
1 
© 2022 Montogue Quiz 

Quiz FM112 

 
Lucas Monteiro Nogueira 

 

A PROBLEMS 
 [ Problem 1   

Considering the elementary theory of microfluidics and electrokinetic 
flow, true or false?  

Consider a potassium ion (K+) in a water reservoir immersed in an 
electric field of intensity 12 kV/m. The measured electrophoretic mobility is 
𝜇𝜇𝐸𝐸𝐸𝐸 = 5.0×10–8 m2/(V∙s) and the ion mass is m = 6.5×10–26 kg.  
1.(   ) The acceleration of the ion, assumed constant, can be calculated to be 
greater than 5×1010 m/s2. 
2.(   ) The terminal velocity of the ion can be calculated to be greater than 500 
μm/s. 

3.(   ) Consider a microchannel with cross-sectional area equal to 200 μm2
 and  

surface electroosmotic mobility equal to 1.6×10–8 m2/V∙s. If an electric field of 
120 V/cm is applied to this microchannel, we may conclude that the resulting 
volumetric flow rate will be greater than 40,000 μm3/s.  

4.(   ) Consider electroosmotic flow in a circular tube of diameter 8 μm and 
length 10 cm filled with an aqueous solution (viscosity 𝜇𝜇 = 10–3 Pa∙s, relative 
permittivity 𝜀𝜀 = 80). For a potential 𝜁𝜁 = −120 mV, we surmise that a pressure 
drop of 0.8 atmospheres would suffice to generate at least the same total 
flow that would be generated by the application of a voltage of 1.5 kilovolts to 
this system. 

5.(   ) In order to characterize microfluidic channel cross-sections, some 
engineers have proposed use of the so-called compactness factor, a parameter 
usually defined as the ratio of a section’s squared perimeter to its area. The 
compactness factor is also known as the correction factor, and the two terms 
can be used interchangeably. 

In contrast to the case of planar diffuse double layers, the equations 
for diffuse double layers near curved surfaces are difficult to solve. When a 
spherical surface is considered, the corresponding Poison-Boltzmann 
equation in spherical coordinates for a (z : z) electrolyte solution is written as 
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as illustrated to the side.  
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6.(   ) Crucially, the Poisson-Boltzmann equation, when stated in spherical 
coordinates with the two boundary conditions specified above, has no 
analytical solution. ◼ (A black square indicates the end of a multi-paragraph statement.) 

7.(   ) When a capillary tube is plunged into a volume of wetting liquid, the 
liquid rises inside the tube under the effect of capillary forces. Per the so-
called Jurin’s law, the height reached by the liquid is directly proportional to 
the radius of the tube. 

8.(   ) For microflows of small capillary number, it can be shown that the 
difference between dynamic and static contact angles is linearly related to 
the capillary number. 

9.(   ) A student in a microfluidics class was copying lecture notes for Taylor-
Aris dispersion, but his S.O.B. professor cleared the blackboard before he 
could finish writing them down. As a result, the student ended up with the 
following incomplete PDE on his notebook. Knowing that the theory they 
were discussing pertains to circular microchannels. we can help him out and 
fill the blank rectangle with the number 210.  
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[ Problem 2   

Problem 2.1: Compute the Debye length of an electrical double-layer 
for a 10–3 M KCl solution at 298 K. The dielectric constant of KCl may be taken 
as 40. Use 𝜀𝜀0 = 8.85×10–12 C2/N∙m2 as the vacuum permittivity, e = 1.60×10–19 C 
as the elementary charge, kB = 1.38×10–23 J/K as Boltzmann’s constant, and NA = 
6.02×1023 as Avogadro’s number.  

Problem 2.2: Show that the Debye length for an asymmetrical 
electrolyte in water at 298 K can be estimated as 
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where zi and Mi are the valence and molarity of the i-th ion, respectively.  
Problem 2.3: Suppose that 800 mL of 0.02 M potassium chloride 

solution is mixed with 600 mL of 0.0018 M potassium sulfate. Using the 
formula derived in the previous part, find the Debye length for the resulting 
solution. 

[ Problem 3   

Consider fully-developed laminar flow of an infinitely diluted (i.e., pure 
water, 𝑛𝑛∞ = 6.02×1020 m–3) aqueous 1:1 electrolyte solution through a slit 
microchannel. The separation distance is a = 25 μm and the channel is L = 1 cm 
long. The channel is under the effect of a zeta potential 𝜁𝜁 = −100 mV. At a 
temperature of 310 K, the physical and electrical properties of the liquid are 
electrical permittivity 𝜀𝜀 = 88, and dynamic viscosity 𝜇𝜇 = 9.0×10–4 Pa∙s. A 
pressure difference of 1 atm and an arbitrary chosen reference velocity V0 = 1 
m/s are considered. Plot the dimensionless velocity profile for this system, 
which is given by 
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In this equation, 𝑉𝑉�𝑧𝑧 is the normalized axial velocity, 𝑋𝑋� = x/a is the 
normalized distance between plates, and 𝐸𝐸�𝑠𝑠 = Es/𝜁𝜁0 is the ratio of the applied 
electric field Es to the zeta potential 𝜁𝜁0 at the wall. Further, parameters G1, G2 
and K are given in the Additional Information section. 

[ Problem 4   

Consider thermal micro-Couette gas flow with viscous heating in the 
slip regime, 0.01 < Kn < 0.1. Derive the adjusted velocity and temperature 
profiles. 
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[ Problem 5   

Problem 5.1: An often-used approximation for the flow rate Q induced 
by a pressure drop Δp on a rectangular microchannel is 
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where h is the height of the section, w is the width, Δp is the pressure drop, 𝜇𝜇 
is the viscosity of the fluid, and L is the length of the conduit. This expression 
is a simplified version of the exact solution 
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Dividing Q from either the approximate or exact solution by Δp yields 
the inverse hydraulic resistance R = Q/Δp. Calculate the deviation in results 
implied by using the approximate equation instead of the exact one for a 
square section (i.e., such that h = w). 

Problem 5.2: Show by paying special attention to the n = 1 term in the 
series Eq. (3.57d) that an improved approximation for reciprocal hydraulic 
resistance is 
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and calculate for a square the deviation from the exact result.  

