
1
© 2022 Montogue Quiz

Tutorial MAT4
Kalman Filters with

MATLAB

Lucas Monteiro Nogueira
• Summary •

Problem 1 A function used to implement the basic Kalman filter

Problem 2 An univariate example of Kalman filter in MATLAB: The
combustion chamber problem

Problem 3 A multivariate example of Kalman filter in MATLAB: The
falling paper wad problem

A MATLAB Files
The MATLAB codes for this tutorial can be found in one of Montogue’s

Google Drive folders; access it here.
A PROBLEMS
 [Problem 1 – A function used to implement the basic Kalman filter

Following Barreto et al. (2021), we begin by developing a MATLAB
function that implements the computations associated with both the prediction
phase and the correction (or update) phase of a single iteration of the discrete
Kalman filter. An iteration of the Kalman filter requires us to first obtain a
preliminary estimate of the state vector. If the current state vector is x(t), the
estimate of the state vector predicted by the model will be x(t + 1). Likewise, the
predicted uncertainty of the estimate, P(t + 1), is obtained from P(t). Updated
matrices are obtained with the following prediction equations:

() () () () ()1t t t t t+ = +Mx F x G u

() () () () ()1 Tt t t t t+ = +MP F P F Q

As shown, in order to implement these equations we also need matrices
F(t), G(t), and Q(t). If we are dealing with a time-varying model, we would need
to ascertain the correct values of F(t) and G(t) for that given time. Although the
formulation of the Kalman filter allows for this possibility, it is common to deal
with time-invariant systems where the matrices F(t) and G(t) in the model are
constant. Similarly, in principle we also need the external uncertainty matrix
Q(t), but we often have access to a unique, constant characterization of this
uncertainty.

If this system actually receives “control inputs” at every iteration, the
current values of those signals would need to be provided in the vector u(t). Of
course, some systems receive no “control inputs,” while for others the values in
vector u(t) might be constants.

Once the prediction phase has been carried out and the values of xM(t +
1) and PM(t + 1) have been determined, we may employ these estimates as prior
information for the correction phase. We first perform a simple assignment of
variables:

()1t= +B Mx x

()1t= +B MP P

Here, the subindex B (“before”) is used to indicate that xB and PB are used
not in a time progression from t to t + 1, but rather as a refinement that will
convert these “prior” estimates (before) to enhanced “posterior” estimates
(after) in a Bayesian framework. Equipped with xB and PB, we may write the
following correction equations:

() 1T T
G

−
= +B BK P H HP H R

()= + −A B G Bx x K z Hx

https://drive.google.com/drive/folders/1fIV0ni-FyY3T0xFzxr-qgd0hktxhBDpH?usp=sharing

2
© 2022 Montogue Quiz

G= −A B BP P K HP

The first equation is used to compute the Kalman gain matrix KG, which is
then used in the next two equations. The equations also call for the substitution
of H, the matrix that relates measurements to state variables as z(t) = H(t)x(t).
Importantly, if H(t) varies with time, we may need to provide the correct value
of H(t) for that point in time, specifically. However, although the Kalman filter
framework allows for such a case, the relationship between measurements and
state variables is often constant, so the same matrix H can be used for all
iterations. A similar reasoning applies to measurement uncertainty term R(t),
which can be taken as a matrix of constant entries if the nature of the
uncertainty affecting the measurements does not change with time.

The flow of information in a single Kalman filter iteration is illustrated in
the following diagram. The largest box represents the processor implementing
the algorithm. The two smaller boxes represent the prediction and correction
phases. The vertical lines represent the instantaneous data that may be required
for the computation of that particular iteration of the algorithm. The lines for F,
G, Q, H, and R are dashed and lead to internal boxes with these variable names
in them, because, if the systems are time invariant and the statistics of the
variables involved are constant, these parameters need not be read in every
iteration (i.e., they will be fixed values that need only be initialized once).

The vertical line labeled z is solid because a newly acquired set of

measurements must be read in every iteration, as they are necessary to
implement the correction phase of the algorithm. The line for u is dashed
because, as we have explained before, some situations will not have a “control
input” applied to the system.

The vertical line at the bottom of the biggest box represents the fact
that, in each iteration, the process will generate a final, improved estimate of
the state of the system, xA; an estimate of PA is also available at the end of every
iteration.

The horizontal lines coming into the process from the left represent the
previous estimates of x and P obtained in the previous iteration of the algorithm
(or provided as initial values). The horizontal lines leaving the biggest rectangle
refer to the posterior values of xA and PA, which will be passed on to the next
iteration of the filter.

