*PB; 
 
end 

[ Problem 2 – An univariate example of Kalman filter in MATLAB: 
The combustion chamber problem 

The first problem we tackle is straightforward. A rocket is travelling in 
outer space towards another planet. For diagnostic purposes, the spacefarers in 
the rocket want to keep track of the burned gas temperature within the 
centerline of the combustion chamber; however, such a temperature cannot be 
measured directly in midflight. Still, the temperature in the outer, external 
region of the chamber is measured in successive intervals and can be processed 
to yield reliable estimates of the temperature in the centerline; this is where the 
Kalman filter comes in. 

 

 
In order to continue to provide posterior estimates of state variable 

vector xA and the covariance matrix PA, function onedkf.m must be executed 
recursively. The resulting xA and PA from one iteration are fed forward as the x(t) 
and P(t) for the prediction phase of the next iteration. For the execution of the 
very first iteration there is no previous xA and PA available, therefore we must 
supply initial values with which to begin the filtering process. 
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To implement onedkf recursively, we call this function within a piece of 
code (in this case, also a function) that encloses a timing loop. We call this piece 
of code rocketloop. In every iteration of the loop, the Kalman filter algorithm 
must draw new samples from the measurements (and other variables, such as 
control inputs, and parameters, if they are not constant). Then, we may embed 
the loop function within a top-level simulation function in which we will create, 
in advance, all the time series that will be required, in their entirety, and any 
other settings associated with the filtering process. We call this top-level 
function rocketsim. The relationship between rocketloop and rocketsim is 
illustrated below. 

 

The top-level function rocketsim should enable us to: 

1. Define the parameters of the model we want to use, including the levels 
of uncertainty associated with the external noise (Q) and the 
measurements (R).  

2. Use those parameters to create all the time series that will be required 
for the complete simulation, in advance. This may include the creation of 
a time series of “true values” for the state variables, if appropriate. 

3. Define the initial values of x(t) and P(t) that are needed for the first 
execution of onedkf.  

4. Assign the maximum number of iterations to be simulated, iter, so that 
the Kalman filter algorithm will be run from t = 1 to t = iter. 

5. Include plotting commands with which to follow the evolution of 
important variables and their associated uncertainties.   

We expect no dynamic evolution of this system with time, therefore the 
model equation is simply 

( ) ( )1t t+ =x x  

Function rocketsim will receive the following inputs: 

• xTru: A scalar value used to signify the mean of the “true” values of the 
centerline temperature for the simulation. 

• x0, P0: Initial values that will be used in the first execution of onedkf. 
Because there is only one state variable (temperature) in this scenario, P0 
will be a scalar representing the initial model uncertainty for that 
variable, expressed as its variance. 

• Q,R: Covariance matrices (in this case, scalar variances) which represent 
the uncertainty of the model attributed to external inputs (noise) and 
the uncertainty in the temperature measurements.  

• iter: The number of total iterations we want to simulate (from t = 1 to t 
= iter).  

Since this is a simulation, it will be useful to have a time series that we may 
consider to be the “true” temperature xTru throughout the analysis time. 
Equipped with this time series, we may perceive how close or how far our 
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Kalman filter output is relatively to the “true” state variable (namely, the 
temperature).  

While there may be no external control inputs (i.e., u(t)) applied to the 
system at hand, we must still be able to account for external noise associated 
with phenomena that we cannot control but are nonetheless present. For this 
purpose, we incorporate a nonzero value of Q and use it in the Kalman filter 
computations. Since we are dealing with a univariate problem, Q will be a 1×1 
matrix whose sole entry is the variance of the external noise. The “true” 
temperature we aim for is a certain mean value added to a time series of 
Gaussian random values with zero mean and a standard deviation that is the 
square root of the only entry in Q.  

To perform the first iteration of the Kalman filter, we will also require initial 
values for x(t) and its covariance matrix, P(t). For the former, we assume that 
theoretical calculations for the combustion chamber suggested an unburned gas 
temperature of 3950 K in the centerline. We will set up our code so that the 
actual centerline temperature is found to be 4000 K. In turn, P(0) is just a scalar 
variance representing the level of uncertainty we assign to the initial centerline 
temperature estimate; we arbitrarily take P(0) = 0.6.  

