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Quiz GY202 

 
Lucas Monteiro Nogueira 

 
Note: Use Ω = 7.3×10-5 rad/s as the rotational frequency 

of the Earth, unless stated otherwise. 
 

A PROBLEMS 
 [ Problem 1   

In an unstable compressible troposphere: 
A) Temperature decreases with height faster than the adiabatic lapse rate, 
and potential temperature decreases with height. 
B) Temperature decreases with height faster than the adiabatic lapse rate, 
and potential temperature increases with height. 
C) Temperature decreases with height slower than the adiabatic lapse rate, 
and potential temperature decreases with height. 
D) Temperature decreases with height slower than the adiabatic lapse rate, 
and potential temperature increases with height. 

[ Problem 2 
A westerly zonal flow at 45o is forced to rise adiabatically over a 

north-south oriented mountain barrier. Before striking the mountain the 
westerly wind increases linearly toward the south at a rate of 20 m s-1/1000 
km. The crest of the mountain range is at the 85-kPa level and the 
tropopause, located at 30 kPa (300 mb), remains undisturbed by the forced 
ascent of the air. The surface pressure to the west of the mountain barrier is 
100 kPa (1000 mb). True or false? 
1.(   ) The initial relative vorticity of the air is greater than 10–5 s-1. 
2.(   ) As flow reaches the crest, it is deflected by 6 degrees of latitude 
towards the south. The relative vorticity at the end of the forced ascent 
trajectory has absolute value greater than 5.0×10–6 s–1.  
3.(   ) If the current assumes a uniform speed of 8 m/s during its ascent to the 
crest, the radius of curvature of the streamlines at the crest has absolute 
value greater than 2400 km.  

 Problem 3.1 
A homogeneous barotropic ocean of depth H = 4 km has a zonally 

symmetric geostrophic jet whose profile is given by the expression 𝑢𝑢�𝑔𝑔 = U × 
exp[−(y/L)2], where U = 1 m/s and L = 250 km are constants. Compute the 
vertical velocity produced by convergence in the Ekman layer at the ocean 
bottom. What are the maximum values of velocity components 𝜈̅𝜈 and 𝑤𝑤�  if 
eddy viscosity K = 10–3 m2s-1 and Coriolis parameter 𝑓𝑓 = 10-4

 s-1? (Assume that 
𝑤𝑤�  and the viscous stress vanish at the surface.) 

 Problem 3.2 
Using the approximate zonally averaged momentum equation   

𝜕𝜕𝑢𝑢�/𝜕𝜕t = 𝑓𝑓𝜈̅𝜈, compute the spin-down time for the zonal jet described in the 
previous part. 
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 [ Problem 4 
Using the linearized form of the vorticity equation, 
 

0
hD u vf v

Dt x y
ζ

β
′ ′ ∂ ∂

= − + − ∂ ∂ 
 

 

and the 𝛽𝛽-plane approximation, derive the Rossby wave speed for a 
homogeneous incompressible ocean of depth h. Assume a motionless basic 
state and small perturbations that depend only on x and t: 
 

( ) ( ) ( ), ; , ; ,u u x t v v x t h H h x t′ ′ ′= = = +  
 

where H is the mean depth of the ocean. With the aid of the continuity 
equation for a homogeneous layer and the geostrophic wind relationship 𝜈𝜈′ 
= g𝑓𝑓0−1𝜕𝜕h’/𝜕𝜕x, show that the perturbation vorticity equation can be written 
in the form 

22
0

2 0
f hh

t x gH x
β

  ′∂ ∂ ∂′− + = ∂ ∂ ∂ 
 

and that h’ = h0exp[ik(x – ct)] is a solution provided that 

2
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 
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If the ocean is 3 km deep, what is the Rossby wave speed at latitude 
45o for a wave of zonal wavelength equal to 800 km? 

 [ Problem 5 
The linearized form of the quasi-geostrophic vorticity equation can 

be written as follows: 
 

2
0u f

t x x
ψψ β
′∂ ∂ ∂  ′+ ∇ + = − ∇ ⋅ ∂ ∂ ∂ 

V  

 

Suppose that the horizontal divergence field is given by 

( )cosA k x ct∇⋅ = −  V  
 

where A is a constant. Find a solution for the corresponding relative 
vorticity field. What is the phase relationship between vorticity and 
divergence? For what value of c does vorticity become infinite?  

[ Problem 6 
Consider a thermally stratified fluid contained in a rotating annulus 

of inner radius 0.8 m, outer radius 1.0 m, and depth 0.1 m. The temperature 
at the bottom boundary is held constant at T0. The fluid is assumed to 
satisfy the equation of state 𝜌𝜌 = 𝜌𝜌0[1 – 𝜀𝜀(T – T0)], where 𝜌𝜌0 is density at initial 
temperature T0, 𝜌𝜌 is density at temperature T, and 𝜀𝜀 is the thermal 
expansion coefficient. If the temperature increases linearly with height 
along the outer radial boundary at a rate of 1oC cm-1 and is constant with 
height along the inner radial boundary, determine the geostrophic velocity 
at the upper boundary for a rotation rate of Ω = 1 rad s-1. Assume that the 
temperature depends linearly on radius at each level. Take 𝜌𝜌0 = 103 kg/m3 
and 𝜀𝜀 = 2×10-4 K-1. 
A) 𝑢𝑢𝑔𝑔 = 0.104 cm/s 

B) 𝑢𝑢𝑔𝑔 = 0.245 cm/s 
C) 𝑢𝑢𝑔𝑔 = 0.385 cm/s 

D) 𝑢𝑢𝑔𝑔 = 0.504 cm/s 
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[ Problem 7 
If the value of the 𝛽𝛽 parameter equals zero, the critical wavelength 

for a baroclinic instability does not depend on the magnitude of the basic 
state thermal wind UT. The growth rate, however, does depend on UT. 
Indeed, the exponential growth rate is stated as 𝛼𝛼 = kci , where k is 
wavenumber and ci designates the imaginary part of the phase speed. In 
the present case, 

2 2

2 2

1 2
2
2T

kkU
k

λα
λ

 −
=  + 

 

where 𝜆𝜆 is the wavelength. This expression indicates that growth rate 
increases linearly with the mean thermal wind. Use the expression above to 
show that the maximum growth rate for baroclinic instability when 𝛽𝛽 = 0 
occurs for a squared wavenumber k2 such that 

( )2 22 2 1k λ= −  

How long does it take the most rapidly growing wave to amplify by 
a factor of e1 if 𝜆𝜆 = √2 × 10–6 m-1 and UT = 20 m/s? 

