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 Quiz EL405 
Channel Coding:  

Linear Block Codes 
 

 

Lucas Monteiro Nogueira 
A PROBLEMS 

B Problem 1 (Sklar, 2001, w/ permission) 

Calculate the probability of message error for a 12-bit data sequence 
encoded with a (24,12) linear block code. Assume that the code corrects all 1-
bit and 2-bit error patterns and assume that it corrects no error patterns 
with more than two errors. Also, assume that the probability of a channel 
symbol error is 10–3. 

B Problem 2 (Sklar, 2001, w/ permission) 

Calculate the improvement in probability of message error relative to 
an uncoded transmission for a (24,12) double-error-correcting linear block 
code. Assume that coherent BPSK modulation is used and that the received 
bit energy to noise spectral density Eb/N0 = 10 dB. 

B Problem 3 (Sklar, 2001, w/ permission) 

Consider a (24, 12) linear block code capable of double-error 
corrections. Assume that a noncoherently detected binary orthogonal 
frequency-shift keying (BFSK) modulation format is used and that the 
received Eb/N0 = 14 dB.  
Problem 3.1: Does the code provide any improvement in probability of 
message error? If it does, how much? If it does not, explain why not. 
Problem 3.2: Repeat part 1 with Eb/N0 = 10 dB. 

B Problem 4 (Proakis and Salehi, 2008, w/ permission) 

𝒞𝒞 is a (6,3) linear block code whose generator matrix is given by 
 

1 1 1 1 0 0
0 0 1 1 1 1
1 1 1 1 1 1

 
 =  
  

G  

 

Problem 4.1: What rate, minimum distance, and coding gain can 𝒞𝒞 provide in 
soft decision decoding when BPSK is used over an AWGN channel? 
Problem 4.2:  Can you suggest another (6,3) linear block code that can provide 
a better coding gain? If the answer is yes, give the generator matrix for one 
such code. If the answer is no, why? 
Problem 4.3: Suggest a parity check matrix 𝑯𝑯 for 𝒞𝒞. 

B Problem 5 (Proakis and Salehi, 2008, w/ permission) 

A (k + 1,k) block code is generated by adding 1 extra 
bit to each information sequence of length k such that 
the overall parity of the code (i.e., the number of 1s in 
each code word) is an odd number. Two students, A and 
B, make the following arguments on the error detection 
capability of this code. 
Student A: Since the weight of each code word is odd, any 
single error changes the weight to an even number. Hence, this code is 
capable of detecting any single error. 
Student B: The all-zero information sequence 00 … 0 (k zeros) will be encoded 
by adding one extra 1 to generate the code word 00 … 01. This means that 
there is at least one code word of weight 1 in this code. Therefore, the 
minimal distance dmin = 1, and since any code can detect at most dmin – 1 errors, 
and for this code dmin – 1 = 0, this code cannot detect any errors. 

One of the students is wrong. Which one? Why?  
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B Problem 6 (Proakis and Salehi, 2008, w/ permission) 

A code 𝒞𝒞 consists of all binary sequences of length 6 and weight 3. 
Problem 6.1: Is this code a linear block code? Why? 
Problem 6.2: What are the rate and minimum distance of the code? 
Problem 6.3: If the code is used for error detection, how many errors can it 
detect? 
Problem 6.4: If the code is used on a binary symmetric channel with 
crossover probability of p, what is the probability that an undetectable error 
results? 
Problem 6.5: Find the smallest linear block code 𝒞𝒞1 such that 𝒞𝒞 ⊆ 𝒞𝒞1 (by the 
smallest code we mean the code with the fewest code words). 

B Problem 7 (Sklar, 2001, w/ permission) 

Consider a (7,4) code whose generator matrix is 
 

1 1 1 1 0 0 0
1 0 1 0 1 0 0
0 1 1 0 0 1 0
1 1 0 0 0 0 1

G

 
 
 =
 
 
 

 

 

Problem 7.1: Find all the code words of the code. 
Problem 7.2: Find H, the parity-check matrix of the code. 
Problem 7.3: Compute the syndrome for the received vector 1 1 0 1 1 0 1. Is 
this a valid code vector?  
Problem 7.4: What is the error-correcting capability of the code? 
Problem 7.5: What is the error-detecting capability of the code? 

B Problem 8 (Sklar, 2001, w/ permission) 

Consider the linear block code with the code word defined by 
 

1 2 4 5 1 3 4 5 1 2 3 5

1 2 3 4 1 2 3 4 5

, ,
, , , , ,

m m m m m m m m m m m m
m m m m m m m m m

= + + + + + + + + +
+ + +

U
 

 

where mi are message digits. 
Problem 8.1: Show the generator matrix. 
Problem 8.2: Show the parity-check matrix. 
Problem 8.3: Find n, k, and dmin. 

B Problem 9 (Sklar, 2001, w/ permission) 

Consider a systematic block code whose parity-check equations are 
 

1 1 2 4p m m m= + +  

2 1 3 4p m m m= + +  

3 1 2 3p m m m= + +  

4 2 3 4p m m m= + +  
 

where mi are message digits and pi are check digits. 
Problem 9.1: Find the generator matrix and the parity-check matrix for this 
code. 
Problem 9.2: How many errors can the code correct? 
Problem 9.3: Is the vector 10101010 a code word? 
Problem 9.4: Is the vector 01011100 a code word? 
 

Problems 10 to 12 emphasize cyclic codes. We’ll go 
back to linear block codes in Problem 14. 

 

B Problem 10 (Sklar, 2001, w/ permission) 

Determine which, if any, of the following polynomials can generate a 
cyclic code with code word length n ≤ 7. Find the (n,k) values of any such 
codes that can be generated. 
Problem 10.1: 1 + 𝑋𝑋3 + 𝑋𝑋4 
Problem 10.2: 1 + 𝑋𝑋2 + 𝑋𝑋4 
Problem 10.3: 1 + 𝑋𝑋 + 𝑋𝑋2 + 𝑋𝑋4  

B Problem 11 (Sklar, 2001, w/ permission) 

Encode the message 1 0 1 in systematic form using polynomial 
division and the generator 𝒈𝒈(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋2 + 𝑋𝑋4.  
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B Problem 12 (Sklar, 2001, w/ permission) 

A (15,5) cyclic code has a generator polynomial as follows: 
 

( ) 2 5 8 101X X X X X X= + + + + +g  
 

Problem 12.1: Find the code polynomial (in systematic form) for the message 
𝒎𝒎(X) = 1 + 𝑋𝑋2 + 𝑋𝑋4.  
Problem 12.2: Is 𝑽𝑽(𝑋𝑋) = 1 + 𝑋𝑋4 + 𝑋𝑋6 + 𝑋𝑋8 + 𝑋𝑋14 a code polynomial in this system? 
Justify your answer. 