% rocketsim - Top-level function for simulation of univariate Kalman 
filter 
% SYNTAX: [XAVECT, PAVECT, KGVECT] = rocketsim(xTru, x0, P0, Q, R, 
iter) 
 
function [XAVECT, PAVECT, KGVECT] = rocketsim(xTru, x0, P0, Q, R, 
iter) 
 
%Resets the random number generator to ver. 5 normal 
%and sets seed to 12345. 
rng(12345, 'V5normal');  
 
%Creation of vector of true temperature values and implementation of  
%noise 
%Note that Q = variance of noise 
%Creation of vector of TRUE temperature values:  
xTru_noNoise = ones(iter,1)*xTru; 
extNoise = randn(iter,1)*(sqrt(Q)); 
xTrue = xTru_noNoise + extNoise; 
 
%Creation of vector of MEASURED values, taking into account that the  
%measuring system ADDS noise to each TRUE VALUE measured:  
msdError = randn(iter,1)*(sqrt(R)); 
zVect = xTrue + msdError; 
 
[XAVECT, PAVECT, KGVECT] = rocketloop(xTru, zVect, x0, P0, Q, R, 
iter); 
colorVect = [0.5, 0.5, 0.5]; 
 
figure(1) 
plot(xTrue, 'Color', colorVect, 'LineWidth', 1.8); 
hold on 
plot(XAVECT, 'r', 'LineWidth', 1.8); 
plot(zVect, 'k-.', 'LineWidth', 1.8); 
hold off 
title('xTrue, xA and z'); 
xlabel('Kalman Filter Iterations'); 
legend('xTrue', 'xA', 'zVec', 'Location', 'southeast'); 
grid on 
 
figure(2) 
plot(PAVECT, 'k', 'LineWidth', 1.8); 
title('PA'); 
grid 
xlabel('Kalman Filter Iterations'); 
figure(3) 
plot(KGVECT, 'k', 'LineWidth', 1.8); 
title('KG Values') 
grid 
xlabel('Kalman Filter Iterations'); 
 
end 

Next, function rocketloop receives the initial values of x0 and P0 and 
loads them into the variables x and P, which in turn will be passed to onedkf. It 
also passes along parameters Q and R, which will remain constant. It receives the 
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time series xTru and zVect. The vector zVect will be accessed by onekdf in every 
iteration. In addition, rocketloop receives the value of iter to establish the 
number of iterations.   

Function rocketloop establishes the parameters of the scenario (model 
and measurement equations), assigning values to F and H, which remain 
constant throughout the iterations. Note that G is assigned a value of 0 because 
there are no intentional control inputs. The function also stores the state 
variable estimate in a variable named xA, its corresponding uncertainty 
(variance) in variable PA, and the Kalman gain in a variable KG. By continuously 
updating these three variables, we can ultimately plot the evolution of the 
filtering process over the course of, say, 300 iterations. 

% rocketloop - Timing loop for simulation of univariate Kalman 
filter for the estimation of an inaccessible temperature in an 
exhaust plume 
% SYNTAX: [XAVECT, PAVECT, KGVECT] = rocketloop(xTru, zVect, x0, P0, 
Q, R, iter) 
function [XAVECT, PAVECT, KGVECT] = rocketloop(xTru, zVect, x0, P0, 
Q, R, iter) 
 
F = 1; 
G = 0; 
H = 1; 
 
x = x0; 
P = P0; 
 
%Input time series 
u = zeros(iter, 1); 
z = zVect; 
 
%Set up vectors to store outputs (all iterations) 
PAVECT = zeros(iter,1); 
XAVECT = zeros(iter,1); 
KGVECT = zeros(iter,1); 
 
for t = 1:iter %START OF TIMING LOOP 
    [PA, xA, KG] = onedkf0(F,G,Q,H,R,P,x,u(t),z(t)); 
    PAVECT(t) = PA; 
    XAVECT(t) = xA; 
    KGVECT(t) = KG; 
 
    %Pass results as inputs to the next iteration: 
    P = PA; 
    x = xA; 
end % END OF TIMING LOOP  
end 
 