[ Problem 8 
Regarding the theories of atmospheric and oceanic dynamics, are the 

following statements true or false? 
1.(   ) A region of the atmosphere has temperature of 47oC, pressure of 1010 
hPa, and saturation-mixing ratio of 22 g/kg. Taking cp = 1000 J/kg∙K and Lc = 
2.5×106 J/kg as the latent heat of vaporization of air, the corresponding 
saturation lapse rate in this region is greater than 3.8 K/km. 

2.(   ) The geostrophic wind speed around a low-pressure region is 16 m/s. 
The corresponding gradient wind speed, assuming a Coriolis parameter of 
10–4 s-1 and a radius of curvature of 320 km, is greater than 11 m/s. 

3.(   ) A background jet stream of speed equal to 50 m/s meanders with 3000 
km wavelength while centered at 30oN. The barotropic Rossby wave formed 
by the jet has phase speed relative to the ground greater than 38 m/s. 

4.(   ) Consider the rate of change of circulation about a square in the xy-
plane with sides of 1200-km length if temperature increases eastward at a 
rate of 1oC/200 km and pressure increases northward at a rate of 1 mb/200 
km. The pressure at the origin (the lower left corner; see illustration below) 
is 1100 mb. The rate of change of circulation under these conditions is 
greater than 10 m2s–2. 

 

5.(   ) Howard and Pedlosky showed that the complex phase velocity of a 
wave arising from barotropic instability must lie inside, or on, a semi-
elliptical region on the wave speed plane (cr, ci), where c = cr + ici, as 
illustrated below. Importantly, the ellipse in question always has eccentricity 
greater than 1. 
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6.(   ) Barotropic instability is a possible energy source for some equatorial 
disturbances. Consider the following profile for an easterly jet near the 
equator, 

( ) ( )2
0 0sinu y u y y= − −    

where u0, y0, and ℓ are constants and y is the distance from the equator. It 
can be shown that this profile will be barotropically unstable if 3u0ℓ2 > 𝛽𝛽, 
where 𝛽𝛽 is the 𝛽𝛽-plane parameter.  

7.(   ) Raindrops can be accurately modelled as quasi-oblate spheroids. An 
oblate spheroid has separate horizontal and vertical symmetry and can have 
its shape described by the so-called axis ratio 𝛼𝛼𝑁𝑁 = 𝑏𝑏/𝑎𝑎, where 𝑎𝑎 and 𝑏𝑏 are 
the lengths of the semi-major (horizontal) and semi-minor (vertical) axes, 
respectively. Empirical investigations show that the axis ratio of raindrops 
increases with drop size, indicating that drops become more round (less 
flat) as they become larger. 

8.(   ) Unlike raindrops, shapes of ice and snow crystals are not spheroids; 
rather, they take on geometries symmetric with respect to a central axis, 
and hence can be better represented by polar coordinates. One simple 
expression used for this purpose is 

( )2sin
b

r a n cθ = +   

where r and 𝜃𝜃 are the radial and angular coordinates, respectively, and 𝑎𝑎, 𝑏𝑏, 
and 𝑐𝑐 are fitting constants. Parameter n determines the number of 
symmetric sides of the crystal, which is simply 2n. Plotting the relation 
above with a = 4.22, b = 12, c = 3.4 and 2n = 6 yields a snowflake with the 
following shape. 

 

9.(   ) The kinematic viscosity of air at 288 K is 1.48×10–5 m2s-1, and a typical 
free-atmosphere turbulent dissipation rate at this temperature is 5×10–4 
m2s-3. Given these values, the corresponding Kolmogorov scale in a cloud-
free atmosphere is calculated to be greater than 2 mm. 

10.(   ) Assume that equivalent potential temperature, 𝜃𝜃𝑒𝑒, can be used to 
model a saturated air parcel undergoing pseudoadiabatic ascent. Let 𝜃𝜃𝑒𝑒 be 
approximated by 𝜃𝜃𝑒𝑒 = 𝜃𝜃exp(Lcqs/cpT), where 𝜃𝜃 is potential temperature, Lc is 
the latent heat of vaporization, qs is the saturation mixing ratio (i.e., the 
mass of water vapor per unit mass of dry air in a saturated parcel), cp is the 
constant-pressure specific heat, and T is temperature. An air parcel at 920 
mb with temperature 20oC is saturated (mixing ratio 16 g kg-1). Taking cp = 
1000 J/kgK and Lc = 2.5×106 J/kg as the latent heat of vaporization of water, 
the corresponding equivalent potential temperature is greater than 338 K. 