B Problem 13 (Sklar, 2001, w/ permission) 

Is a (7,3) code a perfect code? Is a (7,4) code a perfect code? Is a (15,11) 
code a perfect code? Justify your answers. 

B Problem 14 (Sklar, 2001, w/ permission) 
A (15,11) linear block code can be defined by the following parity array: 

0 0 1 1
0 1 0 1
1 0 0 1
0 1 1 0
1 0 1 0
1 1 0 0
0 1 1 1
1 1 1 0
1 1 0 1
1 0 1 1
1 1 1 1

 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
 

P  

Problem 14.1: Show the parity-check matrix for this code. 
Problem 14.2: List the coset leaders from the standard array. Is this code a 
perfect code? Justify your answer. 
Problem 14.3: A received vector is 𝑽𝑽 = 0 1 1 1 1 1 0 0 1 0 1 1 0 1 1. 
Compute the syndrome. Assuming that a single bit error has been made, find 
the correct code word. 
Problem 14.4: How many erasures can this code correct? Explain. 

B Problem 15 (Sklar, 2001, w/ permission) 
A message consists of English text (assume that each word in the 

message contains six letters). Each letter is encoded using the 7-bit ASCII 
character code. Thus, each word consists of a 42-bit sequence. The message 
is to be transmitted over a channel having a symbol error probability of 10–3. 
Problem 15.1: What is the probability that a word will be received in error? 
Problem 15.2: If a repetition code is used such that each letter in each word is 
repeated three times, and at the receiver, majority voting is used to decode 
the message, what is the probability that a decoded word will be received in 
error? 
Problem 15.3:  If a (126,42) BCH code with error-correcting capability of t = 14 
is used to encode each 42-bit word, what is the probability that a decoded 
word will be in error? 
Problem 15.4: For a real system, it is not fair to compare uncoded versus 
coded message error performance on the basis of a fixed probability of 
channel symbol error, since this implies a fixed level of received channel 
symbol energy per noise density Ec/N0, for all choices of coding (or lack of 
coding). Therefore, repeat parts 1 to 3 under the condition that the channel 
symbol error probability is determined by a bit-energy to noise density ratio, 
Eb/N0, of 12 dB. Assume that the information rate must be the same for all 
choices of coding or lack of coding. Also assume that noncoherent, 
orthogonal binary FSK modulation is used over an AWGN channel.  
Problem 15.5: Discuss the relative error performance capabilities of the 
above coding schemes under the two postulated conditions – fixed channel 
symbol error probability, and fixed bit energy to noise density ratio, Eb/N0. 
Under what circumstances can a repetition code offer error performance 
improvement? When will it cause performance degradation? 
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B Problem 16 (Sklar, 2001, w/ permission) 
Information from a source is organized in 36-bit messages that are to 

be transmitted over an AWGN channel using noncoherently detected BFSK 
modulation. 
Problem 16.1: If no error control coding is used, compute the bit energy to 
noise density ratio, Eb/N0, required to provide a message error probability of 
10–3. 
Problem 16.2: Consider the use of a (127, 36) linear block code (minimum 
distance is 31) in the transmission of these messages. Compute the coding 
gain for this code for a message error probability of 10–3. (The coding gain is 
defined as the difference between the Eb/N0 required without coding and the 
Eb/N0 required with coding.)  

B Problem 17 (Sklar, 2001, w/ permission) 
Problem 17.1: Using the generator polynomial for the (15,5) cyclic code 
introduced in Problem 12, encode the message sequence 1 1 0 1 1 in 
systematic form. Show the resulting code word polynomial. What property 
characterizes the degree of the generator polynomial?  
Problem 17.2: Consider that the received code word is corrupted by an error 
pattern 𝑒𝑒(𝑋𝑋) = 𝑋𝑋8 + 𝑋𝑋10 + 𝑋𝑋13. Show the corrupted code word polynomial. 
Problem 17.3: Form the syndrome polynomial by using the generator and 
received-code word polynomials. 
Problem 17.4: Form the syndrome polynomial by using the generator and 
error-pattern polynomials, and verify that this is the same syndrome 
computed in part 3. 
Problem 17.5: Explain why the syndrome computations in parts 3 and 4 must 
yield identical results.  
Problem 17.6: Using the properties of the standard array of a (15,5) linear 
block code, find the maximum amount of error correction possible for a code 
with these parameters. Is a (15,5) code a perfect code? 
Problem 17.7: If we want to implement the (15,5) cyclic code to 
simultaneously correct two erasures and still perform error correction, how 
much error correction would have to be sacrificed? 

A ADDITIONAL INFORMATION 
The following two pages show tabulated values of the Q function.  
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A SOLUTIONS 

P.1 c Solution 
If the linear block code corrects all 1-bit and 2-bit error patterns but 

corrects none of the error patterns with more than two errors, the 
probability of message error can be stated as 
 

( ) ( ) ( )
24 24 2424 3 3

3 3

24 24
1 10 1 10

k kkk
m

k k
P p p

k k
−− − −

= =

   
= − = −   

   
∑ ∑  

 

To find this sum, we apply the Mathematica code 

 
 

That is, Pm ≈ 1.99×10–3 ≈ 0.2%. 