%Setting up the Kalman filter simulation 
clc 
clear all 
close all 
 
xTru = 4000; %Assuming that the actual centerline temperature is 
4000 K 
x0 = 3950; %Hydrodynamics suggests that centerline temp. equals 3950 
K 
P0 = 0.6; %Assigning an initial variance of 0.6 for the results from 
the model 
Q = 0.005; %Assigning a variance of 0.005 to the external noise 
R = 5; %Assigning a variance of 5 to the temp. measurements 
iter = 300; %No. of iterations 
 
%Simulating 
[XAVECT, PAVECT, KGVECT] = rocketsim(xTru,x0,P0,Q,R,iter);  

The main plot we require is shown below. The gray trace is the “true” 
temperature in the combustion chamber; the dot-dashed trace is the time series 
of measurements z(t); lastly, the red trace is the posterior estimate of the state 
variable as computed by the filter algorithm. A few things are immediately 
apparent. Firstly, note that the measurements are quite noisy, which encourages 
the modeler to resort to a state estimation algorithm such as the Kalman filter. 
The filtered state variable starts off at several kelvin away from the true values 
but, by iteration 150 or so, closely matches the actual data – much better, in 
fact, than the highly noisy measurements represented by the dot-dashed line.  
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A zoomed-in capture of the plot centered at iteration No. 200 is shown 
below.   

 

The foregoing code also outputs the evolution of the variance PA, which 
in the present case is just a scalar. As can be seen, the variance decreases rapidly 
within the first 50 iterations, and eventually stabilizes at ≈0.156.  

 

Finally, the foregoing code also yields the evolution of the Kalman gain 
(again, a scalar in this case), which decreases rapidly before stabilizing at 
≈0.0311. 
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Following Barreto et al. (2021), we may ask what would happen if we 

were to void the correction phase of the Kalman filter process and ignored the 
information provided by the measurements. To see the effect of such a 
modification, refer to the final two equations of the filter scheme: 

( )= + −A B G Bx x K z H x  

= +A B G BP P K H P  

It is easy to see that, if we restate the contents of the matrix KG with all 
zeros, the second terms in the right-hand side of the two equations vanish and 
we end up with the elementary relationships xA = xB and PA = PB; this implies that 
the Kalman filter is forced to rely only on the model, ignoring information from 
the measurements altogether. To analyze the effect of such a simplification, we 
may add the following line of code to the onedkf function, just below the line KG 
= PB*HT*(inv(H*PB*T+R)):  

KG = zeros(size(KG)); 

and save the modified function as onedkf0.m, which is available in our Google 
Drive folder. Then, we head to rocketloop.m and replace the call to onedkf in the 
for loop with a call for onedkf0. Run the pertaining code and the program will 
output two interesting graphs, as shown in continuation: 
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The first graph shows that, in the absence of interactions between 
measured data and the algorithm, the model invariably outputs the same 
temperature throughout the entire simulation. The second graph, in turn, shows 
that the uncertainty PA in this anomalous scenario actually increases steadily 
with each iteration, in direct contrast to what we’d expect in a “normal” Kalman 
filter operation.   

[ Problem 3 – A multivariate example of Kalman filter in MATLAB: 
The falling paper wad problem 

Following Barreto et al. (2021), the second 
practical example of Kalman filtering we consider 
is the falling paper wad. Simply put, in this 
problem we wish to describe the height y above 
ground level of a paper wad released from the top 
of a building. The state variables in this problem 
are the height 𝑦𝑦𝑘𝑘 and the falling velocity 𝑦𝑦𝑘𝑘′  at 
iteration k. These are described by the equations 

( ) ( )2

1 1

1

2k k k

k k

T g
y y T y

y y g T

− −

−

 ∆
′= + ∆ −


 ′ ′= − ∆

 

where Δ𝑇𝑇 is the time interval encompassed by an iteration and 𝑔𝑔 ≈ 9.81 m/s2. 
The Kalman-filter equation that describes the system is 

( ) ( ) ( ) ( ) ( )1t t t t t+ = +x F x G u  

where  

( ) k

k

y
t

y
 

=  ′ 
x  

1
0 1

T∆ 
=  
 

F  

( )21
2

T

T

 − ∆ =
 

−∆ 

G  

Substituting u(t) = g, we can restate the two equations as 

( ) ( ) ( ) ( ) ( )1t t t t t+ = +x F x G u  

( )2
1

1

11
2

0 1
k k

kk

y y TT
yy

T
g+

+

  − ∆∆       = +        ′′      −∆  

 