The MATLAB code onedkf.m implements the first iteration of the discrete
Kalman filter.

% Function onedkf - Implements a single iteration of the discrete-time
% Kalman filter algorithm.
% Syntax: [PA, xA, KG] = onedkf(F, G, Q, H, R, P, x, u, z);
% Uses (receives) matrices F, G for the model equations
% Uses (receives) the process noise covariance matrix, Q
% Uses (receives) matrix H for the measurement equation
% Uses (receives) the measurement noise cov. matrix, R
% The following are expected to change in every iteration:
% Receives the state vector, x, and is cov. matrix, P, from the
previous iteration of the algorithm

3
© 2022 Montogue Quiz

% Receives the current vector of inputs, u.
% Receives the current vector of measurements, z.
% Performs the Prediction and Correction phases.
% Returns the POSTERIOR estimation of state vector, xA
% and its covariance matrix, PA.
% It also returns the calculated KG matrix.
%%
function [PA, xA, KG] = onedkf(F,G,Q,H,R,P,x,u,z)
%% PREDICTION PHASE, using the model
%The model predicts the new x:
FT = transpose(F);
xM = F*x + G*u;

%The model predicts the new P:
PM = F*P*FT + Q;

%Change of variables to clearly separate the 2 phases:
xB = xM;
PB = PM;

%%CORRECTION (UPDATE) PHASE
%Finding POSTERIOR (A = After) parameters, from PRIOR (B = Before),
%through Bayesian estimation
HT = transpose(H);
%First calculate the Kalman gain (KG) for this iteration
KG = PB*HT*(inv(H*PB*HT+R));

%Calculate POSTERIOR ESTIMATE of the state vector
xA = xB + KG*(z-H*xB);
%Calculate POSTERIOR ESTIMATE of state vector's covar. matrix
PA = PB - KG*H*PB;

end

[Problem 2 – An univariate example of Kalman filter in MATLAB:
The combustion chamber problem

The first problem we tackle is straightforward. A rocket is travelling in
outer space towards another planet. For diagnostic purposes, the spacefarers in
the rocket want to keep track of the burned gas temperature within the
centerline of the combustion chamber; however, such a temperature cannot be
measured directly in midflight. Still, the temperature in the outer, external
region of the chamber is measured in successive intervals and can be processed
to yield reliable estimates of the temperature in the centerline; this is where the
Kalman filter comes in.

In order to continue to provide posterior estimates of state variable

vector xA and the covariance matrix PA, function onedkf.m must be executed
recursively. The resulting xA and PA from one iteration are fed forward as the x(t)
and P(t) for the prediction phase of the next iteration. For the execution of the
very first iteration there is no previous xA and PA available, therefore we must
supply initial values with which to begin the filtering process.

4
© 2022 Montogue Quiz

To implement onedkf recursively, we call this function within a piece of
code (in this case, also a function) that encloses a timing loop. We call this piece
of code rocketloop. In every iteration of the loop, the Kalman filter algorithm
must draw new samples from the measurements (and other variables, such as
control inputs, and parameters, if they are not constant). Then, we may embed
the loop function within a top-level simulation function in which we will create,
in advance, all the time series that will be required, in their entirety, and any
other settings associated with the filtering process. We call this top-level
function rocketsim. The relationship between rocketloop and rocketsim is
illustrated below.

The top-level function rocketsim should enable us to:

1. Define the parameters of the model we want to use, including the levels
of uncertainty associated with the external noise (Q) and the
measurements (R).

2. Use those parameters to create all the time series that will be required
for the complete simulation, in advance. This may include the creation of
a time series of “true values” for the state variables, if appropriate.

3. Define the initial values of x(t) and P(t) that are needed for the first
execution of onedkf.

4. Assign the maximum number of iterations to be simulated, iter, so that
the Kalman filter algorithm will be run from t = 1 to t = iter.

5. Include plotting commands with which to follow the evolution of
important variables and their associated uncertainties.

We expect no dynamic evolution of this system with time, therefore the
model equation is simply

() ()1t t+ =x x

Function rocketsim will receive the following inputs:

• xTru: A scalar value used to signify the mean of the “true” values of the
centerline temperature for the simulation.

• x0, P0: Initial values that will be used in the first execution of onedkf.
Because there is only one state variable (temperature) in this scenario, P0
will be a scalar representing the initial model uncertainty for that
variable, expressed as its variance.

• Q,R: Covariance matrices (in this case, scalar variances) which represent
the uncertainty of the model attributed to external inputs (noise) and
the uncertainty in the temperature measurements.