P.2 c Solution 
At first, the uncoded symbol error probability is 
 

( ) ( )
0

2 2 10 4.47b
u

Ep Q Q Q
N

 
= = × =  

 
 

 

Referring to the Q function table, Q(4.47) = 0.3911×10–5 or, 
equivalently, 3.91×10–6. The corresponding probability of message error is 
computed as 

 

( )6 512
1 1 3.91 10 4.69 10u

mP − −= − − × = ×  
 

For the (24,12) code, the code rate is 1/2. Thus, the data rate is double 
the uncoded rate, or the Ec/N0 is 3 dB less than the Eb/N0, giving Ec/N0 = 7 dB = 
5.01. The coded symbol error probability is then 

( ) ( )
0

2 2 5.01 3.17c
c

Ep Q Q Q
N

 
= = × =  

 
 

 

Referring to the Q function table, Q(3.17) = 0.762×10–3 or 7.62×10–4. 
The corresponding probability of message error is 

( ) ( ) ( )
24 24 2424 4 4

3 3

24 24
1 7.62 10 1 7.62 10

k kkc k
m

k k
P p p

k k
−− − −

= =

   
= − = × − ×   

   
∑ ∑  

This summation can be evaluated with the Mathematica code 

 
That is, 𝑃𝑃𝑚𝑚𝑐𝑐  ≈ 8.85×10–7. The performance improvement in message 

error achieved is calculated to be 

5

7
4.69 10Performance improvement 53.0
8.85 10

−

−

×
= =

×
 

or 17.2 dB.  

P.3 c Solution 
Problem 3.1: First, note that Eb/N0 = 14 dB = 25.1. For noncoherent 

BPSK, the uncoded symbol error is 
 

0 25.1 2 621 1 1.77 10
2 2

b
u

E Np e e− −−= = = ×  
 

and corresponds to a message error probability such that 
 

( )6 512
1 1 1.77 10 2.12 10u

mP − −= − − × = ×  
 

For rate-1/2 coding, Ec/N0 is 3 dB less than Eb/N0, so Ec/N0 = 11 dB = 
12.6. The coded symbol error probability follows as 

 

0 412.6 221 1 9.18 10
2 2

c
c

E Np e e −−−= = = ×  

so that 
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( ) ( ) ( )
24 24 2424 4 4

3 3

24 24
1 9.18 10 1 9.18 10

k kkc k
m

k k
P p p

k k
−− − −

= =

   
= − = × − ×   

   
∑ ∑  

 

That is, 𝑃𝑃𝑚𝑚𝑐𝑐 ≈ 1.54×10–6. Lastly, the performance improvement is 
 

5

6
2.12 10Performance improvement 13.8
1.54 10

−

−

×
= =

×
 

or 11.4 dB.  
Problem 3.2: Now, Eb/N0 = 10 dB = 10 and 

0 10 2 321 1 3.37 10
2 2

b
u

E Np e e− −−= = = ×  

( )3 212
1 1 3.37 10 3.97 10u

mP − −= − − × = ×  

As before, we have rate-1/2 coding, so Ec/N0 is 3 dB less than Eb/N0, 
giving Ec/N0 = 7 dB = 5.01. Thus, 

0 25.01 221 1 4.08 10
2 2

c
c

E Np e e −−−= = = ×  

( ) ( ) ( )
24 24 2424 4 4

3 3

24 24
1 9.18 10 1 9.18 10

k kkc k
m

k k
P p p

k k
−− − −

= =

   
= − = × − ×   

   
∑ ∑  

( ) ( )3 24 32 2 224
4.08 10 1 4.08 10 5.73 10

3
c

mP
−− − − 

∴ ≈ × − × = × 
 

 

 

Finally, the performance improvement is 

2

2
5.73 10Performance improvement 1.44
3.97 10

−

−

×
= =

×
 

or 1.58 dB.  

P.4 c Solution 
Problem 4.1: Since the rows of 𝑮𝑮 all have weight four, no linear 

combination of them can have odd weight. Hence there exists no code word 
of weight 1, on the other hand, 000011 is a possible code word of weight 2; 
accordingly, minimum distance dmin = 2. The rate of the code is 1/2, and the 
coding gain is 𝑅𝑅𝑐𝑐𝑑𝑑min = 1/2 × 2 = 1, or zero dB. 

Problem 4.2: We can design a linear block code with dmin of at least 
three. One example is 

1 0 0 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

 
 =  
  

G  

Problem 4.3: One suggestion is 

0 0 0 0 1 1
1 1 0 0 0 0
0 0 1 1 0 0

 
 =  
  

H

 

P.5 c Solution 
Since all code words of the new code have odd parity, the all-zero 

sequence is not a code word and hence the code is not linear. Student B’s 
argument is not valid because for nonlinear codes the minimum Hamming 
distance and the minimum weight of the code are not the same. Although 
the minimum weight of the code is 1, the minimum Hamming distance is 
actually equal to 2.  

P.6 c Solution 
Problem 6.1: This is a nonlinear code since the all-zero sequence is not 

a code word. 
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Problem 6.2: There are Binomial(6, 3) = 20 code words, hence the rate 
is R = (1/6) × log2 20 = 0.720. Since all code words have weight equal to 3, no 
two code words can have a distance of 1. On the other hand, 111000 and 
011100 have a distance of 2, hence dmin = 2. 

Problem 6.3: The code can detect dmin – 1 = 1 error. 
Problem 6.4: The probability of an undetected error is the probability 

of receiving another code word. If 111000 is transmitted there exist 9 code 
words that are at distance 2 from it and 9 code words that are at distance 4 
from it. There is a single code word that is at distance 6 from it. The 
probability of receiving these code words is the probability of an undetected 
error, namely 

( ) ( )4 22 4 69 1 9 1uP p p p p p= − + − +  

Problem 6.5: 𝒞𝒞1 must contain all code words of 𝒞𝒞 and all linear 
combinations of them. Since for each code word in the original code there is 
another code word at distance 2 from it, all sequences of weight 2 have to be 
code words. With similar reasoning all sequences of weight 4 and the 
sequence of weight 6 are also code words. From the inclusion of sequences 
of sequences of weight 2 and 3, we conclude that all sequences of weights 1 
and 5 should also be included. Hence 𝒞𝒞1 must be the set of all possible 
sequences of length 6. 

P.7 c Solution 
Problem 7.1: To find the code words of the code, we must determine 

the matrix product between the vector of each possible 4-bit message and 
the generator matrix. For the message 0 0 0 1, for example, the code word is 1 
1 0 0 0 0 1, as shown. 