Crucially, the fall of the object may not be driven exclusively by the 
acceleration of gravity. In the case of, say, a big paper wad, downward motion is 
resisted by air flow around and within the recesses of the wad, which has a 
highly irregular shape. This can be accounted for by combining the freefall 
gravity g with a mean opposing acceleration component gback, and then 
incorporating it into the problem as an “actual” acceleration gactual,k = g – gback. 
This modified acceleration is associated with a standard deviation 𝜎𝜎actual,𝑘𝑘, which 
we denote in code as gsd.  

The initial values of the state variables are the initial speed, which we 
assume to be 0, and the initial height from which we drop the paper wad, which 
we shall take as 100 m. In the Kalman filter framework, these values are 
associated with some uncertainty, which we incorporate in an initial covariance 
matrix P0, as shown in the upcoming code.  

Further, we assume that the falling trajectory of the paper wad is tracked 
by a position-measuring instrument, which Barreto et al. (2021) refer to as a 
‘laser rangefinder’. The rangefinder is quite noisy, offering only mediocre-
accuracy height data with which we shall feed the Kalman filter algorithm in the 
hopes of tracking the paper wad with greater precision. The measurements are 
assigned to a variable z(t), and the relationship between the (scalar) 
measurement z(t) and the state variable vector reads 
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( ) ( ) [ ]1 0 (I)
y

z t t
y
 

= =  ′ 
Hx  

The uncertainty in the measurement, usually represented by the 
covariance matrix R, will be just a scalar expressed as the variance of the height 
measurements afforded by the rangefinder. In a real situation, we’d expect that 
this parameter be supplied by the manufacturer of the instrument.  

2
zσ =  R  

Analogously to the previous example, we will model the present system 
using three codes: onedkf, papersim, and paperloop. Function paperloop receives 
the matrices Q and R, which are fixed, as well as the sampling interval ΔT and 
the total number of iterations iter. As usual, the loop must be fed initial values 
for the state vector, x0, and for the state covariance matrix, P0. 

Once all the arguments are received, paperloop creates F and G (which 
will not change) and computes matrix H. Within the timing loop, paperloop calls 
onekdf for each iteration of the Kalman filter, writing each pair of iteration 
results xA and PA on the variables x and P, which will be used in the next call to 
onekdf. Further, before the end of the timing loop, there are commands that 
save not only xA to return all the state vectors calculated to papersim, but also 
the two values of the Kalman gain matrix, KG, and the value in the first row and 
first column of the matrix PA calculated in each iteration. That position in PA is 
occupied by the variance associated with the first state variable, which in the 
case at hand is the estimated height of the paper wad – namely, the main state 
variable of interest.  

Function papersim receives the parameters that a user may wish to 
change from one simulation to another, such as the assumed parameters for the 
“diminished downward acceleration,” whose mean value is set by subtracting 
gback from 9.81 m/s2 and its standard deviation, stored in the MATLAB variable 
gsd. Also included in papersim are the matrix R, the initial state-variable vector 
x0, the initial covariance matrix P0, the sampling interval ΔT, the “true initial 
height of the fall” y0tr, and the total number of iterations iter.  

Function papersim creates the external error covariance, Q(t), which will 
be fixed, as the covariance matrix for u(t), the 2×1 vector that appears as the 
rightmost term in the filter equation (I) above. To express all values of Q as 
functions of the variance of gactual, 𝜎𝜎actual2 , we will employ the following property 
of the covariance function:  

( ) ( )1 2 1 2, ,COV ax bx ab COV x x= ×  

Thus, for vector u, which is expressed as 

( )

2

actual,k

actual,k

2k

T g

T g

  ∆
−  =   
 − ∆ 

u  

the corresponding covariance matrix Q becomes 

( )

2 2
actual,g actual,g

2 2
actual,g actual,g

4 3

3
2

4 2

2

T T

T T

σ σ

σ σ

    ∆ ∆
    
    =   ∆ ∆    

Q  

Thus, papersim can create a suitable matrix Q, on the basis of the 
sampling interval ΔT and the variance of the fluctuations 𝜎𝜎actual,g2 .  