11.(   ) The time 𝜏𝜏 required to reach the peak mixed layer thickness in warm 
air mass genesis can be estimated with the implicit relation 

0

0

1 3

c
g eβτ

θ
τ

βγ

 
=   

 
 

 

where c = 140 (dimensionless), 𝜃𝜃0 is near-surface temperature (K), g is 
gravitational acceleration (m/s2), 𝛽𝛽 is large-scale divergence (s-1), 𝛾𝛾0 is the 
initial potential temperature (K/km) in the time profile 𝛾𝛾 = 𝛾𝛾0exp(𝛽𝛽t). Using 
𝜃𝜃0 = 20oC, |g| = 9.81 m/s2, 𝛽𝛽 = 10–6 s-1, and 𝛾𝛾0 = 3.3 K/km, the equation above 
can be solved to yield a time for peak ML thickness greater than two and a 
half days. 
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12.(   ) A 10-km thick cumulonimbus cloud over land has 𝜃𝜃𝑣𝑣 - 𝜃𝜃�𝑣𝑣 = 8 K, where 
𝜃𝜃𝑣𝑣 denotes the potential virtual temperature of a rising parcel of air and 𝜃𝜃�𝑣𝑣 
denotes the potential virtual temperature of the environment. The value of 
𝜃𝜃�𝑣𝑣 between 0 and 10 km is 288 K. Using these parameters, the convective 
available potential energy (CAPE) for the cloud in question is calculated to 
be greater than 2800 m2s–2. 

13.(   ) As a follow-up to the previous statement, we may consider that CAPE 
is a measure of the energy available to accelerate a parcel vertically, and as 
such can be used to estimate the maximum vertical velocity of an air parcel 
with the relation 𝑤𝑤 = (2 × CAPE)0.5. However, this equation tends to 
overestimate the vertical velocity achieved because mixing of 
environmental air with the thunderstorm updraft reduces the CAPE 
significantly. Assuming that only 10% of the CAPE obtained in the previous 
statement is converted to kinetic energy, we find a value of 𝑤𝑤 greater than 
20 m/s. 

14.(   ) Several models have been developed to explain the oscillatory nature 
of the El Niño-Southern Oscillation (ENSO). One early approach is the 
delayed oscillator model, in which the low-frequency interannual 
oscillations associated with ENSO are mainly explained by the reflection of 
Rossby waves at the western boundary of the Pacific. Importantly, reflection 
at the eastern boundary plays no role in the delayed oscillator model. 

Recent research has indicated the existence of a novel ENSO-related 
phenomenon known as El Niño Modoki. It is distinguished from canonical El 
Niño, among other reasons, by a distinct sea surface temperature anomaly 
(SSTA) signature, with largest warming in the central tropical Pacific flanked 
by cooler SSTA on both sides.  
15.(   ) Researchers have gone on to produce a differential treatment of the 
features and effects of canonical ENSO and ENSO Modoki and found, for 
instance, that a large-scale warm SST anomaly in the extratropical North 
Pacific is seen during summer of an El Niño Modoki, while a large-scale cool 
anomaly prevails during summer of an El Niño. In spite of differences in 
definition, the societal impact patterns of canonical ENSO and ENSO 
Modoki in communities such as, say, the Pacific Northwest of the United 
States were found to be equivalent. ■ (A black square indicates the end of a multi-
paragraph statement.) 

The closest analogue to ENSO in the Atlantic Ocean is the so-called 
Atlantic Zonal Mode (AZM). The evolution of ENSO, in its developing phase, 
crucially depends on wind stress anomalies over the western and equatorial 
Pacific, the so-called westerly wind bursts and easterly wind surges. These 
wind events force equatorial Kelvin waves that influence thermocline depth 
and sea-surface temperatures (SST) to the east. Thus, there is a strong link 
between anomalous wind stress and SST.  
16.(   ) The same such relationship holds in the equatorial Atlantic, as 
westerly wind events in this ocean are always followed by warm SST 
anomalies. ■ 

17.(   ) The following information describes the inflow of calcium ion from a 
river into the oceans. Assuming that the only source of Ca2+ is the river 
water in question, the residence time of calcium in the ocean is found to be 
greater than 2 million years. 

Calcium ion concentration 
In seawater 

0.41 g/kg 

Mass of seawater in 
the oceans 1.4×1021 kg 

Calcium ion concentration 
By weight in river water 12.5 g/kg 

Average salt content 
of river water by percent mass 0.12% 

Annual river runoff 
Into the oceans 3.6×1016 kg/yr 

 

18.(   ) In the so-called Sverdrup balance, the meridional transport of the 
entire water column is directly related and locally determined by the 
divergence of the wind stress. 
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[ Problem 9 
Suppose the drag coefficient for wind flow on a horizontal plane 

located zR above the ground can be estimated as 

( )0

2

2
ln

D

R

C
z z

κ
=
  

 

where 𝜅𝜅 ≈ 0.41 is the von Kármán constant, zR is the reference height, 
which in this problem we take as 10 m, and z0 is the roughness height, 
which we take as 1 m. Suppose next that the friction or shear velocity 𝑢𝑢∗ is 
related to the wind flow velocity 𝑢𝑢𝑧𝑧0 at the reference height by the simple 
expression 

( ) ( )0

22* D zu C u=  

Assuming a wind speed of 9 m/s at 10-m altitude and a wind density 
equal to 1.2 kg/m3, compute the wind shear at the surface level. 
A) 𝜏𝜏0 = 0.412 N/m2 

B) 𝜏𝜏0 = 1.02 N/m2 
C) 𝜏𝜏0 = 2.11 N/m2 

D) 𝜏𝜏0 = 3.07 N/m2 

[ Problem 10 
Suppose that the relative vorticity at the top of the Ekman layer at 

15oN is 𝜁𝜁 = 2×10-5 s-1. Let the eddy viscosity coefficient be Km = 10 m2s-1, and 
the water vapor mixing ratio at the top of the Ekman layer be 12 g kg-1. 
Estimate the precipitation rate owing to moisture convergence in the 
Ekman layer. Use 𝜌𝜌 = 1 kg/m3 and 𝜌𝜌𝑤𝑤 = 1000 kg/m3 as estimates of the 
densities of air and water, respectively.  
A) Precipitation = 3.77 mm/day 

B) Precipitation = 7.54 mm/day 
C) Precipitation = 9.11 mm/day 
D) Precipitation = 12.0 mm/day 

 Problem 11.1 
Find the vertical velocity fluctuation for a Kelvin wave of zonal 

wavenumber 1, phase speed 40 m/s, and zonal velocity perturbation 
amplitude 5 m/s. Let the squared buoyancy frequency N2 = 4×10–4 s-2. 