 

For an entry 0 0 1 1, the code word is {1, 1 + 1, 1, 0, 0, 1, 1} = {1, 0, 1, 0, 0, 1, 
1}, as shown. 

 

The full code word list is shown in continuation. The reader is 
challenged to write a Mathematica or MATLAB code that automates the 
process. 

Messages Code words 
0000 0000000 
0001 1100001 
0010 0110010 
0011 1010011 
0100 1010100 
0101 1010100 
0110 0110101 
0111 1100110 
1000 0000111 
1001 1111000 
1010 0011001 
1011 1001010 
1100 0101011 
1101 1001101 
1110 0011110 
1111 1111111 

Problem 7.2: The parity-check matrix is such that, for each (k × n) 
generator matrix G, there must be an (n – k) × n matrix H given by 

 

| T
n k− =  H I P  

 

Here, In-k is the (n − k) × (n − k) identity matrix and PT is the transpose 
of the parity array portion of the generator matrix. For the code at hand, P 
can be gleaned from the first three columns of the given matrix G; that is, 
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1 0 0 0 1 1 1
0 1 0 0 1 0 1
0 0 1 0 0 1 1
0 0

1 1 1
1 0 1
0 1 1

0 1 1 1 01 1 0

   
   
   = → =
   
   
   

G P  

Transposing, 
1 1 0 1
1 0 1 1
1 1 1 0

T

 
 =  
  

P  

so that 

1 0 0 1 1 0 1
| 0 1 0 1 0 1 1

0 0 1 1 1 1 0

T
n k−

 
  = =   
  

H I P  

 Problem 7.3: To determine whether the code word r = 1101101 belongs 
to the code word set, we may compute the syndrome S, which is given by 

[ ] [ ]
1 0 0 1 1 0 1

1 1 0 1 1 0 1 0 1 0 1 0 1 1 0 1 0
0 0 1 1 1 1 0

T

T
 
 = = = 
  

S rH  

Since the syndrome is not the zero vector, we conclude that 1101101 
does not belong to the code word set of the code at hand. We can verify this 
by noting that 1101101 indeed does not occur in the code word set listed in 
part 1.  

Problem 7.4: The error-correcting capability of the code is given by t = 
(dmin – 1)/2, where dmin is the minimum distance. The minimum distance, in 
turn, is defined by the minimum number of 1’s in an individual code word 
that constitutes the code word set, ruling out the all-zero sequence. 
Referring to the code word set given in part 1, we see that the minimum 
number of 1’s a code word obtained in the current problem is 3. Thus, dmin = 3 
and the error-correcting capability is determined as 

min 1 3 1 1
2 2

dt − −   = = =     
 

Problem 7.5: The error-correcting capability m is expressed as 

min 1 3 1 2m d= − = − =  

P.8 c Solution 
Problem 8.1: In general, the generator matrix for a systematic (n,k) 

linear block code can be expressed as 
 

[ ]| k=G P I  
 

where P is the parity array portion of the generator matrix pij = (0 or 1), and Ik 
is the k × k identity matrix. In the present case, the first column of the 
generator matrix can be found by noting that first parity bit has the form 1m1 
+ 1m2 + 0m3 + 1m4 + 1m5, so 

1
1

...0
1
1

 
 
 
 =
 
 
  

G  

In a similar manner, the second parity bit can be stated as 1m1 + 0m2 + 
1m3 + 1m4 + 1m5, so the second column of G is written as follows, 
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1 1
1 0

...0 1
1 1
1 1

 
 
 
 =
 
 
  

G  

 

Proceeding similarly with the remainder of the code word, the 
generator matrix is found to be  

 

1 1 1 1 1 0 0 0 0
1 0 1 1 0 1 0 0 0
0 1 1 1 0 0 1 0 0
1 1 0 1 0 0 0 1 0
1 1 1 0 0 0 0 0 1

 
 
 
 =
 
 
  

G  

 

Problems 8.2 and 8.3: The parity-check matrix is such that, for each (k 
× n) generator matrix G, there exists an (n – k) × n matrix H given by 

 

| T
n k− =  H I P  

 

Here, In–k is the (n – k) × (n – k) identity matrix and PT is the transpose 
of the parity array portion of the generator matrix. Noting that the k × n 
generator matrix obtained in part 1 has 5 rows and 9 columns, it is easy to see 
that k = 5 and n = 9. Thus, In–k = I4. Also, the parity array portion P of the 
generator matrix can be extracted from G, 

1 1 1 1
1 0 1 1
0 1 1 1
1 1 0 1
1 1 1 0

1 0 0 0 0 1 1 1 1
0 1 0 0 0 1 0 1 1
0 0 1 0 0 0 1 1 1
0 0 0 1 0 1 1 0 1
0 0 0 0 1 1 1 1 0

   
   
   
   = → =
   
   
      

G P  

Transposing, 
1 1 0 1 1
1 0 1 1 1
1 1 1 0 1
1 1 1 1 0

T

 
 
 =
 
 
 

P  

so that 
1 0 0 0 1 1 0 1 1
0 1 0 0 1 0 1 1 1

|
0 0 1 0 1 1 1 0 1
0 0 0 1 1 1 1 1 0

T
n k−

 
 
  = =   
 
 

H I P  

Inspecting the columns of PT, it is apparent that dmin = 3.  

P.9 c Solution 
Problem 9.1: The first four columns of the generator matrix can be 

found with reference to the parity-check equations. Since p1 = 1m1 + 1m2 + 0m3 
+ 1m4 is the first parity-check equation, the first column of 𝑮𝑮 will be 1 1 0 1, as 
shown. Likewise, the second parity-check equation is p2 = 1m1 + 0m2 + 1m3 + 
1m4, so the second column of 𝑮𝑮 will be 1 0 1 1, as highlighted below. We 
proceed in the same vein with the remaining two parity-check equations. 
The remaining four columns consist of a 4×4 identity matrix pattern. The 
generator matrix is shown below. 

1 0 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
0 1 0 0

1
0
1
11 0

1
1
0

1

 
 
 =
 
 
 

G  
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To assemble the parity-check matrix, we place a 4×4 identity matrix 
pattern in the left half and the transpose of the parity array portion in the 
right half, as shown. 