[ Problem 6   

Consider a flat and very wide rectangular channel inside of which we 
have a liquid/gas interface. It is easy to show that, if the contact angle 𝜃𝜃 is the 
same for the top and bottom plates, the pressure drop can be easily estimated 
with the Young-Laplace equation 
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where 𝛾𝛾 is the interfacial surface tension and h is the height of the channel. 
Suppose now that the configuration is such that the contact angles for the 
top and bottom plate have values 𝜃𝜃1 and 𝜃𝜃2, respectively, with 𝜃𝜃1 ≠ 𝜃𝜃2. Which 
of the following equations best approximates the pressure drop in this 
modified configuration? 
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[ Problem 7   

Of particular interest in microfluid mechanics applications is the time 
required for a liquid column/meniscus to advance in a long horizontal 
microchannel of cross-sectional area A = hw, where h is channel height and w 
is channel width. Given fluid surface tension 𝛾𝛾, dynamic viscosity 𝜇𝜇, and 
contact angle 𝜃𝜃, find an expression for the velocity of the advancing meniscus 
and the extent travelled L(t).  

 

[ Problem 8   

Regarding advanced aspects of microfluidics and electroosmotic flow, 
true or false?  
1.(   ) Electroosmotic flow differs from conventional laminar flow in that the 
driving force is not a pressure gradient but an externally applied electric field. 
For comparison, one can establish the ‘effective pressure’ required to produce 
the same electroosmotic flow rate as in a conventional Poiseuille flow. The 
following figure shows the equivalent pressure gradient, in MPa/m, required 
to achieve the same microchannel osmotic flow (MCOF) at a certain electric 
field intensity, in kV/cm, for a circular microchannel. With reference to this 
graph, we see that, in order to sustain a MCOF at Reynolds number equal to 3, 
the effective pressure gradient required is greater than 10 MPa/m. 

 

2.(   ) Yang et al. (2001) used a finite 
difference code to analyze entrance 
effects for electroosmotic flow in a 
microchannel. The figure to the side 
shows a comparison of the entry 
lengths for an electroosmotic flow and 
for a typical pressure-driven flow at 
the same flow rate. From the figure, it 
can be gleaned that entrance lengths 
are generally greater for 
electroosmotic flow than for an 
equivalent pressure-driven flow.  

Recommended research: Yang et 
al. (2001). 
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3.(   ) Santiago (2001) discussed the role of inertial and pressure effects on 
electrokinetic flows. As shown below, his analysis divided the vicinities of an 
electrokinetic flow’s electric double layer into two regions, namely the inner 
flow region and the outer flow region. The inner flow region has large charge 
density and high viscous stress, whereas the outer region is the space further 
from the wall. The two regions are separated by the so-called slip plane. Under 
certain constraints, Santiago argued, the electroosmotic flow in the outer 
flow region is such that its velocity field becomes simply equal to the local 
electric field multiplied by a constant. Specifically, similarity between velocity 
field and electric field in the outer flow region holds if electric double layers 
are thin compared to channel dimensions, the 𝜁𝜁-potential is uniform, fluid 
properties are uniform, channel walls are electrically insulating, and the 
product of Reynolds and Strouhal numbers is very large. 

Recommended research: Santiago (2001).  

 

In most analyses of electroosmotic flows, the ionic distribution in the 
electric double layer is assumed to follow the equilibrium Boltzmann 
distribution, which leads to the Poisson-Boltzmann equation often used to 
model the electric potential induced by these ions. However, convective 
transport of ions may be expressive in some situations of practical interest. In 
these situations, the Boltzmann distribution is not valid and the Nernst-
Planck equation, which affords a more exact picture of the distribution of ions 
in the EDL, must be used instead. Park et al. (2007) conducted numerical 
simulations to compare the performance of a model based on the PB equation 
and a model based on the NP equation. The simplest geometry they used was 
the straight two-dimensional microchannel illustrated below. Below the 
geometry schematic we have the longitudinal distribution of dimensionless 𝜁𝜁-
potential, which equals 1.0 in a central segment that includes section A, 
begins to decrease at section B, and becomes zero at section D; also, at 
section C the potential 𝜁𝜁 = 0.5. Park’s team ran equivalent simulations for two 
combinations of dimensionless parameters, one of which resulted in a thin 
electric double layer and the other resulted in a much thicker EDL.  
4.(   ) Park’s team showed that at all four sections the velocity-profile 
predictions from the PB model were very similar to those of the NP model, 
regardless of the thickness of the electric double layer. ◼ (A black square 
indicates the end of a multi-paragraph statement.) 

Recommended research: Park et al. (2007). 
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5.(   ) Wang and Kang (2010) used a lattice Boltzmann algorithm to simulate 
electrokinetic flows in microchannels. The lattice Boltzmann approach, they 
noted, offers insights that would be difficult to glean from ‘traditional’ 
numerical schemes. For instance, the effect of ion valence on electroosmotic 
flows in microchannels is not easily ascertained, because the net charge term 
that appears in the electrokinetic equations is hard to linearize if the absolute 
value of the valence ratio |z1 : z2| (where z1 denotes the valence of the positive 
ions and z2 denotes the valence of the negative ones) is not 1 : 1. The lattice 
Boltzmann approach does away with this issue because there is no need for 
such linearization at all. With this in mind, Wang and Kang showed that 
changes in ionic valence do in fact influence electric potential distribution, 
velocity profiles, and Debye length. Importantly, Wang and his colleague 
found that, contrary to commonly employed simplifications, in their 
algorithm the Debye length achieved for ions with 1 : 2 valence ratio did not 
lead to the same value obtained for ions with 2 : 1 valence ratio.  

Recommended research: Wang and Kang (2010). 

Patankar and Hu (1998) conducted a three-dimensional numerical 
study of electroosmotic flow using the SIMPLER finite-volume algorithm. 
Their geometry of choice was a cross-channel device such as the one 
illustrated below.  

 

6.(   ) The velocity streamlines at the intersection of the channels are shown 
below for different Reynolds numbers. From the spacing of the streamlines, it 
is clear that velocity magnitudes were found to be greatest near the walls of 
the channels. ◼ 

Recommended research: Patankar and Hu (1998).  

  

7.(   ) A few years after Patankar and Hu published the results of their 
simulations, Ren et al. (2003) reported the results of their own study of 
electroosmotic flow in crossing microchannels. Unfortunately, Ren’s 
discretization scheme relied on a high density of large-aspect-ratio control 
volumes, which made their simulations much more computationally 
expensive than previous efforts.  