• iter: The number of total iterations we want to simulate (from t = 1 to t
= iter).

Since this is a simulation, it will be useful to have a time series that we may
consider to be the “true” temperature xTru throughout the analysis time.
Equipped with this time series, we may perceive how close or how far our

5
© 2022 Montogue Quiz

Kalman filter output is relatively to the “true” state variable (namely, the
temperature).

While there may be no external control inputs (i.e., u(t)) applied to the
system at hand, we must still be able to account for external noise associated
with phenomena that we cannot control but are nonetheless present. For this
purpose, we incorporate a nonzero value of Q and use it in the Kalman filter
computations. Since we are dealing with a univariate problem, Q will be a 1×1
matrix whose sole entry is the variance of the external noise. The “true”
temperature we aim for is a certain mean value added to a time series of
Gaussian random values with zero mean and a standard deviation that is the
square root of the only entry in Q.

To perform the first iteration of the Kalman filter, we will also require initial
values for x(t) and its covariance matrix, P(t). For the former, we assume that
theoretical calculations for the combustion chamber suggested an unburned gas
temperature of 3950 K in the centerline. We will set up our code so that the
actual centerline temperature is found to be 4000 K. In turn, P(0) is just a scalar
variance representing the level of uncertainty we assign to the initial centerline
temperature estimate; we arbitrarily take P(0) = 0.6.

% rocketsim - Top-level function for simulation of univariate Kalman
filter
% SYNTAX: [XAVECT, PAVECT, KGVECT] = rocketsim(xTru, x0, P0, Q, R,
iter)

function [XAVECT, PAVECT, KGVECT] = rocketsim(xTru, x0, P0, Q, R,
iter)

%Resets the random number generator to ver. 5 normal
%and sets seed to 12345.
rng(12345, 'V5normal');

%Creation of vector of true temperature values and implementation of
%noise
%Note that Q = variance of noise
%Creation of vector of TRUE temperature values:
xTru_noNoise = ones(iter,1)*xTru;
extNoise = randn(iter,1)*(sqrt(Q));
xTrue = xTru_noNoise + extNoise;

%Creation of vector of MEASURED values, taking into account that the
%measuring system ADDS noise to each TRUE VALUE measured:
msdError = randn(iter,1)*(sqrt(R));
zVect = xTrue + msdError;

[XAVECT, PAVECT, KGVECT] = rocketloop(xTru, zVect, x0, P0, Q, R,
iter);
colorVect = [0.5, 0.5, 0.5];

figure(1)
plot(xTrue, 'Color', colorVect, 'LineWidth', 1.8);
hold on
plot(XAVECT, 'r', 'LineWidth', 1.8);
plot(zVect, 'k-.', 'LineWidth', 1.8);
hold off
title('xTrue, xA and z');
xlabel('Kalman Filter Iterations');
legend('xTrue', 'xA', 'zVec', 'Location', 'southeast');
grid on

figure(2)
plot(PAVECT, 'k', 'LineWidth', 1.8);
title('PA');
grid
xlabel('Kalman Filter Iterations');
figure(3)
plot(KGVECT, 'k', 'LineWidth', 1.8);
title('KG Values')
grid
xlabel('Kalman Filter Iterations');

end

Next, function rocketloop receives the initial values of x0 and P0 and
loads them into the variables x and P, which in turn will be passed to onedkf. It
also passes along parameters Q and R, which will remain constant. It receives the

6
© 2022 Montogue Quiz

time series xTru and zVect. The vector zVect will be accessed by onekdf in every
iteration. In addition, rocketloop receives the value of iter to establish the
number of iterations.

Function rocketloop establishes the parameters of the scenario (model
and measurement equations), assigning values to F and H, which remain
constant throughout the iterations. Note that G is assigned a value of 0 because
there are no intentional control inputs. The function also stores the state
variable estimate in a variable named xA, its corresponding uncertainty
(variance) in variable PA, and the Kalman gain in a variable KG. By continuously
updating these three variables, we can ultimately plot the evolution of the
filtering process over the course of, say, 300 iterations.