4

1 0 0 0 1 1 0 1
0 1 0 0 1 0 1 1

|
0 0 1 0 1 1 1 0
0 0 0 1 0 1 1 0

T

 
 
  = =   
 
 

H I P  

Problem 9.2: Since the parity-check equations are assembled with 
four message digits mi, the minimum distance dmin = 4. The corresponding 
error-correcting capability is 

 

min 1 4 1 1
2 2

dt − −   = = =     
 

 

Problem 9.3: For 𝒓𝒓𝟏𝟏 = (1 0 1 0 1 0 1 0) to be a code word, the syndrome 𝑺𝑺 
= 𝒓𝒓𝟏𝟏𝑯𝑯𝑻𝑻 must yield the zero vector.  

 
Clearly, 𝑺𝑺 = (1 + 1, 1 + 1, 1 + 1 + 1, 1) = (0,0,1,1); therefore, 𝒓𝒓𝟏𝟏 is not a code 

word in this system. 
 

Problem 9.4: Using the same reasoning as in the previous part, 𝒓𝒓𝟐𝟐 = (0 
1 0 1 1 1 0 0) will be a code word of the present system if the syndrome 𝑺𝑺 = 
𝒓𝒓𝟐𝟐𝑯𝑯𝑻𝑻 is found to be the zero vector.  

 

That is, 𝑺𝑺 = (1 + 1, 1 + 1, 1 + 1, 1 + 1) = (0,0,0,0). The syndrome is the zero 
vector, hence 𝑟𝑟2 is a code word in this system.  

P.10 c Solution 
Problem 10.1: A generator polynomial 𝑔𝑔(𝑋𝑋) of an (n,k) cyclic code is a 

factor of 𝑋𝑋𝑛𝑛 − 1; that is, 𝑋𝑋𝑛𝑛 + 1 = 𝑔𝑔(𝑋𝑋)ℎ(𝑋𝑋). Take the first polynomial, 𝑔𝑔(𝑋𝑋) = 1 + 
𝑋𝑋3 + 𝑋𝑋4. In this case, n – k = 4 so, for k = 1, 2, 3, we have n = 5, 6, 7. With n = 5, 
we divide 𝑋𝑋5 + 1 by the given polynomial; one way to go is to combine 
Mathematica’s PolynomialQuotientRemainder and PolynomialMod 
commands, with the latter set to 2 for modulo-2 division, 

 

The remainder is different from zero, so a cyclic code cannot be 
generated with this polynomial when n = 5. Proceeding with n = 6, we divide 
𝑋𝑋6 + 1 by the given polynomial to obtain 

 

Again, the remainder is not zero, so a cyclic code cannot be generated 
with this polynomial when n = 6. Proceeding with n = 7, we divide 𝑋𝑋7 + 1 by 
the given polynomial to obtain 
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The remainder is nonzero, so the polynomial cannot yield a cyclic code 
with n set to 7 either.  

Problem 10.2: The polynomial is now 𝑔𝑔(𝑋𝑋) = 1 + 𝑋𝑋2 + 𝑋𝑋4. In this case, n – 
k = 4 and, for k = 1, 2, 3, we have n = 5, 6, 7 respectively. First, with n set to 5, 
we divide 𝑋𝑋5 + 1 by the polynomial in question to obtain 

 

 

The remainder is different from zero, so a cyclic code cannot be 
generated with the given polynomial when n = 5. Next, we set n = 6 and divide 
the polynomial by 𝑋𝑋6 + 1, giving 

 

The remainder is zero, which indicates that the polynomial can 
produce a cyclic code with n set to 6. Noting that n – k = 4, it follows that k = 2 
and the code thus formed is (n, k) = (6, 2). 

Lastly, we set n = 7 and divide the polynomial by 𝑋𝑋7+ 1, which leads to 

 

The remainder is different from zero, so a cyclic code cannot be 
formed with n = 7. 

Problem 10.3: The polynomial is now 𝑔𝑔(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋2 + 𝑋𝑋4. In this case, 
n – k = 4 and, for k = 1, 2, 3, we have n = 5, 6, 7 respectively. First, with n set to 
5, we divide 𝑋𝑋5 + 1 by the polynomial in question to obtain 

 

The remainder is nonzero, so a cyclic code cannot be formed with n = 
5. Next, we set n = 6 and divide the polynomial by 𝑋𝑋6 + 1, giving 

 

Again, a cyclic code cannot be formed with n = 6. Lastly, with n = 7, we 
perform the usual division to obtain 

 

The remainder is zero, which indicates that the polynomial can 
produce a cyclic code with n set to 7. Noting that n – k = 4, it follows that k = 3 
and the code thus formed is (n, k) = (7, 3) in nature.  

P.11 c Solution 
The message 𝑚𝑚 = 1 0 1 can be represented by the polynomial 𝑚𝑚(𝑋𝑋) = 

1 + 0 × 𝑋𝑋 + 1 × 𝑋𝑋2 = 1 + 𝑋𝑋2. From the length of the generator 𝑔𝑔, we may write n 
– k = 4; but the code word length k = 3, so n = 7. Upshifting the message 𝑚𝑚(𝑋𝑋) 
brings to 

( ) ( )4 2 4 61n kX m X X X X X− = + = +  

To establish the code word, we need the remainder 𝑟𝑟(𝑋𝑋), which is 
related to other components of the algebraic encoding process by 

( ) ( ) ( ) ( )n kX m X q X g X r X− = +  
 

Next, we divide the upshifted 𝑚𝑚(𝑋𝑋) by the generator 𝑔𝑔(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋2 + 
𝑋𝑋4 to obtain 
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We proceed to compute the desired code word, 

( ) ( ) ( )2 3 4 6n kr X X m X X X X X−+ = + + +  

( ) ( ) 101 1001n kr X X m X−∴ + =  
 

The bits in red are the parity part of the string, while the bits in blue 
are the message part of the string.  