Recommended research: Ren et al. (2003).   
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Wang et al. (2007) used a lattice Poisson-Bolzmann scheme to assess 
the effects of surface roughness and cavitations on electroosmotic flows. 
Their results were interesting; for one, they found that, contrary to intuition, 
the maximum velocity obtained in a microchannel section increases with 
roughness height.  
9.(   ) That said, Wang and his colleague concluded that the effect of 
cavitations on flow rate is much more pronounced than the effect of surface 
roughness. ◼ 

Recommended research: Wang et al. (2007). 

Yang et al. (2011) studied the dynamics of capillary-driven liquid flow in 
open, hydrophilic channels embedded in a hydrophobic surface for two of the 
most common microchannel geometries used in microfluidic applications: 
rectangular and curved (see below). One of those workers’ goals was to 
experimentally test the validity of the Washburn equation, which predicts a 
linear dependence between the squared position of a travelling meniscus, x2, 
and time, t.  
10.(   ) Importantly, Yang’s team found that the linear behavior associated with 
the Washburn equation was found to be independent of the exact shape of 
the cross-section, that is, irrespective of whether the channels were 
rectangular or curved. ◼ 

Recommended research: Yang et al. (2011). 

 

Xuan and Li (2005) developed a comprehensive model for electroosmotic 
flow of microchannels with arbitrary geometry and arbitrary 𝜁𝜁-potential. In 
addition to its remarkable scope and generality, their model stands out for 
providing a simple yet effective treatment of microfluidic channels under AC 
fields. The AC electroosmotic velocity of a liquid in a microchannel closely follows 
the surrounding electric field at low frequencies, just as a DC electroosmotic 
velocity would. At high frequencies, however, there are substantial variations in 
both the phase and the amplitude of the fluid velocity over the channel cross-
section. It is desirable to establish a critical frequency over which there is a visible 
change in either the phase or the amplitude of the electroosmotic velocity with 
respect to the applied electric field. In order to obtain an analytical expression for 
this critical frequency, Xuan and Li considered a cylindrical microchannel with a 
uniform wall 𝜁𝜁-potential. If it is assumed that a 5% change of 2𝜋𝜋 in phase occurs 
at the critical frequency Ωcrit,𝜙𝜙, we have 
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where n = 1, 2, 3, …, i = √−1, r is radial distance, ∠ denotes angle, and 𝐼𝐼0 is the 
modified Bessel function of the first kind and order zero. The negative sign is 
attributed to the phase lag of electroosmotic velocity relatively to the electric 
field. Clearly, the critical frequency is position-dependent and its minimum 
appears at the axis, that is, at r = 0. Under the base frequency, such that n = 1, and 
with r = 0, the equation above can be solved for Ωcr,𝜙𝜙 to yield 
 

, 1.2705cr φΩ =
 

 

If, instead, we define a critical frequency Ωcr.𝐴𝐴 on the basis of a 5% change in 
amplitude, we may write 
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8.(   ) In this case, with n = 1 and r = 0, the value of Ωcr,𝐴𝐴 is found to be greater than 
2.0. ◼ 

Recommended research: Xuan and Li (2005).  
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Cherlo et al. (2010) conducted experiments of liquid-liquid two-phase 
flow in a microchannel. Their two liquids of choice were water and kerosene, 
and the microchannel material was Perspex. Their main goals were to measure 
fluid slug lengths – in view of the fact that slug lengths are important in 
determining the performance of a two-phase flow – and establish how they 
could be affected by variations in flow rate, viscosity, surface tension, and 
other parameters.  
11.(   ) Cherlo’s team found that viscosity significantly affected slug length; 
specifically, exchanging kerosene for coconut oil, which has greater viscosity, 
led to shorter slug lengths. On the other hand, Cherlo’s FLUENT simulations 
indicated no significant changes in slug length when surface tension values 
were modified. ◼ 

Recommended research: Cherlo et al. (2010).  

12.(   ) Ookawara et al. (2004) introduced a new micro-separator/classifier 
based on a curved channel with rectangular cross-section. The curved 
geometry of the microchannels was shown to generate so-called Dean 
vortices, which were associated with secondary velocities Vave,Dean described by 
the power law 

[ ] 4
ave,Dean

1.63m/s 1.8 10 DeV −= ×  

where De is the Dean number. With reference to this equation and assuming 
Stokes drag to be valid, consider a 2-μm diameter spherical particle immersed 
in a fluid with dynamic viscosity equal to 0.001 Pa∙s. The particle is engulfed in 
a secondary vortex with Dean number equal to 30. Given these data, we 
conclude that the particle is under the effect of a drag force greater than 800 
pN. (1 piconewton = 10-12 N). 

Recommended research: Ookawara et al. (2004).  

13.(   ) Flow of non-Newtonian fluids is important in microfluidic research 
because micro- and nanoscale devices often involve eminently nonlinear 
fluids such as blood and polymeric solutions. Tang et al. (2009) used a lattice 
Boltzmann numerical model to study flow of power-law fluids in 
microchannels. Noting that plug-like electroosmotic flow is a boon for 
applications such as micropumps and mixers, Tang’s team maintained that, in 
their simulations at least, plug-like velocity profiles are easier to achieve with 
shear-thickening fluids than with shear-thinning ones.  

Recommended research: Tang et al. (2009). 

14.(   ) Zhao and Yang (2013) developed analytical solutions for electroosmotic 
flow of power-law non-Newtonian fluids in cylindrical microchannels. 
Crucially, they found that Helmholtz-Smoluchowski velocity in such flows is 
distinctly dependent on the geometry of the conduit, in contrast to what is 
generally observed in, say, electroosmotic flows of planar surfaces and 
parallel plates.  

Recommended research: Zhao and Yang (2013).  

Zhuo et al. (2006) used a finite volume element (FVM) code to model 
convective heat transfer in microchannels of trapezoidal and triangular cross-
section. With the aim of comparing numerical results with experimental data, 
Zhuo’s team simulated the two microchannel geometries at a wide range of 
Reynolds numbers, namely 30 ≤ Re ≤ 400. 
15.(   ) Interestingly, for Reynolds numbers greater than 100, Zhuo’s team 
found that the Nusselt number Nu for the thermally fully-developed region of 
both the trapezoidal and triangular numerical schemes were shown to be 
linearly proportional to the corresponding Re. However, this relationship did 
not hold at lower Reynolds numbers. ◼ 

Recommended research: Zhuo et al. (2006). 
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It is well-known that heat transfer 
inside flow passages can be enhanced by 
using passive surface modifications such as 
rib turbulators, protrusions, pin fins, and 
dimples. Previous research at the 
macroscale level has shown that, of these 
modifications, dimples may offer the best 
enhancement of heat transfer with the 
least penalty in pressure drop. With this in 
mind, Wei et al. (2007) conducted numerical 
simulations to assess heat transfer in a 
rectangular microchannel with one dimpled 
bottom surface. The computational domain they used is illustrated to the 
side; all dimensions are in μm; the arrows indicate the direction of fluid flow.  
16.(   ) Wei’s team found that the addition of a dimple did, in fact, enhance 
microscale heat transfer. Crucially, they noted that heat transfer 
enhancement was greatest within the dimple, where a large zone of flow 
recirculation is present. ◼ 

Recommended research: Wei et al. (2007). 