 Problem 11.2 
For the situation of Problem 11.1, compute the vertical momentum 

flux M ≡ 𝜌𝜌0𝑢𝑢′𝑤𝑤′������. Show that M is constant with height. 

 Problem 11.3 
Determine the form for the vertical velocity perturbation for the 

mixed Rossby-gravity wave corresponding to the u’, v’, and Φ′ perturbations 
given by equations (12.32) of Holton (1992). 

 Problem 11.4 
For a Rossby-gravity wave of zonal wavenumber 4 and phase speed 

20 m/s, determine the latitude at which the vertical momentum flux M ≡ 
𝜌𝜌0𝑢𝑢′𝑤𝑤′������ is a maximum. 

[ Problem 12 
Calculate the number of flashes per hour in a cylindrical cloud of 

radius equal to 0.8 km and thickness 2 km when two populations of 
particles, with number concentrations of 750 and 0.05 particles cm–3, 
respectively, are present. Assume that the collision kernel between the 
populations is 10–4 cm3 particle–1 s–1 and that the coalescence efficiency is 40 
percent. Use 3.33×10–14 as the charge separation per collision and 3000 V/cm 
as threshold electric field strength. 
A) No. flashes per hour = 5.05 flashes/hr 

B) No. flashes per hour = 10.1 flashes/hr 
C) No. flashes per hour = 14.9 flashes/hr 
D) No. flashes per hour = 20.1 flashes/hr 
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A SOLUTIONS 
P.1 c Solution 

Regarding the relationship between atmospheric stability and 
variability of temperature with increasing height, we can state the general 
rules 

Unstable
Neutral if
Stable

d

d

d

dT
dz

< −Γ 
   = −Γ  

  > −Γ   

where Γ𝑑𝑑 is the adiabatic lapse rate. Similarly, the relationship between 
changes in potential temperature and atmospheric stability is such that 

Unstable 0
Neutral if 0
Stable 0

d
dz
θ

 <
   =  

  >   

♦ The correct answer is C. 

P.2 c Solution 

1. True. Since the air motion has a westerly component only, the initial 
vorticity is 

5 1
0 3

20 2.0 10 s
1000 10

u
y

ζ − −∂
= − = − = ×

∂ ×
 

2. False. First note that, for adiabatic flow, the potential vorticity  
 

f
p
ζ

δ
+

 

is conserved, so we may write 

0 0 1 1

0 1

f f
p p
ζ ζ

δ δ
+ +

=  

Here, 𝑓𝑓0 = 2Ωsin𝜃𝜃0 = 2 × (7.3×10–5) × sin(45o) = 1.03×10–4 s-1, 𝛿𝛿𝑝𝑝0 = 100 – 
30 = 70 kPa, 𝜁𝜁0 = 2.0×10-5 s-1, 𝑓𝑓1 = 2Ωsin𝜃𝜃1 = 2 × (7.3×10–5) × sin(45o – 6o) = 
9.19×10-5 s-1, and 𝛿𝛿𝑝𝑝1 = 85 – 30 = 55 kPa. Solving for vorticity 𝜁𝜁1 brings to 

54 5
0 0 1 1 1

3 3
0 1

9.19 101.03 10 2.0 10
70 10 55 10

f f
p p
ζ ζ ζ

δ δ

−− −+ + × +× + ×
= → =

× ×
 

6 1
1 3.11 10 sζ − −∴ = − ×  

3. True. For uniform current, 𝜁𝜁1 = V/R, where V = 8 m/s as given and 𝜁𝜁1 = 
−3.11×10-6, so 

1
1

V VR
R

ζ
ζ

= → =  

6
6

8 2.57 10 m 2570km
3.11 10

R −∴ = = − × = −
− ×

 

The negative sign indicates anticyclonic curvature.  

P.3 c Solution 

Problem 3.1: Recalling that vertical velocity at the top of the Ekman 
layer is proportional to geostrophic vorticity, we write 

1 2 1 2

De 2 2
g

g

uK Kw
f y f

ζ
∂   

= = −   ∂   
 

The derivative in the rightmost side can be found from the velocity 
profile we were given, 

2

2

2

2
2exp expg

g

uy yU yu U
L y L L

  ∂     = − → = −      ∂       
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(Note that ordinary derivative notation would also be appropriate 
here, because the only variable in the velocity profile equation is y.)  Thus, 

2

De 2

1 2
2 (I)

2

y
LyU Kw e

L f

 
 
 

−   =   
   

 

The maximum 𝑤𝑤�𝐷𝐷𝐷𝐷 occurs at y for which 𝜕𝜕𝑤𝑤�De/𝜕𝜕y = 0, which can be 
solved to yield y = L/√2. Substituting in (I) brings to 

( )

( )

( )

2
3

3
6

De 2 4max 3

1 22
250 10

2 1.0
102 7.67 10 m/s

2 10250 10

L
L

w e

 
  −  − 

−

−

 ×
 × ×

  = × = ×   × × 
  

 

( ) 3
De max 7.67 10 mm/sw −∴ = ×  

Now, appealing to the equation of continuity and solving for 𝜈̅𝜈, we 
obtain 

De0

Integration bounds are chosen
because De 

H v dz w
Hy

   ∂
=   ∂   

∫


 