P.12 c Solution 
Problem 12.1: We first multiply the message polynomial by 𝑋𝑋𝑛𝑛−𝑘𝑘 = 𝑋𝑋10, 

giving 
 

( ) ( )10 10 2 4 10 12 141X m X X X X X X X= × + + = + +  
 

We proceed to divide this polynomial by the generator 𝒈𝒈(𝑋𝑋) = 1 + 𝑋𝑋 + 
𝑋𝑋2 + 𝑋𝑋5 + 𝑋𝑋8 + 𝑋𝑋10,  

 

As can be seen, the remainder is r(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋2 + 𝑋𝑋4 + 𝑋𝑋6 + 𝑋𝑋8 + 𝑋𝑋9. 
Accordingly, the code word we’re looking for is 

( ) ( ) ( )2 4 6 8 9 10 12 141n kr x X m X X X X X X X X X X−+ = + + + + + + + + +  

( ) ( ) 111010101 101011n kr x X m X−∴ + =  
 

The bits in red are the parity part of the code word, while the bits in 
blue are the message part of the code word.   

Problem 12.2: The basic test is to divide 𝑽𝑽(𝑋𝑋) by the generator 𝒈𝒈(𝑋𝑋); if 
the remainder 𝒓𝒓(𝑋𝑋) is zero, 𝑽𝑽(𝑋𝑋) is a code polynomial in the system in 
question. Appealing to Mathematica, we type the code 

 

Since the remainder 𝒓𝒓(𝑋𝑋) = 1 + 𝑋𝑋2 + 𝑋𝑋4, 𝑽𝑽(𝑋𝑋) is not a code word in the 
system under consideration.  

P.13 c Solution 
The standard array of a code such as the present one will have 2k = 23 = 

8 columns and 2n-k = 27-3 = 16 rows, totaling 16 × 8 = 128 entries. The number 
of single- and double-error patterns are, respectively, 

 

7
Single-error patterns 7

1
 

= = 
 

 

7
Double-error patterns 21

2
 

= = 
 

 

With 16 – 1 = 15 available rows, the coset leaders allow for the 
correction of all 7 single-error patterns, leaving us with 15 – 7 = 8 rows for the 
correction of double-error patterns. Since 21 > 8, the code can correct only 
8/21 = 38% of the double-error patterns, and we conclude that the (7,3) code 
is not a perfect code.  

Now, take the (7,4) code. The standard array of this code will have 24 = 
16 columns and 27-4 = 8 rows, totaling 8 × 16 = 128 entries. The number of 
single-error patterns is Binomial(7,1) = 7. With 8 coset leaders (i.e., 7 rows), we 
can correct all single-error patterns and nothing more. It follows that the 
(7,4) code is a perfect code.  

Now, take the (15,11) code. The standard array of this code will have 211 
= 2048 columns and 215-11 = 16 rows, totaling 16 × 2048 = 32,768 entries. The 
number of single-error patterns is Binomial(15,1) = 15. With 16 coset leaders 
(i.e., 15 rows), we can correct all single-error patterns and nothing more. 
Therefore, the (15,11) code is a perfect code.  
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P.14 c Solution 
Problem 14.1: The parity-check matrix 𝑯𝑯 can be expressed as 

| T
n k− =  H I P  

Noting that n = 15 and k = 11, the identity matrix component of 𝑯𝑯 will 
be 4 × 4 in dimensions. The transpose of the parity array can be easily 
established with the given 𝑷𝑷. We ultimately obtain 

1 0 0 0 0 0 1 0 1 1 0 1 1 1 1
0 1 0 0 0 1 0 1 0 1 1 1 1 0 1
0 0 1 0 1 0 0 1 1 0 1 1 0 1 1
0 0 0 1 1 1 1 0 0 0 1 0 1 1 1

 
 
 =
 
 
 

H  

Problem 14.2: The standard array is made up of 15-bit strings. Noting 
that n = 15 and k = 11, we surmise that there are 215-11 = 16 coset leaders, as 
listed below. 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

 

The number of single-error patterns is Binomial(15,1) = 15. With 16 
coset leaders (i.e., 15 rows), we can correct all single-error patterns and 
nothing more. It follows that the (15,11) code is perfect in nature. 

Problem 14.3: To compute the syndrome 𝑆𝑆, we matrix-multiply the 
given vector 𝒓𝒓 by the transpose of the parity-check matrix, 

[ ]0 1 1 1 1 1 0 0 1 0 1 1 0 1 1T T= = ×S rH H  

[ ]0 11 0∴ =S  

Since the syndrome is not the zero vector, we conclude that 𝒓𝒓 is not a 
code word. Mapping the syndrome S = [0 1 1 0] onto the parity-check matrix, 
we see that this syndrome is found at the eighth column of 𝑯𝑯.  

1 0 0 0 0 0 1 1 1 0 1 1 1 1
0 1 0 0 0 1 0 0 1 1 1 1 0 1
0 0 1 0 1 0

0
1
1
0

0 1 0 1 1 0 1 1
0 0 0 1 1 1 1 0 0 1 0 1 1 1

 
 
 =
 
 
 

H  

Thus, the coset leader resulting in the syndrome [0 1 1 0] is the one 
that has a 1 at the eighth position of the sequence; the coset leader in 
question is 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0. The bit error is at the eighth positon, 
so the correct code word must be 0 1 1 1 1 1 0 1 1 0 1 1 0 1 1.  

Problem 14.4: With the knowledge that the maximum error-
correcting capability is tmax = 1, and inspecting the generator matrix 𝑮𝑮 = [𝑷𝑷 | 
𝑰𝑰𝑘𝑘], we glean a minimum distance dmin = 3. 