17.(   ) Leshansky and Pismen (2009) developed a 2D model of droplet breakup 
in a microfluidic T-junction. Their work relies on simple geometric arguments 
and agrees well with numerical simulations at low capillary numbers – and, 
they note, even moderate Ca values, too. The main shortcoming of the 
Leshansky-Pismen model, arguably, was the fact that it cannot be readily 
extended to asymmetric T-junctions (i.e., junctions where the daughter 
channels have different hydraulic resistances).  

Recommended research: Leshansky and Pismen (2009).  

Mukherjee and Kandlikar (2005) developed a numerical model to study 
flow of a vapor bubble inside a microchannel. The following figure shows the 
evolution of velocity vectors at the central vertical plane of their hypothetical 
microchannel. Mukherjee and his colleague went on to explore the effect of 
different parameters on the flow field. They found that increasing Reynolds 
number or inlet temperature at the channel inlet led to faster bubble growth.  
18.(   ) On the other hand, Mukherjee and Kandlikar noted that including 
gravitational effects had no effect on bubble growth rate. ◼ 

Recommended research: Mukherjee and Kandlikar (2005).  

 

Velocity vectors at the central vertical plane of the computational domain. From Mukherjee and Kandlikar (2005). 
© 2005 Springer-Verlag. Reproduced with permission. 

Lin et al. (2004) introduced a microfluidic device that can be used to 
generate temporal and spatial concentration gradients. Lin’s team used a 
“mixer module” design to generate mixtures of two fluidic inputs, one for a 
FITC-Dextran solution and another for a buffer solution, and showed that the 
desired final concentration of a FITC-Dextran solution could be manipulated 
by adjusting the relative flow rates of each input.  Further, by manipulating 
the two inputs while maintaining the same total flow rate, the slope, baseline 
and the direction of the linear concentration gradients could be changed at 
will.  
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19.(   ) One limitation of the microfluidic device introduced by Lin’s team is 
that it is restricted to linear gradients; in other words, the device is not 
capable of generating or controlling nonlinear spatial concentration 
gradients. ◼ 

Recommended research: Lin et al. (2004).  

20.(   ) In a three-dimensional viscoelastic focusing scheme, the dimensionless 
critical radius of the circular microchannel to be used is 0.16, the blockage 
ratio is 0.11, and the Deborah number is 0.025. Accordingly, we surmise that 
the ratio of required channel length LA to radius R for efficient focusing is 
greater than 2200. (See the Additional Information section for details on this 
statement.)  

Recommended research: D’Avino et al. (2012).  

A ADDITIONAL INFORMATION 
1.Electroviscous effects on pressure-driven liquid flow in microchannels (Li, 
2004) 

 

When a liquid is forced through a microchannel under an applied 
hydrostatic pressure, the counterions in the diffuse layer (mobile part) of the 
electric double layer are carried towards the downstream end, resulting in an 
electrical current in the pressure-driven flow direction. When ions are 
displaced in a liquid, they pull the liquid molecules along with them, a 
phenomenon that, in macroscopic terms, leads to a liquid flow in the opposite 
direction of the pressure-driven flow. The overall result is a reduced flow rate 
in the pressure-drop region. A microchannel pressure-driven flow with a 
retarding electrokinetic effect can be described with the dimensionless 
velocity profile 
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𝑉𝑉�𝑧𝑧 is the normalized axial velocity, 𝑋𝑋� = x/a is the normalized distance between 
plates, 𝐸𝐸�𝑠𝑠 = Es/𝜁𝜁0 is the ratio of the applied electric field Es to the (zeta) 
potential 𝜁𝜁0 at the wall, and 𝜁𝜁  ̅= (ze𝜁𝜁0/kBT) is a normalized zeta-potential where 
z is the ionic valence, e ≈ 1.60×10-19 C is the elementary charge, kB ≈ 1.38×10-23 
J/K is Boltzmann’s constant, and T is temperature. Dimensionless parameter 
G1 is given by 
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where: 
 → a is the half-distance between plates; 
 → Pz = Δp/L is the pressure drop along the length L of the channel; 
 → 𝜇𝜇 is the dynamic viscosity of the fluid; 
 → V0 is the axial velocity at the center of the channel. 

Parameter G2 is given by 
2
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where: 
 → 𝑛𝑛∞ is the bulk ion concentration; 
 → z is the valence of the ions (which is assumed to be the same for positive 
and negative ones);  
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 → e is the elementary charge ≈ 1.60×10-19 C; 
→ a is the half-distance between plates; 

 → 𝜁𝜁0 is the potential at the wall; 
→ 𝜇𝜇 is the dynamic viscosity of the fluid; 
→ V0 is the axial velocity of the bulk fluid; 
→ L is the length of the channel.  

 Parameter K is a scaled Debye-Hückel parameter: 
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where: 
→ a is the half-distance between plates; 
→ 𝑛𝑛∞ is the bulk ion concentration; 
→ z is the valence of the ions (which is assumed to be the same for positive 

and negative ones); 
→ e is the elementary charge ≈ 1.60×10-19 C; 

 → 𝜀𝜀 is the permittivity of the fluid; 
 → 𝜀𝜀0 is the vacuum permittivity ≈ 8.85×10 =12 F m-1 
 → kb is Boltzmann’s constant ≈ 1.38×10-23 J/K; 

→ T is temperature.  
2.Particle focusing induced by viscoelasticity of the suspending fluid in a 
circular microchannel (D’Avino et al., 2012) 

D’Avino et al. (2012) showed that transversal migration of particles 
suspended in a viscoelastic suspension can be controlled by the rheological 
properties of the suspending liquid. The formula used to model a viscoelastic 
particle focusing scheme is 

2

log A

A

rA
L R a
R Deβ

 
 − = −  

where A = 0.34; LA is the ‘alignment length’ needed to achieve a certain 
focusing of particles within a region of radius rA; R is the radius of the 
microtube; a is the radius of the particles; 𝛽𝛽 is the blockage ratio (i.e., the ratio 
of particle radius to the radius of the microchannel); De is the Deborah 
number of the viscoelastic suspension; rA/(R – a) is also known as the 
dimensionless critical radius. D’Avino’s paper provides practical formulas that 
more straightforwardly relate alignment length to flow rate and pressure 
drop; see their paper for details.  