( )2
De

1 2
1 (II)

2
y LU Kv w dy e

H H f
− 

∴ = =  
 

∫  

2

3
6

max 4

1 22
1.0 10 3.39 10 m/s

4000 2 10
L

L

v e

 
  −  − 

−

−  
∴ = × = × × 

 

max 0.339mm/sv∴ =  

Problem 3.2: We were told to use the simplified momentum 
equation 

gu
f v

t
∂

=
∂

 

which, replacing 𝜈̅𝜈 with (II) in the previous part, becomes 

( )2
1 2 1 2

1
2 2

g

g

y L
g

u

u K f Kf Ue
t H f H f

u−

=

∂    
= × =   ∂    



 

1g
g

u
t

uτ −∂
∴ =

∂
 

where spin-down time 𝜏𝜏 is 

4
7

4 3

1 1 222 4000 2 10 1.79 10 sec
10 10

H f
f K

τ
−

− −

 × = = × = ×  
   

 

7 1 day1.79 10 sec 207days
86,400 sec

τ∴ = × × =  

P.4 c Solution 

From the quasi-geostrophic vorticity equation, we may write 
 

0 0g g g
g

u vu v v f
t x y x y
ζ ζ ζ

β
∂ ∂ ∂  ∂ ∂

+ + + + + = ∂ ∂ ∂ ∂ ∂ 
 

 

For conditions of the present problem, the linearized version is 
 

0 0g
g

uv f
t x
ζ

β
′∂ ′∂′+ + =

∂ ∂
 

but  
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0
g

g hv
f x

′∂′ =
∂

 

and  
2

2
0

g
g h
f x

ζ
′∂′ =

∂
 

 

From the perturbation equation 

10h h u u hu H
t x x x H t
′ ′ ′ ′ ′∂ ∂ ∂ ∂ ∂
+ + = → = −

∂ ∂ ∂ ∂ ∂
 

we then have 

2
0

2
0 0

0
fg h g h h

t f x f x H t
β

 ′ ′ ′∂ ∂ ∂ ∂
+ − = ∂ ∂ ∂ ∂ 

 

which readily reduces to the form given in the problem statement. Letting 
h’ = Aexp[ik(x – ct)] brings to 

2
2 0

2
2 0

0
f

ikc k ik c
gH fk

gH

ββ
  

− − − + = → = −  
   +

 

Now, the numerical values we need are 

( )5
110

3
0

2 7.3 10 cos 45º2 cos
1.62 10

6.37 10r
θ

β
−

−
× × ×Ω

= = = ×
×

 

and  

6 1
3

2 2 7.85 10 m
800 10

k π π
λ

− −= = = ×
×

 

Lastly, 

( ) ( )
11

4
6

2
2

1.62 10 0.261m/s
10

7.85 10
9.81 3000

c
−

−
−

×
= − = −

 
 × +
 ×
 

 

P.5 c Solution 

Assume a solution of the form 𝜓𝜓 = Bsin[k(x – ct)]. Substituting in the 
vorticity equation brings to 

( ) ( )

( )

2 2 3 2

0

cos

cos

u k c uk k B k x ct
t x x

f A k x ct

ψψ ψ β β∂ ∂ ∂     ∇ + ∇ + = − + −        ∂ ∂ ∂     
= − −  

 

Solving for B, 

( )
0

3

f AB
c u k kβ

= −
 − + 

 

so that 

( ) ( )2 0
2 sinf Ak k x ct

c u k
ψ

β
∇ = − −  − +

 

Vorticity becomes infinite when the denominator in the right-hand 
side is zero; that is, 

( ) 2
20c u k c u

k
ββ− + = → = −  

which is the free Rossby speed. For (c – 𝑢𝑢�) > −𝛽𝛽/k2, vorticity leads divergence 
by 𝜋𝜋/2 radians, which is to say that maximum velocity is to the east of 
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maximum divergence. For (c – 𝑢𝑢�) < −𝛽𝛽/k2, vorticity lags divergence by 𝜋𝜋/2 
radians.  

P.6 c Solution 

The equation to use is 

(I)
2

gu g T
z y

ε∂ ∂ = + ∂ Ω ∂ 
 

where y is the distance from the inner wall. If the temperature is to increase 
linearly with z as stated, we may write 

0
y dTT T z
L dz

    = +         
 

and dT/dZ is the thermal gradient along the outer wall. Deriving the 
relation above with respect to y and substituting in (I), we get 

2
gu g dT z

z dz L
ε∂    = +   ∂ Ω   

 

Integrating from z = 0 to z = H = 0.1 m, we obtain the geostrophic 
velocity ug, 

 

0
1

2 2
g

g

Hu g dT z g dTu zdz
z dz L dz L

ε ε∂      = + → =     ∂ Ω Ω      ∫  

2

2 2g
g dT Hu

dz L
ε  ∴ =  Ω  

 

( )4 22 10 9.81 0.1100 0.00245m/s
2 1.0 2 0.2gu

−× ×
∴ = × × =

× ×
 

0.245cm/sgu∴ =  

♦ The correct answer is B. 