Upon execution, papersim first creates all the necessary time series that 
will be accessed by onedkf and then, after the invocation of paperloop, performs 
some basic visualization of the results. 

The computation of a vector containing iter samples of the “true height” 
of the falling paper wad is achieved by iterating over the basic freefall model, 
where the values of the “diminished downward acceleration” are fetched from 
the previously created sequence of actual values 𝑔𝑔actual,𝑘𝑘. This sequence is 
generated by adding noise samples from a normal distribution with 0 mean and 
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standard deviation gsdva to the mean value, which is g – gback. The values used as 
the u vector will be created from the values of gactual,k using the expressions 
contained in the 2×1 column vector provided above. Then, assigning as the true 
initial height y0tr and as initial speed 0, the “true” values of height and speed are 
calculated for iter iterations. All the “true values” of height are collectively called 
ytr.  

The values in the vector of heights that the rangefinder would report, z, 
are calculated by adding to the “true height” vector samples from a normal 

distribution with 0 mean and standard deviation �𝜎𝜎𝑧𝑧2. 
After paperloop is called, the matrices returned, namely XAVECT, 

PAVECT, and KGVECT, can be used for some basic display of the results, similarly 
to what we did in the previous problem. In a first graph, papersim displays the 
“true heights” available in ytr, superimposed with the time series of heights 
estimated (as the first state variable) by the Kalman filter. In a second graph, 
papersim plots the evolution of the element in the first row and first column of 
PA, which is the variance of the height estimates that the Kalman filter produces 
as the first element of the posterior state vector, xA. This graph is important 
because we would like to see that the uncertainty of the height estimates 
produced by the Kalman filter is reduced as the algorithm carries out the 
calculations. A third graph shows the evolution of the first element of the KG 
matrix for further analysis.  

% papersim - Function to simulate the fall of a paper wad taking 
into account variable air resistance and implementing Kalman filter 
to obtain height estimates.  
% SYNTAX: [XAVECT, PAVECT, KGVECT] = 
papersim(gback,gsd,y0tr,x0,P0,R,DT,iter); 
 
function [XAVECT, PAVECT, KGVECT] = 
papersim(gBack,gsd,y0tr,x0,P0,R,DT,iter) 
rng(12345, 'v5normal'); %Resets the random number generator 
 
%Calculate true heights with variable air friction 
g = 9.81; 
 
gsd2 = gsd^2; %Variance of the fluctuations in actualg 
DT2 = DT^2; 
DT3 = DT^3; 
DT4 = DT^4; 
 
%Creating matrix Q 
Q = [(gsd2*DT4/4), (gsd2*DT3/2); (gsd2*DT3/2), (gsd2*DT2)]; 
 
noiseg = randn(1,iter)*gsd; %Creating the fluctuations for actualg 
 
actualg = (ones(1,iter)*(g-gBack)) + noiseg; 
 
ytr = zeros(1,iter); 

%Create the "true" time series of heights ytr 
F = [1, DT; 0, 1]; 
G = eye(2); 
H = [1, 0]; 
 
%Create u(t) in advance 
u11coeff = DT2/(-2); 
u21coeff = (-1)*DT; 
u = zeros(2,iter); 
for t = 1:iter 
    u(:,t) = [(u11coeff*actualg(t)); (u21coeff*actualg(t))]; 
end 
 
%Create "TRUE" height series 
y = [y0tr; 0]; 
for t = 1:iter 
    yNext = F*y + G*u(:,t); 
    ytr(1,t) = yNext(1,1); %Preserve in vector ytr only the first 
value in yNext, which is the height  
    y = yNext; %Feed back the result in the model for next iteration 
end 
 
%Create a z time series with the laser height measurements, 
including measurement noise 
mnoise = randn(1, iter)*(-sqrt(R)); 
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z = ytr + mnoise; 
 
%Run the timing loop 
[XAVECT, PAVECT, KGVECT] = paperloop(z,u,x0,P0,Q,R,DT,iter); 
%Plot some results 
heightFromKF = XAVECT(1,:); 
gray6 = [0.6, 0.6, 0.6]; 
figure; 
plot(z,'Color',gray6); 
hold on 
plot(heightFromKF, 'r', 'LineWidth', 1.8); 
plot(ytr, 'y', 'LineWidth', 1.5); 
hold off; grid 
title('True height, KF-estimated height and rangefinder values'); 
ylabel('meters') 
xlabel('Kalman Filter iterations') 
legend('z', 'HeightFromKF', 'ytr', 'Location', 'southwest'); 
 