A SOLUTIONS 
P.1 c Solution 

1.False. We first compute the electric force imparted on the ion, 

( )19 151 1.6 10 12,000 1.92 10 NeF zeE − −= = × × × = ×  

Then, appealing to Newton’s second law, the acceleration 𝑎𝑎 is 

e
e

FF ma a
m

= → =  

15
10 2

26

1.92 10 2.95 10 m/s
6.5 10

a
−

−

×
∴ = = ×

×
 

2.True. The terminal velocity of the ion equals the product of ion 
mobility and electric field intensity: 

( )8 45.0 10 12,000 6.0 10 m/sEPV Eµ − −= = × × = ×  

600μm/sV∴ =  

3.False. The fluid velocity is given by the product of electroosmotic 
mobility and electric field intensity: 
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( ) ( )8 2 4
EO 1.6 10 120 10 1.92 10 m/su Eµ − −= = × × × = ×  

192 μm/su∴ =  

Then, the volumetric flow rate is determined as 

3192 200 38,400μm /sQ uA= = × =  

4.True. We first compute the flow rate for an electroosmotic flow at 1.5 
kV: 

VQ A
L

εζ
µ

= −  

( ) ( ) ( )212 6
14 3

3

80 8.85 10 0.12 8.0 101500 6.41 10 m /s
10 0.1 4

Q
π− −

−
−

  × × × − × ×   ∴ = − × × = ×
 
 

 

Then, appealing to the Poiseuille equation, we solve for the pressure 
change Δp that would produce the same flow Q, 

( )4 4

8 8
pR dp RQ

dx L
π π
µ µ

−∆ = − − = × 
 

 

( )
( )

14 3

44 6

8 6.41 10 10 0.18 63.8kPa
4.0 10

Q Lp
R
µ

π π

− −

−

× × × ×
∴−∆ = = =

× ×
 

or 63,800/101,325 = 0.63 atm. Thus, a pressure of 0.8 atm would in fact suffice 
to generate the same amount of flow as a voltage of 1.5 kV.  

5.False. As discussed in Rapp (2017), the correction factor is actually the 
ratio of the section’s hydraulic resistance to the normalized hydraulic 
resistance. The compactness factor, on the other hand, is the ratio of squared 
perimeter to area. The two concepts are not entirely independent, though, 
and can be related in interesting ways – e.g., for an elliptical cross-section, the 
correction factor 𝛼𝛼 increases linearly as the compactness factor 𝒞𝒞 is raised for 
a given aspect ratio r; see below. 

Reference: Rapp (2017).  

 

6.True. Indeed, the Poisson-Boltzmann equation in spherical 
coordinates has no analytical solution. One well-known means to make the P-
B equation tractable is to rescale the radial coordinate r and assume that the 
electric potential 𝜅𝜅a is much lower than the thermal potential kBT/q, so that 
the equation can be linearized. This approach is sometimes known as the 
Debye-Hückel approximation. 

7.False. Jurin’s law actually maintains that the height of capillary rise is 
inversely proportional to the radius of the tube. One simple mathematical 
formulation of this result is 

2 cosh
gR

γ θ
ρ

=  

where 𝛾𝛾 is surface tension, 𝜃𝜃 is the contact angle, 𝜌𝜌 is the density of the fluid, 
g ≈ 9.81 m/s2, and R is the radius of the tube. Clearly, h ∝ R–1.  
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8.True. Tanner’s law relates the dynamic contact angle 𝜃𝜃𝑑𝑑, the static 
contact angle 𝜃𝜃𝑠𝑠, and the capillary number Ca, 

3 3
d s A Caθ θ− = ×  

where A is a constant. For small capillary number, the equation may be 
restated as 

( )3
3

1 3 11
3d s

s
s

A CaA Caθ θ θ
θ

 ×
+ × ≈ + 

 
 

2

1
3d

s
s

A Caθ θ
θ
×

∴ − =  

Hence, for small Ca the difference between contact angles is indeed 
linearly proportional to the capillary number.  

9.False. In Taylor-Aris dispersion for cylindrical conduits, the effective 
diffusion Deff reads 

eff

2Pe1
48

D D
 

= + 
 

 

Hence, the missing number is 48.  

P.2 c Solution 
Part 1: The Debye length is the reciprocal of the Debye-Huckel 

parameter, that is, 

0
2 2

1 2
1

2
Bk T

k z e n
εε

∞

 
=  
 

 

The bulk ionic number concentration 𝑛𝑛∞ can be obtained from the 
product 

( )23 3 23 31000 1000 6.02 10 10 6.02 10 man N M − −
∞ = = × × × = ×  

The ionic valence z = 1; all other variables are given, so that 

( ) ( )
( ) ( )

12 23
9

2 19 23

1 2

2
40 8.85 10 1.38 10 2981 6.87 10 m

2 1 1.60 10 6.02 10k

− −
−

−

 × × × × × = = ×
 × × × × × 

 

6.87 nmDλ∴ =  

 Part 2: We start off with a simple expression for reciprocal Debye 
length, 

2
2

0

1 2

1

1
, (I)

N

B i
i i

ek z n
k Tεε

−

=

−
∞

 
=  
 

∑  

where the ionic concentration 𝑛𝑛𝑖𝑖,∞ can be adjusted as 

3,
mol 1000L 1
L m moli Ain M N∞ = × ×  

, 1000i i An M N∞∴ =  

so that, in equation (I), 

22
2 2

0 0

1 2 1 2

1 1

1
,

1000N N
A

B Bi i
i i i i

N eek z n z M
k T k Tεε εε

− −

= =

−
∞

   
= =   
   

∑ ∑  

Taking 𝜀𝜀 = 6.95×10–10 F∙m–1 as the permittivity of water at 298 K, we 
substitute above to obtain 

( ) ( )
( ) ( )

223 19
2

10 23

1 2

1

1 1000 6.02 10 1.60 10

6.95 10 1.38 10 298

N

i
i ik z M

−

− −

−

=

−
 × × × × =
 × × × ×
 

∑  
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10 2

1

1 2
1 4.306 10

N

i
i ik z M−

=

−
−  ∴ ≈ ×  

 
∑  

as we intended to show. 
Part 3: The molarity of KCl upon mixing is 

[ ] 2800KCl 0.02 1.14 10 M
800 600

M −= × = ×
+

 

The updated molarity of Na2SO4, in turn, is 

[ ] 4
2 4

600Na SO 0.0018 7.71 10 M
800 600

M −= × = ×
+

 

Now, we can write for KCl and K2SO4,  

( ) ( )
( ) ( )

2 2 2 2 2

2 4 2 4

1 1.14 10 1 1.14 10

1 7.71 10 2 2 7.71 10 0.0274

i iz M − −

− −

 = × × + × × + 
 + × × × + × × = 

∑
 

Substituting in the formula derived just now, we find that 

10 91 1 24.30 10 0.0274 2.60 10 mk − −− −= × × = ×  

1 2.60 nmk−∴ =  

P.3 c Solution 
The appropriate constants are computed below.  