% rocketloop - Timing loop for simulation of univariate Kalman
filter for the estimation of an inaccessible temperature in an
exhaust plume
% SYNTAX: [XAVECT, PAVECT, KGVECT] = rocketloop(xTru, zVect, x0, P0,
Q, R, iter)
function [XAVECT, PAVECT, KGVECT] = rocketloop(xTru, zVect, x0, P0,
Q, R, iter)

F = 1;
G = 0;
H = 1;

x = x0;
P = P0;

%Input time series
u = zeros(iter, 1);
z = zVect;

%Set up vectors to store outputs (all iterations)
PAVECT = zeros(iter,1);
XAVECT = zeros(iter,1);
KGVECT = zeros(iter,1);

for t = 1:iter %START OF TIMING LOOP
 [PA, xA, KG] = onedkf0(F,G,Q,H,R,P,x,u(t),z(t));
 PAVECT(t) = PA;
 XAVECT(t) = xA;
 KGVECT(t) = KG;

 %Pass results as inputs to the next iteration:
 P = PA;
 x = xA;
end % END OF TIMING LOOP
end

%Setting up the Kalman filter simulation
clc
clear all
close all

xTru = 4000; %Assuming that the actual centerline temperature is
4000 K
x0 = 3950; %Hydrodynamics suggests that centerline temp. equals 3950
K
P0 = 0.6; %Assigning an initial variance of 0.6 for the results from
the model
Q = 0.005; %Assigning a variance of 0.005 to the external noise
R = 5; %Assigning a variance of 5 to the temp. measurements
iter = 300; %No. of iterations

%Simulating
[XAVECT, PAVECT, KGVECT] = rocketsim(xTru,x0,P0,Q,R,iter);

The main plot we require is shown below. The gray trace is the “true”
temperature in the combustion chamber; the dot-dashed trace is the time series
of measurements z(t); lastly, the red trace is the posterior estimate of the state
variable as computed by the filter algorithm. A few things are immediately
apparent. Firstly, note that the measurements are quite noisy, which encourages
the modeler to resort to a state estimation algorithm such as the Kalman filter.
The filtered state variable starts off at several kelvin away from the true values
but, by iteration 150 or so, closely matches the actual data – much better, in
fact, than the highly noisy measurements represented by the dot-dashed line.

7
© 2022 Montogue Quiz

A zoomed-in capture of the plot centered at iteration No. 200 is shown
below.

The foregoing code also outputs the evolution of the variance PA, which
in the present case is just a scalar. As can be seen, the variance decreases rapidly
within the first 50 iterations, and eventually stabilizes at ≈0.156.

Finally, the foregoing code also yields the evolution of the Kalman gain
(again, a scalar in this case), which decreases rapidly before stabilizing at
≈0.0311.

0 50 100 150 200 250 300

Kalman Filter Iterations

3960

3970

3980

3990

4000

4010

C
ha

m
be

r T
em

pe
ra

tu
re

 (K
)

xTrue, xA and z

xTrue

xA

zVec

120 140 160 180 200 220 240 260 280

Kalman Filter Iterations

3994

3996

3998

4000

4002

4004

4006

xTrue, xA and z

xTrue

xA

zVec

0 50 100 150 200 250 300

Kalman Filter Iterations

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55
PA

8
© 2022 Montogue Quiz

Following Barreto et al. (2021), we may ask what would happen if we

were to void the correction phase of the Kalman filter process and ignored the
information provided by the measurements. To see the effect of such a
modification, refer to the final two equations of the filter scheme:

()= + −A B G Bx x K z H x

= +A B G BP P K H P

It is easy to see that, if we restate the contents of the matrix KG with all
zeros, the second terms in the right-hand side of the two equations vanish and
we end up with the elementary relationships xA = xB and PA = PB; this implies that
the Kalman filter is forced to rely only on the model, ignoring information from
the measurements altogether. To analyze the effect of such a simplification, we
may add the following line of code to the onedkf function, just below the line KG
= PB*HT*(inv(H*PB*T+R)):

KG = zeros(size(KG));

and save the modified function as onedkf0.m, which is available in our Google
Drive folder. Then, we head to rocketloop.m and replace the call to onedkf in the
for loop with a call for onedkf0. Run the pertaining code and the program will
output two interesting graphs, as shown in continuation:

0 50 100 150 200 250 300

Kalman Filter Iterations

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11
KG Values

0 50 100 150 200 250 300

Kalman Filter Iterations

3950

3960

3970

3980

3990

4000

4010
xTrue, xA and z

xTrue

xA

zVec

0 50 100 150 200 250 300

Kalman Filter Iterations

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2
PA

9
© 2022 Montogue Quiz

The first graph shows that, in the absence of interactions between
measured data and the algorithm, the model invariably outputs the same
temperature throughout the entire simulation. The second graph, in turn, shows
that the uncertainty PA in this anomalous scenario actually increases steadily
with each iteration, in direct contrast to what we’d expect in a “normal” Kalman
filter operation.