%Studying the evolution of the variance of the y's  
%estimate(xA(1,1)) 
figure; 
plot(PAVECT, 'k', 'LineWidth', 1.5); grid; 
title('Variance of KF-estimated height'); 
ylabel('Square Meters'); 
xlabel('Kalman Filter Iterations'); 
 
%Now plotting the evolution of the 1st element in KG 
figure; 
plot(KGVECT(1,:),'k','LineWidth',1.5); grid; 
title('Evolution of the first element of KG (KG1) in this example'); 
xlabel('Kalman Filter iterations');  
 
end 
 
% paperloop - Timing loop for simulation of Kalman filter applied to 
% falling motion of a paper wad 
% SYNTAX: [XAVECT, PAVECT, KGVECT] = 
paperloop(zVect,u,y0,P0,Q,R,DT,iter) 
function [XAVECT, PAVECT, KGVECT] = paperloop(zVect, u, y0, P0, Q, 
R, DT, iter) 
  
F = [1, DT; 0, 1]; 
G = eye(2); 
H = [1, 0]; 
 
x = y0; 
P = P0; 
%Measurement time series 
z = zVect; 
 
%Set up vectors to store selected elements of xA and PA from all 
iterations 
PAVECT = zeros(1,iter); %We will only store the variance of yk from 
PA 
XAVECT = zeros(2,iter); %We will store both yk and y'k  
KGVECT = zeros(2,iter); %We will store both values in KG, which will 
be a 2x1 vector 
 
for t = 1:iter %START OF TIMING LOOP 
    [PA, xA, KG] = onedkf(F,G,Q,H,R,P,x,u(:,t),z(t)); 
 
    PAVECT(t) = PA(1,1); %We are only storing the variance of the 
first state variable, which is yk, located in cell (1,1) of PA 
    XAVECT(:,t) = xA; %We will store the estimates of both state 
variables contained in xA 
    KGVECT(:,t) = KG; 
 
    %Pass results as inputs to the NEXT iteration 
    P = PA; 
    x = xA; 
end %END OF TIMING LOOP 
end 

As a sample application of the codes listed above, we consider a paper 
wad being released from the top of a building of height equal to 120 meters. The 
modeler is not equipped with this value and hence places the initial height at a 
value of, say, 100 m. The paper wad begins its falling trajectory with a velocity 
equal to zero. Thus, we may type 



13 
© 2022 Montogue Quiz 

x0 = [100; 0]; 
y0tr = 120; 

(The second entry in column vector x0 is the initial velocity, which is 
zero). Next, we set up the initial covariance matrix, noting that the uncertainty 
associated with speed, which we know to be initially zero, is much less than that 
associated with the height of the building. Arbitrary values are chosen; feel free 
to choose different values if you wish.  

P0 = [12, 0; 0, 0.03]; %The variance for speed is lower; we are 
confident that 0 is the initial speed 

We then use the following values to estimate the mean level and 
variability of the acceleration time series (also arbitrary):  

gBack = 0.095; %Mean value will be g - gBack = 9.81 - 0.095 = 9.715 
gsd = 0.0095; %Variability will be represented by std. deviation of 
0.0095 

As the first state variable represents height in meters and the rangefinder 
measures height in meters:  

R = 1; 

Following Barreto et al. (2021), we shall employ a sampling interval of 1 
millisecond and set up 1000 iterations, totaling 1 second of simulation time: 

DT = 0.001; 
iter = 1000; 

The final step is to call function papersim: 

[XAVECT, PAVECT, KGVECT] = papersim(gBack, gsd, y0tr, x0, P0, R, DT, 
iter); 

 The main output graph is the height versus No. of iterations plot shown 
next.  