P.15 c Solution 
Problem 15.1: Let Pm denote the probability that a word or message is 

in error. Determining the probability that a word (basically, a 42-bit 
sequence) will be received in error is calculated as 

( ) ( )427 6 3 21 1 1 1 10 4.12 10mP p × − −= − − = − − = ×  
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Problem 15.2: Let Pc be the probability that a word is correct, and let 
Pcc be the probability that a character within the word is correct. The 
probability that a message will be in error, Pm, may be written in terms of Pc 
as 

 

1 (I)m cP P= −  
 

Also, 𝑃𝑃𝑐𝑐 = 𝑃𝑃𝑐𝑐𝑐𝑐6 . This latter term, 𝑃𝑃𝑐𝑐𝑐𝑐, can be stated as 
 

( ) ( ) ( )7 3 7 2 73
1 1 1 1

2ccP p p p× ×   = − + − − −    
 

 

where the first term denotes the probability that each of the 3 repetitions 
are decoded correctly, while the second denotes the probability that 2 of the 
3 repetitions are decoded correctly and 1 is decoded incorrectly; these are the 
two scenarios in which a majority voting probability approach to 3 
repetitions will lead to a correct reception. Substituting in (I) and noting that 
p = 10–3, we get 

61 1m c ccP P P= − = −  

( ) ( ) ( )21 14 73 3 3 4

6
3

1 1 10 1 10 1 1 10 8.72 10
2mP − − − −    ∴ = − − + − − − = ×       

 

Problem 15.3: In this case, the probability that the message received 
will be in error can be estimated with the first term of the pertaining 
binomial expansion, namely 

( ) ( ) ( )15 11111115 3 3 27126 126
1 10 1 10 9.21 10

15 15mP p p − − −   
≈ − = − = ×   
   

 

Problem 15.4: First, with Eb/N0 = 12 dB = 15.8, the channel error 
probability is established as 

 

15.8 2 41 1.85 10
2

p e− −= = ×  

 

so that, updating the probability found in part 1, 
 

( ) ( )427 6 4 31 1 1 1 1.85 10 7.74 10mP p × − −= − − = − − × = ×  
 

To update the result of part 2, first note that coding is rate-1/3, 
because 200% redundancy is introduced. It follows that 

 

0 0

15.8 5.27
3 3

c bE E
N N

= = =  

and  

25.27 21 3.59 10
2

p e −−= = ×  

Finally, 

( ) ( ) ( )21 14 7 1

6
3

1 1 0.0359 1 0.0359 1 1 0.0359 5.66 10
2mP −    = − − + − − − = ×      

 

To update the result of part 3, we write 

( ) ( ) ( )111 15 11115 5126 126
1 0.0359 1 0.0359 3.77 10

15 15mP p p −   
≈ − = − = ×   
   

 

Problem 15.5: Operating a communication system with the symbol 
error probability fixed regardless of the message redundancy implies that 
the bit energy to noise density Eb/N0 must be increased for increased 
redundancy. Under such conditions we see that the repetition code provides 
about 16 dB error performance improvement over the uncoded case, and the 
BCH code provides an enormous improvement over the other two cases. A 
more realistic comparison of coding capability is one where the system 
operates with a fixed Eb/N0. Here we see that the repetition code results in 
nearly 35 dB of degraded error performance, while the BCH code offers 
about 7 dB of coding gain compared to the uncoded case. Therefore, a 
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repetition code offers improvement when the received Eb/N0 is increased (i.e. 
by increasing transmission power or increasing transmission duration and 
thus delay). Otherwise, the repetition code causes degradation.  

P.16 c Solution 
Problem 16.1: We first determine the uncoded symbol error 

probability pu, 

( )361 1 36u
m u uP p p= − − ≈  

 

But the message error probability was given as 10–3, therefore 
 

3
3 51036 10 2.78 10

36
u

m u uP p p
−

− −≈ = → = = ×  

Now, for BFSK modulation the bit energy to noise density ratio can be 
stated as 

( )02

0

1 2ln 2
2

bE N b
u u

Ep e p
N

−= → = −  

( )5

0

2ln 2 2.78 10 19.6bE
N

− ∴ = − × × =   

( )10
0

10log 19.6 12.9dBbE
N

∴ = =  

Problem 16.2: Use of a (127,36) code with minimal distance dmin = 31 
can correct tmax = 15 errors. The probability that a coded message will be in 
error can be estimated from the greatest term of the pertaining binomial 
expansion, namely 

 

( )11116 3127
1 10

16
c

m c cP p p − 
≈ − = 
 

 

  

The expression above is a polynomial equation of high degree and 
does not lend itself to simple methods of solution. Still, a value of pc (i.e., a 
root) can be found by means of Mathematica’s FindRoot command or 
MATLAB’s fzero command. We first plot the equation from pc = 0 to pc = 1 to 
estimate an initial guess for use with either of these commands. 

 

As can be seen, the equation has a root between 0 and 0.1, as circled 
in red, and another between 0.2 and 0.3, as circled in blue. The error 
probability pc we’re looking for is the lower probability, so an initial guess of 
0.05 would seem reasonable. We proceed to apply MATLAB’s fzero command, 

function y = prob(x) 
y = nchoosek(127,16)*x^16*(1-x)^111-0.001; 
 
>>fun = @prob; 
x0 = 0.1; 
x = fzero(fun,x0) 
 

The command returns pc = 0.0546. From the error probability for BFSK 
modulation, we may write 

( )02

0

1 2ln 2
2

bE N b
u u

Ep e p
N

−= → = −  
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( )
0

2ln 2 0.0546 4.429 6.46dBbE
N

∴ = − × = =  

The corresponding code-bit energy per noise density is 

0 0

127 127 4.43 15.6 11.9dB
36 36

c bE E
N N

= = × = =  

Comparing with the result of part 1, the coding gain is 

Coding gain 12.9 11.9 1.0dB= − =  

P.17 c Solution 
Problem 17.1: First, a message 𝑚𝑚 = 1 1 0 1 1 can be represented by the 

polynomial 𝑚𝑚(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋3 + 𝑋𝑋4. Noting that n – k = 10 as before, we may 
write 

( ) ( )10 10 3 4 10 11 13 141X m X X X X X X X X X= × + + + = + + +  
 

The generator polynomial is 𝑔𝑔(𝑋𝑋) = 1 + 𝑋𝑋 + 𝑋𝑋2 + 𝑋𝑋5 + 𝑋𝑋8 + 𝑋𝑋10. The 
degree of the generator polynomial is precisely n – k; in the present case, n = 
14 and k = 4, so n – k = 10 = deg(𝑔𝑔(𝑋𝑋)). We proceed to determine the parity 
polynomial p(𝑋𝑋), which is the remainder of the division of the upshifted 𝑚𝑚(𝑋𝑋) 
by the generator 𝑔𝑔(𝑋𝑋); that is, 

 

Clearly, 𝑝𝑝(𝑋𝑋) = 𝑋𝑋9 + 𝑋𝑋8 + 𝑋𝑋7 + 𝑋𝑋6 + 𝑋𝑋4 + 𝑋𝑋2. The code word U(𝑋𝑋) is 
calculated to be 