[Problem 3 – A multivariate example of Kalman filter in MATLAB:
The falling paper wad problem

Following Barreto et al. (2021), the second
practical example of Kalman filtering we consider
is the falling paper wad. Simply put, in this
problem we wish to describe the height y above
ground level of a paper wad released from the top
of a building. The state variables in this problem
are the height 𝑦𝑦𝑘𝑘 and the falling velocity 𝑦𝑦𝑘𝑘′ at
iteration k. These are described by the equations

() ()2

1 1

1

2k k k

k k

T g
y y T y

y y g T

− −

−

 ∆
′= + ∆ −

 ′ ′= − ∆

where Δ𝑇𝑇 is the time interval encompassed by an iteration and 𝑔𝑔 ≈ 9.81 m/s2.
The Kalman-filter equation that describes the system is

() () () () ()1t t t t t+ = +x F x G u

where

() k

k

y
t

y

= ′
x

1
0 1

T∆
=

F

()21
2

T

T

 − ∆ =

−∆

G

Substituting u(t) = g, we can restate the two equations as

() () () () ()1t t t t t+ = +x F x G u

()2
1

1

11
2

0 1
k k

kk

y y TT
yy

T
g+

+

 − ∆∆ = + ′′ −∆

Crucially, the fall of the object may not be driven exclusively by the
acceleration of gravity. In the case of, say, a big paper wad, downward motion is
resisted by air flow around and within the recesses of the wad, which has a
highly irregular shape. This can be accounted for by combining the freefall
gravity g with a mean opposing acceleration component gback, and then
incorporating it into the problem as an “actual” acceleration gactual,k = g – gback.
This modified acceleration is associated with a standard deviation 𝜎𝜎actual,𝑘𝑘, which
we denote in code as gsd.

The initial values of the state variables are the initial speed, which we
assume to be 0, and the initial height from which we drop the paper wad, which
we shall take as 100 m. In the Kalman filter framework, these values are
associated with some uncertainty, which we incorporate in an initial covariance
matrix P0, as shown in the upcoming code.

Further, we assume that the falling trajectory of the paper wad is tracked
by a position-measuring instrument, which Barreto et al. (2021) refer to as a
‘laser rangefinder’. The rangefinder is quite noisy, offering only mediocre-
accuracy height data with which we shall feed the Kalman filter algorithm in the
hopes of tracking the paper wad with greater precision. The measurements are
assigned to a variable z(t), and the relationship between the (scalar)
measurement z(t) and the state variable vector reads

10
© 2022 Montogue Quiz

() () []1 0 (I)
y

z t t
y

= = ′
Hx

The uncertainty in the measurement, usually represented by the
covariance matrix R, will be just a scalar expressed as the variance of the height
measurements afforded by the rangefinder. In a real situation, we’d expect that
this parameter be supplied by the manufacturer of the instrument.

2
zσ = R

Analogously to the previous example, we will model the present system
using three codes: onedkf, papersim, and paperloop. Function paperloop receives
the matrices Q and R, which are fixed, as well as the sampling interval ΔT and
the total number of iterations iter. As usual, the loop must be fed initial values
for the state vector, x0, and for the state covariance matrix, P0.

Once all the arguments are received, paperloop creates F and G (which
will not change) and computes matrix H. Within the timing loop, paperloop calls
onekdf for each iteration of the Kalman filter, writing each pair of iteration
results xA and PA on the variables x and P, which will be used in the next call to
onekdf. Further, before the end of the timing loop, there are commands that
save not only xA to return all the state vectors calculated to papersim, but also
the two values of the Kalman gain matrix, KG, and the value in the first row and
first column of the matrix PA calculated in each iteration. That position in PA is
occupied by the variance associated with the first state variable, which in the
case at hand is the estimated height of the paper wad – namely, the main state
variable of interest.

Function papersim receives the parameters that a user may wish to
change from one simulation to another, such as the assumed parameters for the
“diminished downward acceleration,” whose mean value is set by subtracting
gback from 9.81 m/s2 and its standard deviation, stored in the MATLAB variable
gsd. Also included in papersim are the matrix R, the initial state-variable vector
x0, the initial covariance matrix P0, the sampling interval ΔT, the “true initial
height of the fall” y0tr, and the total number of iterations iter.