( ) ( )
( )

62

1 4
0

2
12.5 10 1 101,325 0.01

1.76
9.0 10 1.0

za PG
Vµ

−

−

× × ×
= = =

× ×
 

( ) ( ) ( ) ( )
( )

220 19 6 32
40

2 4
0

6.02 10 1 1.60 10 12.5 10 100 10
1.67 10

9.0 10 1.0 0.01
n zeaG

V L
ζ

µ

− − −
−∞

−

× × × × × × × ×
= = = ×

× × ×
 

( ) ( ) ( )
( ) ( )

220 2 192 2
6

12 23
0

1 21 2 2 6.02 10 1 1.60 102 12.5 10 38.0
88 8.85 10 1.38 10 310b

n z eK a
k Tεε

−
−∞

− −

 × × × × ×   = = × × =   × × × × ×   
 

The dimensionless velocity 
profile is plotted to the side. In 
addition, we have also plotted the 
profile expected for a channel flow 
with no electrokinetic effects, which 
is obtained by neglecting the second 
term in the velocity-profile equation, 
giving 

( )1 21
2z

GV X= −  

As can be seen, the velocity 
profile that includes electrokinetic 
effects is consistently less than the 
profile for purely pressure-driven 
flow.  
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P.4 c Solution 
We first integrate the reduced x-momentum equation, 

( )
2

1 22 0 (I)d u u y C y C
dy

µ = → = +  

where C1 and C2 are integration constants. The system is subject to two 
boundary conditions, the first of which is 

( ) slip
0

0 (II)
y

duu y u
dy

λ
=

= = =  

where uslip is the slip velocity at the lower wall and �̅�𝜆 is the mean free path. 
Similarly, the second boundary condition refers to the slip velocity at the 
upper plate: 

( ) slip
0y

duu y h U u U
dy

λ
=

= = − = −  

where U is the velocity with which the upper plate is being displaced. Now, 
from the definition of Knudsen number, 

Kn Knh
h
λ λ= → = ×  

Substituting (II) in the integrated velocity profile, 

( ) 1 2 slip0 0u y C C u= = × + =  

slip 2
0y

duu C
dy

λ
=

∴ = =  

Then, noting that du/dy = C1 (from the first integration of (I)), 

2 1Kn (III)C h C= × ×  

and  

1 1 2
0

Kn
y

duU U h C C h C
dy

λ
=

− = − × × = +  

Solving for C1, 

( )1 1 2Kn
UC

h
=

+
 

Accordingly, we may substitute C2 into (III) to obtain 

2C h= Kn U
h

× ×
( )

Kn
1 2Kn1 2Kn

U×
=

++
 

Lastly, we substitute C1 and C2 into (I) to obtain the velocity profile 

( ) Kn
1 2Kn

U yu y
h

  = +  +   
 

Importantly, note that, as Kn → 0,  

( ) Kn 0 0
1 2 0

U y Uyu y
h h→

  = + =  + ×   
 

which is the velocity profile associated with simple shear (Couette) flow. 
Next, let us turn to the temperature profile of the flow. We first write 

the governing equation 

( )
2 2

2 2

22

0
1 2Kn

d T du d T U
dy dy dy h

µκ µ κ
κ
  

+ = + =   +   
 



16 
© 2022 Montogue Quiz 

where 𝜅𝜅 is the thermal conductivity of the fluid. The equation is subject to the 
temperature jump condition 

( ) jump
0

2 Kn0
1 Prw w

y

h dTT y T T T
dy

γ
γ =

= = + = +
+

 

Where Tw is the temperature at the wall, 𝛾𝛾 is the specific-heat ratio and Pr is 
the Prandtl number. Employing symmetry, so that 𝑑𝑑𝑑𝑑

𝑑𝑑𝑑𝑑
�
𝑑𝑑=ℎ 2⁄

 = 0, we integrate 

once to obtain 

1
dT Ay C
dy

= − +  

or 

1 2
hC A=  

Integrating a second time, 

( ) 2
1 22

AT y y C y C= − + +  

Hence, at y = 0, 

( ) 2
1 2

2 Kn0 0 0
2 1 Pr 2w
A h hT y C C T Aγ

γ
 = = − × + × + = +  +  

 

2
2 Kn

1 Pr 2w
h hC T Aγ

γ
 ∴ = +  +  

 

Finally, the temperature profile is determined to be 

( )
2

2 2 Kn
2 1 Prw
A y yT y T h

h h
γ

γ
    = + − + +     +     

 

P.5 c Solution 
Part 1: Let 1/𝑅𝑅approx and 1/𝑅𝑅exact denote the hydraulic resistances 

associated with the approximate and exact solutions, respectively. Dividing 
𝑅𝑅approx by 𝑅𝑅exact brings to 

3

approx approx

exact exact

1 12
1

h w
R Q p L
R Q p

µ∆
= ≈

∆ 3

1 0.63

12

h
w

h w
Lµ

 − 
 

5 5
1,3,5,...

1 1921 tanh
2n

h wn
n w h

π
π=

∞  −   
  

∑
 

Setting h = w leads to further simplification: 

( )approx approx

exact exact
5 5

1,3,5,...

1 1 0.63 1
1 1 192 11 1tanh

2n

R Q p
R Q p

n
n

π
π=

∞
∆ − ×

= ≈
∆   − × × ×  

  
∑

 

approx

exact

1
0.877

1
R
R

∴ =  

Thus, the approximate equation underestimates the exact one by 
about 12.3%.  