P.7 c Solution 

The maximum exponential growth rate of course occurs for the 
wavenumber k at which 𝜕𝜕𝜕𝜕/𝜕𝜕k = 0. Plugging this relation into Mathematica, 
we have 

 

Setting the resulting derivative to zero means that the factor k4 + 
4𝜆𝜆2k2 – 4𝜆𝜆4 in the numerator must equal zero. (Alternatively, UT = 0, but this 
is trivial.) Solving this biquadratic equation for k yields 

 

The solution we aim for is 
 

( )2
max 2 2 1k λ= −  

as we were supposed to show. Substituting kmax into the equation for 𝛼𝛼 
gives the corresponding maximum growth rate 𝛼𝛼max, 
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That is, 

( )max 2 2 1TUα λ= −  
 

Substituting UT = 20 m/s and 𝜆𝜆 = √2 ×10-6
 m yields the maximum 

growth rate 

( ) ( )6 5 1
max 2 2 10 20 2 1 2.34 10 sα − − −= × × × × − = ×  

The time required to achieve amplification by a factor of e1 is simply 
𝛼𝛼max−1 , or 

max 5

11 42,700s 11.9hours
2.34 10

t α −= = = =
×

 

P.8 c Solution 

1.True. Simply apply the usual equation 

( ) ( )

( ) ( )

3 6

2 6 3

2
2

2

22 10 2.5 10
11 9.81 287 320 0.00401K/m

0.622 1000 0.622 2.5 10 22 101 1
1000 287 320

s v

p v s

p

s

r L
g RT
c L r

c RT

−

−

   × × ×
   ++
 × Γ = = × =   × × × ×+    +     × × 

 

4.01K/kms∴ Γ =  

2.True. Simply apply the usual equation 

4
1 1

2
g

gr
VfRV
fR

 
= + − 

 
 

 

( )
( )

4 3

4 3

10 320 10 4 161 1 11.7 m/s
2 10 320 10grV

−

−

 × × × ∴ = × + − =
 × × 

 

3.True. The phase speed we aim for is given by (see also Problem 5) 
 

2c u
k
β

= −  

 

Here, 𝑢𝑢� = 50 m/s as given; the 𝛽𝛽 parameter is 

( )5
11 1 10

3
0

2 7.3 10 cos30º2 cos
1.98 10 m s

6370 10r
θ

β
−

− − −
× × ×Ω

= = = ×
×

 

The wavenumber k is 

6 1
3

2 2 2.09 10 m
3000 10

k π π
λ

− −= = = ×
×

 

Finally, 

( )
11

26

1.98 1050 45.5m/s
2.09 10

c
−

−

×
= − =

×
 

4.False. The rate of change of circulation is given by 

lnDC RTd p
Dt

= −∫  

but, since ln p changes only northward, the integral simplifies to 

( )0

0

ln
p pDC R T

Dt p
δ

δ
+ 

= −  
 

 

For a distance of 1200 km and a northward pressure gradient of 1 
mb/200 km, we clearly have 𝛿𝛿𝛿𝛿 = 6 mb. For the same distance and a 
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temperature gradient of 1oC/200 km, we obtain 𝛿𝛿𝛿𝛿 = 6oC. Substituting in the 
relation above brings to 

( ) 2 21100 6
287 ln 6 9.37 m /s

1100
DC
Dt

−+ 
= − × × = − 

 
 

 

5.False. As any student with some background on the theory of 
barotropic instability should know, Howard’s theorem requires that the tip 
of the vector (cr, ci) fall within the half-circle (not a half-ellipse with 
eccentricity greater than 1) constructed from the minimum and maximum 
velocities of the ambient shear flow. 

6.False. For barotropic instability, the following inequality must 
hold, 

 

2

2 0 (I)d u
dy

β − <  

where  

( ) ( )2
0 0sinu y u y y= − −    

which can be differentiated once to yield 

( ) ( )0 0 02 sin cosdu u y y y y
dy

= − − −          

or, differentiating a second time, 
 

( ) ( ){ }
2

2 2 2
0 0 02 2 sin cosd u u y y y y

dy
= − − − −          

( )
2

2
0 02 2 cos 2d u u y y

dy
∴ = −     

 

This derivative will be maximum when the rightmost cosine term 
equals unity, giving 

2
2

02
max

2d u u
dy

=   

so that, substituting in (I), 

2 2
0 02 0 2u uβ β− < → >   

Barotropic instability for this velocity profile will exist if the product 
2u0ℓ2 exceeds the 𝛽𝛽 parameter. 

7.False. The following graph shows the variation of axis ratio with 
drop diameter. As can be seen, axis ratio decreases with drop size, which 
suggests that droplets become flatter, not more round, as diameter 
increases.   

 

8.True. One way to proceed is to apply Mathematica’s command 
PolarPlot, 
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The polar plot obtained matches the shape shown in the statement. 
9.False. The Kolmogorov scale is given by the usual formula 

( )353
3

4

1 4
1 4 1.48 10

1.60 10 m 1.60mm
5.0 10

a
k

d

v
η

ε

−
−

−

 ×   = = = × =   ×   

 

This result indicates that the smallest eddies in an atmosphere at 288 
K are about 1.6 mm in diameter. 

10.True. Referring to the expression for 𝜃𝜃𝑒𝑒, 

exp c s
e

p

L q
c T

θ θ
 

≈   
 

 

and noting that  

s
pR c

p
T

p
θ

 
=  

 
 

We substitute and expand,   

exp ln ln ln expc s c s
e e

p p

L q L q
c T c T

θ θ θ θ
    

= → = +             
 

ln ln c s
e

p

L q
c T

θ θ∴ = +  

ln ln ln s c s
e

p p

p L qRT
c p c T

θ
 

∴ = + + 
 

 

exp ln ln s c s
e

p p

p L qRT
c p c T

θ
  

∴ = + +  
   

 

( ) ( )6 32.5 10 16 10287 1000exp ln 293 ln 344K
1000 920 1000 293eθ

− × × ×  ∴ = + + =  ×   
 

11.True. Substituting the appropriate variables into the equation 
given, we have 

( )6 3 6

1 3

10
293140

9.81 10 3.3 10 e τ
τ

− − −

 
 = ×
 × × × × 

 

( )610
1 3

292,000 e ττ
−−∴ =  
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This transcendental equation can be easily solved with 
Mathematica’s FindRoot command, using an initial guess of, say, 𝜏𝜏 = 1000 s, 

 

That is, 𝜏𝜏 ≈ 267,000 s. The maximum airmass thickness will be 
attained within approximately 3.09 days. 