 

The gray trace is the series of rangefinder measurements; the yellow 
trace is the evolution of “true” height; the red trace is the Kalman-filtered 
height. As can be seen, while the initial estimate for the height was mistaken by 
several meters, the height value provided by the Kalman filter almost 
instantaneously adjusts itself to track the plot of the true heights with excellent 
accuracy. Also visible is the fact that whereas the trace displaying the 
rangefinder measurements is quite noisy, the estimate obtained with the Kalman 
filter is free from violent oscillations.  

The papersim call also outputs the variance associated with the Kalman 
filter estimate of height, as shown below. Clearly, while the variance associated 
with the KF-estimated height is initially high, it drops precipitously within about 
100 iterations and remains close to zero for the remainder of the simulation. 
Similar findings apply to the first element of the Kalman gain KG, which starts at 
a high value and then stabilizes within ≈200 iterations.   
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To further emphasize the significant reduction of the uncertainty in the 
posterior estimate of height afforded by successive iterations of the Kalman 
filter, it is instructive to create a display of the probability density functions 
representing the height of the falling paper wad. We know the characteristics 
(mean value and variance) of these distributions because we have access to the 
evolution of the first element of xA and the evolution of the element in row 1 
and column 1 of PA. The following code extracts these values from matrices 
XAVECT and PAVECT and uses them to create the corresponding Gaussian 
distributions through the function calcgauss, which appears in Chapter 7 of 
Barreto et al. (2021) and can be found in the Appendix at the end of this tutorial; 
it is also available in our Google Drive folder. The Gaussian profiles are arranged 
in a matrix named WATFALL, which is then displayed as a MATLAB waterfall plot 
with the eponymous command. 

esth = XAVECT(1,:); 
sdh = sqrt(PAVECT(1,:)); 
szeh = length(esth); 
n = linspace(0, (szeh-1), szeh); 
 
%Plot the height estimates waterfall plot: 
hMin = 115; 
hMax = 125; 
hNumGauss = ((hMax-hMin)*10) + 1; 
hStep = (hMax-hMin)/(hNumGauss-1); 
 
WATFALL = zeros(hNumGauss, szeh); 
for t = 1:szeh 
    [valsx, resgauss] = calcgauss(hMin, hNumGauss, hMax, esth(t), 
sdh(t)); 
    WATFALL(:,t) = resgauss; 
end 
 
%Create a mesh grid for waterfall contour plots 
[TIME,HEIGHT] = meshgrid(1:1:szeh, hMin:hStep:hMax); 
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%Waterfall plot (following MATLAB instructions for "column-oriented 
%data analysis") 
figure 
waterfall(TIME', HEIGHT', WATFALL'); 
colormap('autumn'); colorbar; 
xlabel('Kalman iterations'); 
ylabel('Height in meters');  
 
figure 
contour3(TIME', HEIGHT', WATFALL', 50); 
view(2) 
colormap('autumn'); colorbar; 
xlabel('Kalman Iterations'); 
ylabel('Height in meters');  

The following figure demonstrates that while the distribution associated 
with the posterior estimate of height starts up in a rather broad Gaussian curve, 
implying considerable uncertainty in results, it quickly narrows down over the 
course of subsequent iterations, implying much-diminished uncertainty. This is 
made clearer in the second output, which is an upper view of the waterfall plot. 

 

 

We can see the evolution of the Gaussian curves more clearly by creating 
a waterfall for the initial 100 iterations only: 

TIME100 = TIME(:, 1:100); 
HEIGHT100 = HEIGHT(:, 1:100); 
WATFALL100 = WATFALL(:,1:100); 
 
figure; 
waterfall(TIME100', HEIGHT100', WATFALL100'); 
colormap('autumn'); colorbar; 
xlabel('Kalman Iterations'); 
ylabel('Height in meters'); 
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A APPENDIX – The calcgauss function (Barreto et al., 2021) 
This file is also available in our Google Drive folder.  

%calcgauss.m 
function [valsx, resgauss] = calcgauss(startx, numofx, endx, mu, 
sigm) 
gapx = (endx - startx)/(numofx - 1); 
valsx = zeros(numofx, 1); 
for i = 1:numofx 
    valsx(i,1) = startx + (i*gapx); 
end 
 
coef = 1/(sqrt(2*pi*sigm^2)); 
dnm = 2*sigm^2; 
 
resgauss = coef .* exp(((-1)*(valsx-mu).^2)./dnm); 
end 
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