Part 2: To obtain the improved approximation, we first note that 
tanh(𝜋𝜋/2) = 0.9172 and tanh(3𝜋𝜋/2) = 0.9998. Accordingly, we may retain the 
first term in the sum and round up the second one to 1. The ratio then 
becomes 

approx
5 5

1,3,5,...0

1 192 11 tanh
2n

Q
n

Q n
π

π=

∞  = −  
 

∑  
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approx
5 5 5

3,5,7,...0

192 1 192 11 tanh
2 n

Q
Q n

π
π π =

∞ ∴ = − − 
 

∑  

approx
5 5 5 5

1,3,5,...0

192 1 192 1921 tanh
2n

Q
Q n

π
π π π

∞

=

 ∴ ≈ − + −  
 

∑  

approx

0

1 0.630 0.627 0.575
Q

Q
∴ ≈ − + −  

approx

0

0.422
Q

Q
∴ ≈  

The exact solution, taking the first six terms in the summation, is 
0.4217, as shown in the following Mathematica code.  

 

Accordingly, the improved approximation deviates from the exact 
solution by less than 0.1%.  

P.6 c Solution 
In the case of a channel housing an interface with equal contact angles 

𝜃𝜃1 = 𝜃𝜃2 = 𝜃𝜃, the curvature in the wide transverse direction of the flat channel is 
of the order 2/w, where w is the width of the channel. Hence, inclusion of the 
radii of curvature in both directions leads to a Young-Laplace-like pressure 
drop Δp given by 

2 2 2 2 coscos 1 coshp
h w h w h

γ γ θγ θ θ   ∆ = + = + ≈   
   

 

where we have used the approximation h ≫ w, in which h 
is the height of the channel. Suppose now that the 
angles 𝜃𝜃1 and 𝜃𝜃2 at the bottom and top plates were 
different, as illustrated to the side. In such a case, the 
geometry of the figure indicates that h = R × cos(𝜃𝜃1) + R × 
cos(𝜃𝜃2). Assuming that the only nonzero radius of 
curvature R is perpendicular to the plates, the pressure 
drop predicted by Young-Laplace theory is 

( ) ( ) ( ) ( )1 2
surf 1 2

cos cos2cos cos
2

p
R h h

θ θγ γ γθ θ
+ 

∆ = = + =    
 

 

P.7 c Solution 
From Hagen-Poiseuille flow for channels, the flow rate is given by 

2

12
p hQ A

L µ
∆

=  

However, from the Young-Laplace equation, the pressure drop is 
related to the wetting angle by the simple expression 

2 cosp
h

γ θ
∆ =  

The velocity of the meniscus is given by 

2

12
dL Q p hv
dt hw L µ

∆
= = =  

Separating variables, 

2 2

12 12
dL p h p hLdL dt
dt L Lµ µ

∆ ∆
= → =  

Integrating, 
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2 2 2

12 2 12
ph L phLdL dt C t
µ µ

∆ ∆
= → + =∫ ∫  

where C is an integration constant, which, using L(t = 0) = 0, can be shown to 
equal zero. Then, replacing Δp with the Young-Laplace equation, 

( )2 2 2 cos
2 12
L h t

h
γ θ

µ
= × ×  

( )

( )
3
cos

L t t
hh µ

γ θ

∴ =  

Denoting the denominator inside the square root as 𝜏𝜏, we ultimately 
obtain 

( )
1
2L t t

h τ
 =  
 

 

Accordingly, the meniscus advances with the square root of time. 
Further, the advancing meniscus speed is obtained by differentiating the 
result above with respect to t, 

( ) 1 2

2
dL t hv t

dt τ
−= =  

Accordingly, the velocity of the meniscus decreases with the square 
root of time. 

P.6 c Solution 
1.False. This is a simple observational exercise. Upon drawing a vertical 

segment from Re = 3.0 in the horizontal axis and then tracing it to the vertical 
axis, we see that the effective pressure gradient needed to sustain the flow is 
no greater than 8 MPa/m. 

2.True. Much like the previous statement, this one involves a simple 
observational exercise. Yang et al. (2001) state that the entry length of a 
classical fluid-dynamic flow is about L ≈ 0.06Re, whereas for an 
electroosmotic flow the entry length is approximately L ≈ 0.11Re. The 
difference may be ascribed to the fact that, in addition to viscous drag, 
electroosmotic flows must also overcome the forces elicited by electrical 
attraction between the fluid and the electric double layer on the channel wall; 
in hydrodynamic terms, this additional retarding effect implies a greater 
length for the transition from undeveloped to fully-developed flow.  

Reference: Yang et al. (2001).  
3.False. Santiago (2001) actually argued that similarity between velocity 

and electric fields hinges on low Reynolds numbers and low products of 
Reynolds and Strouhal numbers. Other constraints include electric double 
layers thin compared to channel dimension; uniform 𝜁𝜁-potential; uniform 
fluid properties; electrically insulating channel walls; parallel flow at inlets 
and outlets; and equal pressure at all inlets and outlets.  

Reference: Santiago (2001).  
4.False. Park’s team found little difference in velocity profiles across 

sections when the electric double layer was made thin, so that ions followed 
the Boltzmann distribution closely. However, for thicker EDL settings, there 
were appreciable discrepancies between the PB- and NP-based solutions, 
especially at the sections with inhomogeneous 𝜁𝜁-potential (i.e., B, C, and D). 
Those workers found that in these regions the axial velocities predicted by the 
NP model tended to lag those extracted from the PB model. Park’s team went 
on to compare the velocity profiles achieved in an irregular channel, and again 
the discrepancies between the PB and NP models were found to be much 
more pronounced for thick-EDL conditions than for thin-EDL conditions.  

Reference: Park et al. (2007).  
5.True. There are other interesting findings in that paper. For one, 

Wang and Kang (2010) challenged the notion, common in earlier literature, 
that the Poisson-Boltzmann approach breaks down for thick electric double 
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layers; while the disagreement between the PB model and the Nernst-Planck-
based model (which they labeled the ‘dynamic model’) did increase as the 
Debye length was made thicker, the deviation was much less than suggested 
by previous research. For example, velocity profiles obtained with the PB 
approach were still accurate even when the Debye length was made 10 times 
thicker than the channel height.   

Reference: Wang and Kang (2010).  
6.False. Patankar and Hu (1998) note that the relative spacing between 

the streamlines (or the path lines) are in no way related to the magnitude of 
the velocity at a given location. In actuality, the greater density of streamlines 
near the walls is merely attributable to the fact that the numerical grid was 
made finer near those regions in order to capture close-to-wall effects.   