Function papersim creates the external error covariance, Q(t), which will
be fixed, as the covariance matrix for u(t), the 2×1 vector that appears as the
rightmost term in the filter equation (I) above. To express all values of Q as
functions of the variance of gactual, 𝜎𝜎actual2 , we will employ the following property
of the covariance function:

() ()1 2 1 2, ,COV ax bx ab COV x x= ×

Thus, for vector u, which is expressed as

()

2

actual,k

actual,k

2k

T g

T g

 ∆
− =
 − ∆

u

the corresponding covariance matrix Q becomes

()

2 2
actual,g actual,g

2 2
actual,g actual,g

4 3

3
2

4 2

2

T T

T T

σ σ

σ σ

 ∆ ∆

 = ∆ ∆

Q

Thus, papersim can create a suitable matrix Q, on the basis of the
sampling interval ΔT and the variance of the fluctuations 𝜎𝜎actual,g2 .

Upon execution, papersim first creates all the necessary time series that
will be accessed by onedkf and then, after the invocation of paperloop, performs
some basic visualization of the results.

The computation of a vector containing iter samples of the “true height”
of the falling paper wad is achieved by iterating over the basic freefall model,
where the values of the “diminished downward acceleration” are fetched from
the previously created sequence of actual values 𝑔𝑔actual,𝑘𝑘. This sequence is
generated by adding noise samples from a normal distribution with 0 mean and

11
© 2022 Montogue Quiz

standard deviation gsdva to the mean value, which is g – gback. The values used as
the u vector will be created from the values of gactual,k using the expressions
contained in the 2×1 column vector provided above. Then, assigning as the true
initial height y0tr and as initial speed 0, the “true” values of height and speed are
calculated for iter iterations. All the “true values” of height are collectively called
ytr.

The values in the vector of heights that the rangefinder would report, z,
are calculated by adding to the “true height” vector samples from a normal

distribution with 0 mean and standard deviation �𝜎𝜎𝑧𝑧2.
After paperloop is called, the matrices returned, namely XAVECT,

PAVECT, and KGVECT, can be used for some basic display of the results, similarly
to what we did in the previous problem. In a first graph, papersim displays the
“true heights” available in ytr, superimposed with the time series of heights
estimated (as the first state variable) by the Kalman filter. In a second graph,
papersim plots the evolution of the element in the first row and first column of
PA, which is the variance of the height estimates that the Kalman filter produces
as the first element of the posterior state vector, xA. This graph is important
because we would like to see that the uncertainty of the height estimates
produced by the Kalman filter is reduced as the algorithm carries out the
calculations. A third graph shows the evolution of the first element of the KG
matrix for further analysis.

% papersim - Function to simulate the fall of a paper wad taking
into account variable air resistance and implementing Kalman filter
to obtain height estimates.
% SYNTAX: [XAVECT, PAVECT, KGVECT] =
papersim(gback,gsd,y0tr,x0,P0,R,DT,iter);

function [XAVECT, PAVECT, KGVECT] =
papersim(gBack,gsd,y0tr,x0,P0,R,DT,iter)
rng(12345, 'v5normal'); %Resets the random number generator

%Calculate true heights with variable air friction
g = 9.81;

gsd2 = gsd^2; %Variance of the fluctuations in actualg
DT2 = DT^2;
DT3 = DT^3;
DT4 = DT^4;

%Creating matrix Q
Q = [(gsd2*DT4/4), (gsd2*DT3/2); (gsd2*DT3/2), (gsd2*DT2)];

noiseg = randn(1,iter)*gsd; %Creating the fluctuations for actualg

actualg = (ones(1,iter)*(g-gBack)) + noiseg;

ytr = zeros(1,iter);

%Create the "true" time series of heights ytr
F = [1, DT; 0, 1];
G = eye(2);
H = [1, 0];

%Create u(t) in advance
u11coeff = DT2/(-2);
u21coeff = (-1)*DT;
u = zeros(2,iter);
for t = 1:iter
 u(:,t) = [(u11coeff*actualg(t)); (u21coeff*actualg(t))];
end

%Create "TRUE" height series
y = [y0tr; 0];
for t = 1:iter
 yNext = F*y + G*u(:,t);
 ytr(1,t) = yNext(1,1); %Preserve in vector ytr only the first
value in yNext, which is the height
 y = yNext; %Feed back the result in the model for next iteration
end

%Create a z time series with the laser height measurements,
including measurement noise
mnoise = randn(1, iter)*(-sqrt(R));

12
© 2022 Montogue Quiz

z = ytr + mnoise;