12.False. In general, the CAPE can be determined with the relation 





2 210,000

0
8.0CAPE 2730m s
288

LNB

LFC

z vv
z v

g dz g dzθ θ
θ

− −  = = =       
∫ ∫  

 

13.True. CAPE was calculated to be 2730 m2s-2. Observing that only 
10% of this quantity is converted to kinetic energy, we obtain the vertical 
velocity 

( )eff2 2 0.1 2730 23.4m/sw CAPE= × = × × =  
 

14.True. In the delayed oscillator model, the western Pacific is 
assumed to be an inactive region for air-sea interaction, whereas ocean 
wave reflection is unimportant at the eastern boundary. 

15.Debatable. Canonical El Niño and El Niño Modoki are associated 
with different meteorological disturbances, especially in the extratropics, 
and thus affect communities differently. For example, Behera and 
Yamagata (see reference below) observe that the persistent summer 
drought in the western United States is caused not only by below-normal 
rainfall, but also by above-normal temperature in El Niño Modoki summers. 
The surface temperature related to El Niño Modoki is warmer than normal 
in the western states, and cooler normal in the central and eastern states. 
However, the El Niño-related temperature in most areas of the United 
States, except for the southeastern and northwestern states, is basically 
cooler than normal.  

Reference: Behera and Yamagata (in Behera, 2021). 
16.False. The relationship between wind stress and SST is not as 

clear in the AZM system. For example, westerly wind events can be followed 
by cool SST anomalies and vice versa. This has led some investigators to 
speak of noncanonical AZM events, in the same spirit as the 
phenomenological variations in ENSO that led workers to create alternative 
designations for odd weather behavior in the Pacific (e.g., “ENSO Modoki”). 

17.True. We first compute the rate of addition of calcium ion, 

% Conc.CalciumSalinityRate of calcium ion addition River runoff  of river water in river water
   

= × ×   
   

 

2 16 110.12 12.5Rate of Ca  ion addition 3.6 10  5.4 10 kg/yr
100 1000

+∴ = × × × = ×  

The amount of calcium present in seawater is estimated as 

Calcium conc. Mass of seawater
Calcium mass in seawater  

in seawater in ocean
   

= ×   
   

 

( )2 21 170.41Ca  mass in seawater  1.4 10 5.74 10 kg
1000

+∴ = × × = ×  

The residence time follows as 

2 17
6

2 11
Ca mass in seawater 5.74 10 kgResidence time 1.06 10 yr

Rate of Ca ion addition 5.4 10 kg/yr

+

+

×
= = = ×

×
 

18.False. Actually, the Sverdrup balance reads 

0

0
curl

H
vdzβ

ρ−

 
=  

 
∫

τ
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where 𝛽𝛽 is the northward spatial derivative of the Coriolis frequency 𝑓𝑓, 𝑣𝑣 is 
vertical velocity, 𝝉𝝉 is the shear stress vector, and 𝜌𝜌0 is the average water 
density. Integration is carried out over the entire water column H, including 
the wind-stirred layer. As the equation above indicates, meridional 
transport in the Sverdrup relation is governed by the curl, not divergence, 
of wind stress. The Sverdrup relation is a strong result because it indicates a 
simple dependence of meridional transport on local wind stress curl, 
excluding any dependency on large-scale distribution of wind stress and, 
perhaps most importantly, on the nature of density stratification in the 
ocean.  

P.9 c Solution 

The drag coefficient is 

( )

2

2
0.41 0.0317

log 10 1.0
DC = =

  
 

The shear velocity is 

( ) 2

0

2
* 0.0317 9.0 1.60m/sD zu C u= = × =  

Lastly, we appeal to the definition of shear velocity to obtain 
 

20
0* *u u

τ
τ ρ

ρ
= → =  

2 2
0 1.2 1.60 3.07 N/mτ∴ = × =  

♦ The correct answer is D. 

P.10 c Solution 

The moisture convergence into an atmospheric column is 

P wqρ=  

where 𝜌𝜌 is the density of air, q is the water-vapor mixing ratio at the top of 
the Ekman layer, and w is the vertical velocity (Ekman pumping), which can 
be stated as 

0

1 2

2
mKw
f

ζ
 

=  
 

 

so that 

0

1 2

2
mKP wq P q
f

ρ ρζ
 

= → =  
 

 

0

1 2

2 2 sin
mKP qρζ

θ
 

∴ =  × Ω 
 

( ) ( ) ( )5 3 5 2 1
5

1 2
101.0 2.0 10 12 10 8.73 10 kg m s

4 7.3 10 sin15º
P − − − − −

−

 
∴ = × × ×   × × = ×

× × ×  
 

Dividing by the density of water gives the precipitation rate, 

5
88.73 10 8.73 10 m/s

1000w

P
ρ

−
−×

= = ×  

( )8 m s 1000 mm8.73 10 86,400 7.54mm/day
s day 1 mw

P
ρ

−∴ = × × × =  

♦ The correct answer is B. 