( ) ( ) ( )n kU X X m X p X−= +  

( ) 2 4 6 7 8 9 10 11 13 14U X X X X X X X X X X X∴ = + + + + + + + + +  

( ) 001010111111011U X =  

As a safety check, dividing the code word polynomial 𝑈𝑈(𝑋𝑋) by the 
generator 𝑔𝑔(𝑋𝑋) should yield the same quotient 𝑞𝑞(𝑋𝑋) = 𝑋𝑋2 + 𝑋𝑋3 + 𝑋𝑋4 (see code 
snippet above) obtained in the division of the upshifted 𝑚𝑚(𝑋𝑋) by 𝑔𝑔(𝑋𝑋); also, 
the remainder must be zero. With these notes in mind, we type the code 

 

The results match our expectations.  
Problem 17.2: The corrupted version 𝑍𝑍(𝑋𝑋) of a polynomial 𝑈𝑈(𝑋𝑋) can be 

stated as 

( ) ( ) ( )Z X U X e X= +  

In the present case, 

( ) 2 4 6 7 8Z X X X X X X= + + + + 9 10X X+ + 11 13X X+ +( )14

8

X

X

+

+ 10X+ 13X+( )
 

( ) 2 4 6 7 9 11 14Z X X X X X X X X= + + + + + +  

Problem 17.3: To find the syndrome 𝑆𝑆(𝑋𝑋), first note that the code 
polynomials in question are related by 

 

( ) ( ) ( ) ( )Z X q X g X S X= +  

or, equivalently, 

( )
( ) ( ) ( )

( )
Z X S X

q X
g X g X

= +  

 

As can be seen, the syndrome polynomial 𝑆𝑆(𝑋𝑋) is the remainder of the 
division of received polynomial 𝑍𝑍(𝑋𝑋) by the generator 𝑔𝑔(𝑋𝑋); that is, 
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Thus, 

( ) 4 6 8 91S X X X X X= + + + +  

Problem 17.4: Noting that 
 

( )
( ) ( ) ( ) ( )

( )
e X S X

m X q X
g X g X

= + +  

 

another way to obtain the syndrome 𝑆𝑆(𝑋𝑋) is to divide the error pattern 
polynomial 𝑒𝑒(𝑋𝑋) = 𝑋𝑋8 + 𝑋𝑋10 + 𝑋𝑋13 by the generator 𝑔𝑔(𝑋𝑋); indeed, 

 

The remainder 𝑆𝑆(𝑋𝑋) = 1 + 𝑋𝑋4 + 𝑋𝑋6 + 𝑋𝑋8 + 𝑋𝑋9 matches the result of the 
previous part.  

Problem 17.5: A code word 𝑈𝑈(𝑋𝑋) is such that 𝑈𝑈(𝑋𝑋) = 𝑚𝑚(𝑋𝑋)𝑔𝑔(𝑋𝑋), where 
𝑚𝑚(𝑋𝑋) and 𝑔𝑔(𝑋𝑋) are the message and generator polynomials, respectively. The 
received polynomial 𝑍𝑍(𝑋𝑋) equals the code word 𝑈𝑈(𝑋𝑋) plus the error pattern 
𝑒𝑒(𝑋𝑋), 

( ) ( ) ( ) (I)Z X U X e X= +  

Equivalently, the received polynomial 𝑍𝑍(𝑋𝑋) can be stated as 

( ) ( ) ( ) ( ) (II)Z X q X g X S X= +  

where 𝑔𝑔(𝑋𝑋) is the generator polynomial, 𝑞𝑞(𝑋𝑋) is the quotient of 𝑍𝑍(𝑋𝑋) and 𝑔𝑔(𝑋𝑋), 
and 𝑆𝑆(𝑋𝑋) is the syndrome polynomial. Combining the definition of 𝑈𝑈(𝑋𝑋) and 
the two foregoing equations, we ultimately find 

( ) ( ) ( ) ( ) ( ) (III)e X m X q X g X S X= + +    

From (II) and (III), it is apparent that the syndrome 𝑆𝑆(𝑋𝑋) obtained as the 
remainder of 𝑍𝑍(𝑋𝑋) modulo 𝑔𝑔(𝑋𝑋) is exactly the same polynomial as the 
remainder or 𝑒𝑒(𝑋𝑋) modulo 𝑔𝑔(𝑋𝑋). 

Problem 17.6: A standard array for a (15,5) code has 25 columns and 215-

5 = 210 rows, totaling 25 × 210 = 215 entries. Thus, of the 210 = 1024 rows we 
calculate, the number of rows needed for single, double, etc. errors is as 
follows. 

Single errors Double errors Triple errors Quadruple errors 
15

15
1

 
= 

 
 

15
105

2
 

= 
 

 
15

455
3

 
= 

 
 

15
1365

4
 

= 
 

 

 

With 15 rows for correction of single errors, we are left with 1023 – 15 
= 1008 rows for higher-order errors. With 105 rows for correction of double 
errors, we are left with 1008 – 105 = 903 rows for correction of higher-order 
errors. With 455 triple errors, we are left with 903 – 455 = 448 rows for 
calculation of higher-order errors. We have 448 rows remaining, but 
correction of quadruple errors requires 1365 rows; we conclude that the code 
in question is not perfect, in that is can account for only 448/1365 ≈ 32.8% 
of quadruple errors.  

Problem 17.7: The minimum distance is related to error correction 𝛼𝛼 
and the erasure correction 𝛾𝛾 by the simple expression 

 

min 2 1d α γ≥ + +  
 

Taking a minimum error-correcting capability t = 2, dmin is calculated 
to be 

min 2 1 2 2 1 7d t= + = × + =  
 

If the cyclic code is to simultaneously correct two erasures and still 
perform error correction, we must have 𝛾𝛾 = 2, giving 

 

min 2 1 7 2 2 1d α γ α≥ + + → ≥ + +  
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7 2 3α∴ ≥ +  

2α∴ ≤  
 

With 𝛼𝛼 = 2, the code must be implemented by sacrificing one unit of 
error-correction capability. The result is a double-error correcting, double-
erasure correcting code. 
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