%Run the timing loop
[XAVECT, PAVECT, KGVECT] = paperloop(z,u,x0,P0,Q,R,DT,iter);
%Plot some results
heightFromKF = XAVECT(1,:);
gray6 = [0.6, 0.6, 0.6];
figure;
plot(z,'Color',gray6);
hold on
plot(heightFromKF, 'r', 'LineWidth', 1.8);
plot(ytr, 'y', 'LineWidth', 1.5);
hold off; grid
title('True height, KF-estimated height and rangefinder values');
ylabel('meters')
xlabel('Kalman Filter iterations')
legend('z', 'HeightFromKF', 'ytr', 'Location', 'southwest');

%Studying the evolution of the variance of the y's
%estimate(xA(1,1))
figure;
plot(PAVECT, 'k', 'LineWidth', 1.5); grid;
title('Variance of KF-estimated height');
ylabel('Square Meters');
xlabel('Kalman Filter Iterations');

%Now plotting the evolution of the 1st element in KG
figure;
plot(KGVECT(1,:),'k','LineWidth',1.5); grid;
title('Evolution of the first element of KG (KG1) in this example');
xlabel('Kalman Filter iterations');

end

% paperloop - Timing loop for simulation of Kalman filter applied to
% falling motion of a paper wad
% SYNTAX: [XAVECT, PAVECT, KGVECT] =
paperloop(zVect,u,y0,P0,Q,R,DT,iter)
function [XAVECT, PAVECT, KGVECT] = paperloop(zVect, u, y0, P0, Q,
R, DT, iter)

F = [1, DT; 0, 1];
G = eye(2);
H = [1, 0];

x = y0;
P = P0;
%Measurement time series
z = zVect;

%Set up vectors to store selected elements of xA and PA from all
iterations
PAVECT = zeros(1,iter); %We will only store the variance of yk from
PA
XAVECT = zeros(2,iter); %We will store both yk and y'k
KGVECT = zeros(2,iter); %We will store both values in KG, which will
be a 2x1 vector

for t = 1:iter %START OF TIMING LOOP
 [PA, xA, KG] = onedkf(F,G,Q,H,R,P,x,u(:,t),z(t));

 PAVECT(t) = PA(1,1); %We are only storing the variance of the
first state variable, which is yk, located in cell (1,1) of PA
 XAVECT(:,t) = xA; %We will store the estimates of both state
variables contained in xA
 KGVECT(:,t) = KG;

 %Pass results as inputs to the NEXT iteration
 P = PA;
 x = xA;
end %END OF TIMING LOOP
end

As a sample application of the codes listed above, we consider a paper
wad being released from the top of a building of height equal to 120 meters. The
modeler is not equipped with this value and hence places the initial height at a
value of, say, 100 m. The paper wad begins its falling trajectory with a velocity
equal to zero. Thus, we may type

13
© 2022 Montogue Quiz

x0 = [100; 0];
y0tr = 120;

(The second entry in column vector x0 is the initial velocity, which is
zero). Next, we set up the initial covariance matrix, noting that the uncertainty
associated with speed, which we know to be initially zero, is much less than that
associated with the height of the building. Arbitrary values are chosen; feel free
to choose different values if you wish.

P0 = [12, 0; 0, 0.03]; %The variance for speed is lower; we are
confident that 0 is the initial speed

We then use the following values to estimate the mean level and
variability of the acceleration time series (also arbitrary):

gBack = 0.095; %Mean value will be g - gBack = 9.81 - 0.095 = 9.715
gsd = 0.0095; %Variability will be represented by std. deviation of
0.0095

As the first state variable represents height in meters and the rangefinder
measures height in meters:

R = 1;

Following Barreto et al. (2021), we shall employ a sampling interval of 1
millisecond and set up 1000 iterations, totaling 1 second of simulation time:

DT = 0.001;
iter = 1000;

The final step is to call function papersim:

[XAVECT, PAVECT, KGVECT] = papersim(gBack, gsd, y0tr, x0, P0, R, DT,
iter);

 The main output graph is the height versus No. of iterations plot shown
next.

The gray trace is the series of rangefinder measurements; the yellow
trace is the evolution of “true” height; the red trace is the Kalman-filtered
height. As can be seen, while the initial estimate for the height was mistaken by
several meters, the height value provided by the Kalman filter almost
instantaneously adjusts itself to track the plot of the true heights with excellent
accuracy. Also visible is the fact that whereas the trace displaying the
rangefinder measurements is quite noisy, the estimate obtained with the Kalman
filter is free from violent oscillations.