P.11 c Solution 

Problem 11.1: With a zonal velocity perturbation u’ = 5 m/s and a 
phase speed c = 40 m/s, we first compute the geopotential Φ′, 
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2 25.0 40 200m svu u c
k

−′ ′ ′Φ = = = × =  

The vertical velocity perturbation can be found by solving the 
following relation for 𝑤𝑤, 

 

2
20 (I)

2
i vmv m wN w
H N

  ′ ′− Φ + = → ≈ − Φ 
 

 

where we have used the fact that vertical wavenumber m is much greater 
than i/2H. Further, m is determined as 

2 4
2 7

2 2
4.0 10 2.5 10

40
Nm
c

−
−×

= = = ×  

45.0 10m −∴ = ×  

so that, substituting in (I), 

( )4
6 3

2 4

40 5.0 10
6.37 10 200 1.57 10 m/s

4.0 10
vmw
N

−

−
−

× ×
×′ ′= − Φ = − × = ×

×
 

(where we have used the radius of the Earth to compute 𝜈𝜈.)  
Problem 11.2: We begin by restating the momentum flux as 

0
* (II)z HM u w e u wρ −′ ′ ′ ′≡ = ×  

where zonal velocity disturbance u’ is given by 

( ) * 2
0 cos z Hu U kx e−′ =  

whereas vertical velocity disturbance w’ is (see also the first two results of 
the previous part) 

( )
2

02
*cos z Hc kmw U kx e

N
− 

′ =  
 

 

Substituting in (II) brings to 

2 2
20

2 cosU c kmM kx
N

=  

The mean value of cos2kx is 0.5; other variables were given or 
calculated in the previous part. Accordingly, 

( )2 2 4
2 2 620

2 4

1.05.0 40 5.0 10
6.37 10cos 0.5 0.00393
4.0 10

U c kmM kx
N

−

−

× × × ×
×= = × =
×

 

3 2 13.93 10 m sM − −∴ = ×  

Problem 11.3: In Problem 11.1 we established the vertical velocity 
perturbation 

2
vmw
N

′ ′= − Φ  

However, from Chapter 12 of Holton (1992), 

2

exp
2
m y

ivy
N

β 
′Φ = × − 

 
 

so that 

22

2 exp (III)
2
m yiv mw y

N N
β 

′ = − − 
 
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Problem 11.4: For starters, the vertical momentum flux M = 𝜌𝜌0𝑢𝑢′𝑤𝑤′������ is 
dependent on the average of the product of 𝑤𝑤′, which is given by (III) in the 
previous part, and 𝑢𝑢′, which is stated as  

2
1 exp (IV)

2
m y

u i m vN y
N

β−  
′ = − 

 
 

The average of the product of (III) and (IV) has general form 

2
2Constant exp (V)

m y
u w y

N
β 

′ ′ = × − 
 

 

so that, differentiating and setting the result to zero, 

( )
2

22exp
0 0

N m
m y

y
Nu w

y

y

N

β
β 

− ′ ′∂
−

 = → =
∂

 

Here, wavenumber |m| is given by  

( )2m Nv vkβ−= +  

so that, setting the factor in red to zero, substituting |m|, and solving for y, 

max 1 2

1

vy
kvβ
β

±
=

 
+ 

 

 

Substituting v = ck = cs/𝑎𝑎 and 𝛽𝛽 ≈ 2Ω/𝑎𝑎 and simplifying, 

max 1 2

2 1
2

csy
sv

= ±
 Ω + Ω 

 

Substituting zonal wavenumber s = 4.0, phase speed c = −20 m/s, and 
frequencies v = −20 × 4.0/(6.37×106) = 1.26×10–5 s-1 and Ω = 7.3×10–5 s-1, we 
obtain 

( ) ( )
( )

max
5

5
5

1 2
20 4.0 677,000m

4.0 1.26 10
2 7.3 10 1

2 7.3 10

y
−

−
−

− ×
= = −

 × ×
× × × − 

× ×  

 

max 677kmy∴ =  

(The term inside the square root in the denominator has a negative 
sign because v < 0.)  The corresponding latitude is 

max 677 0.106rad 6.07º
6370

y
a

θ ≈ = = =  

Thus, maximum vertical momentum flux occurs at about six degrees 
of latitude north or south. 

P.12 c Solution 

The volume of the cylindrical cloud is Vc = 𝜋𝜋 × 8002 × 2000 = 4.02×109 
m3 = 4.02×1015 cm3. The solution is continued by finding the charge 
separation rate dQb,c/dt, which is given by 

b,c
1,2 1 2 1,2 c

dQ
B n n Q V

dt
= ∆  

The first term in this equation is the rate coefficient for bounceoff 
B1,2 , which is in turn given by the relation B1,2 = (1 – E)K; here, E = 0.4 is the 
dimensionless coalescence efficiency and K = 10–4 cm3 particle–1 s–1 is the 
collision kernel. Next in the equation are factors n1 = 750 partic./cm3 and n2 
= 0.05 partic./cm3, which represent the number concentrations of 
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hydrometeor particles; Δ𝑄𝑄 is the charge separation per collision, which has 
an average value of 3.33×10–14 coulomb/collision; lastly, Vc is the cloud 
volume, as determined just now. Substituting the pertaining data into the 
equation at hand gives 

( )
3

b,c 4
3 3

14 15 3

cm partic partic1 0.4 10 750 0.05
partic. sec cm cm

C3.3 10 4.02 10 cm 0.298C/s
collision

dQ
dt

−

−

= − × × × ×
×

× × × =

 

The rate of change of the in-cloud electric field strength is, in turn, 

,

2 2

2f b cc

c c c

dE dQk
dt dtZ Z R

=
+

 

where kc = 8.99×1011 V∙cm/C is the electrostatic constant, Zc = 2.0×105 cm is 
cloud thickness, and Rc = 0.8×105 is cloud radius, giving 

( ) ( )

11

2 25 5 5

V cm2 8.99 10
C 0.298C/s 12.4V/cm s

2.0 10 cm 2.0 10 cm 0.8 10 cm

fdE
dt

⋅ × × 
 = × = ⋅

× × × + ×
 

Lastly, with a threshold electric field strength Eth = 3000 V/cm, the 
number of intracloud flashes per hour in the cloud is calculated to be 

th

1 1 V12.4 0.00413flashes/s 14.9flashes/hr
3000V/cm flash cm s

fdE
E dt

= × = =
⋅ ⋅

 

♦ The correct answer is C. 
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