Reference: Patankar and Hu (1998).  
7.False. Ren et al. (2003) used square control volumes (or elements) and 

artificial boundaries, with the intent of saving computational time. Thus, if 
anything, the Ren et al. (2003) study stands out for its lower computational 
burden.  

Reference: Ren et al. (2003).  
8.False. The value of Ωcr,𝐴𝐴 is obtained by solving the nonlinear equation 

( )
( )

0 cr,

0 cr,

1 0
0.95

1
A

A

I i

I i

× ×Ω ×
=

× ×Ω
 

( )
( )

0

0 cr,

0
0.95

A

I

I i
∴ =

Ω
 

( )0 cr,

1 0.95
AI i

∴ =
Ω

 

One easy way to solve this equation numerically is by means of 
Mathematica’s FindRoot command: 

 
That is, Ωcr,𝐴𝐴 ≈ 1.855.  
9.False. The following plots show the flow rates obtained for rough 

(𝑄𝑄rough) and cavitation-laden (𝑄𝑄cavitation) surfaces, both of which have been 
normalized with the corresponding flow under smooth conditions. The 
horizontal axis refers to the relative geometry of the roughness and 
cavitations. As can be seen, a certain D/w ratio for a roughness element leads 
to a much lower flow rate ratio than an equivalent geometry for cavitation 
elements, indicating that roughness has a greater impact on microchannel 
electroosmotic flow than cavitation.   

Reference: Wang et al. (2007).   

10.True. The final part of the statement is taken verbatim from the 
results section of Yang et al. (2011). After a brief ‘accommodation’ period 
ranging from 2 to 10 ms, Yang’s team noted, a regime of linear dependence of 
x2 with t appears to be well-established regardless of the shape of the cross-

Flow rate variation with roughness (left) and cavitations (right) for a given geometry D/w. 
 From Wang et al. (2007). © 2007 Elsevier. Reproduced with permission. 
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section. The shape of the channel only appears in a prefactor that determines 
the flow rate.   

Reference: Yang et al. (2011). 
11.True. Indeed, Cherlo et al. (2010), upon running FLUENT simulations 

for a kerosene-water system with surface tension ranging from 5 to 120 
mN/m, verified no significant change in slug length. However, those workers 
went on to report that experiments did indicate a significant dependence of 
slug length on surface tension. The reason for the discrepancy between 
computational and experimental findings, they argued, is the fact that the 
former allowed them to modify surface tension without changing any other 
thermomechanical variables, whereas in experimental settings changes in 
surface tension were accompanied by indirect variations in other properties, 
especially viscosity, that may affect the slug lengths substantially.   

Reference: Cherlo et al. (2010).  
12.True. Substituting De = 30 into the correlation, we get 

[ ] 4
ave,Dean

1.63m/s 1.8 10 30 0.0460m/sV −= × × =  

Then, the Stokes drag is given by 

( )6 10
ave,Dean3 3 0.001 0.0460 2.0 10 8.67 10 NDF V aπµ π − −= = × × × × = ×  

867 pNDF∴ =  

Reference: Ookawara et al. (2004). 
13.False. Tang et al. (2009) actually reported the opposite. Their 

previous work had shown that Newtonian flow becomes plug-like when the 
ratio of the channel height to Debye length becomes lower than about 10. In 
their simulations, using a Debye length fixed at 29.15 nm, a Newtonian fluid 
was shown to exhibit plug-like velocity profiles for a channel height of 0.4 μm, 
but not for 0.1 or 0.2 μm. In contrast, a n = 1.5 shear-thickening fluid at the 
same Debye length did not become plug-like for channel heights as large as 
1.0 μm. A n = 0.5 shear-thinning fluid, on the other hand, displayed a plug-like 
profile for heights as little as 0.05 μm.  

Reference: Tang et al. (2009).   
14.True. Zhao and Yang (2013) indeed found that the HS velocity of 

electroosmotic non-Newtonian flow, be it shear-thickening or shear-thinning, 
is closely related to the factor 𝜅𝜅R, where 𝜅𝜅 is the Debye-Hückel parameter and 
R is the radius of the conduit.  

Reference: Zhao and Yang (2013). 
15.False. Zhuo et al. (2006) actually reported the opposite; that is, a 

linear relationship between Nusselt number and Reynolds numbers was 
verified for Re less than 100, and the relationship gradually broke down for Re 
> 100. This is shown below for the trapezoidal channel; the squares and circles 
refer to experimental and numerical data, respectively. 

Reference: Zhuo et al. (2006).  

 
From Zhuo et al. (2006). © 2006 Elsevier. Reproduced with permission. 

16.False. Wei et al. (2007) actually found that, of all regions of their 
computational domain, heat transfer enhancement was weakest within the 
dimple, as a result of the intense recirculation observed in that region. The 
larger heat transfer enhancements were found near the downstream edge of 
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the dimple and can be ascribed to the shear-layer reattachment, in addition to 
the extra advection induced by the secondary flow associated with the 
vortices that are shed from the dimples.  

Reference: Wei et al. (2007).  
17.True. Leshansky and Pismen (2009) indeed note that their study 

cannot be straightforwardly extended to asymmetric T-junctions, because in 
such cases the breakup process (which leads to the formation of two unequal 
drops) is inherently dynamic, being dominated by the mean flow direction.  

Reference: Leshansky and Pismen (2009).  
18.True. The following graph shows the temporal evolution of bubble 

equivalent diameter obtained by Mukherjee and Kandlikar (2005) with and 
without inclusion of gravitational effects. As can be seen, the two lines are 
linearly identical; earlier experiments by Kandlikar and Balasubramanian 
(2004) had noted similar findings.   

References: Mukherjee and Kandlikar (2005); Kandlikar and 
Balasubramanian (2004). 

 
From Mukherjee and Kandlikar (2005). © 2005 Springer-Verlag. Reproduced with permission. 

19.False. Much to the contrary, Lin’s team showed that their device can 
be used to create and control spatial concentration gradients of various 
shapes. Indeed, they found that the device reliably produced gradient profiles 
of the power-law form c(x) = axb, where c is the normalized FITC-Dextran 
concentration as a function of the position (x) in the observation channel, and 
a and b are fitting parameters; the power b was found to vary from ∼0.5 to ∼2, 
and hence includes appreciably nonlinear concentration patterns. 
Adjustments to the configuration of the microfluidic device could be used to 
achieve powers b as large as ∼4.2. 

Reference: Lin et al. (2004).  
20.False. The equation to use is 
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Reference: D’Avino et al. (2012).  
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