The papersim call also outputs the variance associated with the Kalman
filter estimate of height, as shown below. Clearly, while the variance associated
with the KF-estimated height is initially high, it drops precipitously within about
100 iterations and remains close to zero for the remainder of the simulation.
Similar findings apply to the first element of the Kalman gain KG, which starts at
a high value and then stabilizes within ≈200 iterations.

0 100 200 300 400 500 600 700 800 900 1000

Kalman Filter Iterations

112

114

116

118

120

122

124

M
et

er
s

True height, KF-estimated height and rangefinder values

z

HeightFromKF

ytr

14
© 2022 Montogue Quiz

To further emphasize the significant reduction of the uncertainty in the
posterior estimate of height afforded by successive iterations of the Kalman
filter, it is instructive to create a display of the probability density functions
representing the height of the falling paper wad. We know the characteristics
(mean value and variance) of these distributions because we have access to the
evolution of the first element of xA and the evolution of the element in row 1
and column 1 of PA. The following code extracts these values from matrices
XAVECT and PAVECT and uses them to create the corresponding Gaussian
distributions through the function calcgauss, which appears in Chapter 7 of
Barreto et al. (2021) and can be found in the Appendix at the end of this tutorial;
it is also available in our Google Drive folder. The Gaussian profiles are arranged
in a matrix named WATFALL, which is then displayed as a MATLAB waterfall plot
with the eponymous command.

esth = XAVECT(1,:);
sdh = sqrt(PAVECT(1,:));
szeh = length(esth);
n = linspace(0, (szeh-1), szeh);

%Plot the height estimates waterfall plot:
hMin = 115;
hMax = 125;
hNumGauss = ((hMax-hMin)*10) + 1;
hStep = (hMax-hMin)/(hNumGauss-1);

WATFALL = zeros(hNumGauss, szeh);
for t = 1:szeh
 [valsx, resgauss] = calcgauss(hMin, hNumGauss, hMax, esth(t),
sdh(t));
 WATFALL(:,t) = resgauss;
end

%Create a mesh grid for waterfall contour plots
[TIME,HEIGHT] = meshgrid(1:1:szeh, hMin:hStep:hMax);

0 100 200 300 400 500 600 700 800 900 1000

Kalman Filter Iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sq
ua

re
 M

et
er

s

Variance of KF-estimated height

0 100 200 300 400 500 600 700 800 900 1000

Kalman Filter iterations

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Evolution of the first element of KG (KG1) in this example

15
© 2022 Montogue Quiz

%Waterfall plot (following MATLAB instructions for "column-oriented
%data analysis")
figure
waterfall(TIME', HEIGHT', WATFALL');
colormap('autumn'); colorbar;
xlabel('Kalman iterations');
ylabel('Height in meters');

figure
contour3(TIME', HEIGHT', WATFALL', 50);
view(2)
colormap('autumn'); colorbar;
xlabel('Kalman Iterations');
ylabel('Height in meters');

The following figure demonstrates that while the distribution associated
with the posterior estimate of height starts up in a rather broad Gaussian curve,
implying considerable uncertainty in results, it quickly narrows down over the
course of subsequent iterations, implying much-diminished uncertainty. This is
made clearer in the second output, which is an upper view of the waterfall plot.

We can see the evolution of the Gaussian curves more clearly by creating
a waterfall for the initial 100 iterations only:

TIME100 = TIME(:, 1:100);
HEIGHT100 = HEIGHT(:, 1:100);
WATFALL100 = WATFALL(:,1:100);

figure;
waterfall(TIME100', HEIGHT100', WATFALL100');
colormap('autumn'); colorbar;
xlabel('Kalman Iterations');
ylabel('Height in meters');

16
© 2022 Montogue Quiz

A APPENDIX – The calcgauss function (Barreto et al., 2021)
This file is also available in our Google Drive folder.

%calcgauss.m
function [valsx, resgauss] = calcgauss(startx, numofx, endx, mu,
sigm)
gapx = (endx - startx)/(numofx - 1);
valsx = zeros(numofx, 1);
for i = 1:numofx
 valsx(i,1) = startx + (i*gapx);
end

coef = 1/(sqrt(2*pi*sigm^2));
dnm = 2*sigm^2;

resgauss = coef .* exp(((-1)*(valsx-mu).^2)./dnm);
end

A REFERENCE
• BARRETO, A., ADJOUADI, M., ORTEGA, F.R. and O-LARNNITHIPONG, N.

(2021). Intuitive Understanding of Kalman Filtering with MATLAB. Boca
Raton: CRC Press.

Visit www.montoguequiz.com for more free MATLAB tutorials
and all things science and engineering!

http://www.montoguequiz.com/

