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Problem Distribution 
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8 8.2, 8.7, 8.8, 8.10, 8.13, 8.14 
9 9.4, 9.7, 9.8, 9.9, 9.12, 9.13 

10 10.5, 10.6, 10.15, 10.16, 10.17 
11 11.7, 11.8 
12 12.9 
13 13.1, 13.2, 13.5 
14 14.4 
15 15.1, 15.2, 15.3, 15.4, 15.5 
16 16.5, 16.6, 16.8, 16.11, 16.13 

 

Problems 
◼ Chapter 7 – Diffusion 
Problem 7.1 
A steel plate component operates in a carburizing atmosphere on one side and a 
decarburizing one on the other at 700oC in a condition of steady state. Calculate 
the diffusion flux of carbon through the plate if the concentrations of carbon at 
positions of 5 and 10 mm beneath the carburizing surface are 1.2 and 0.8 kg m‒3, 
respectively. Assume a diffusion coefficient of 3×10‒11 m2s‒1.  

Problem 7.2 
Assuming that the vacancy concentration of a close-packed metal is 10‒4 at its 
melting point and that D0 = 10‒4 m2s‒1 where D = D0exp(‒ED/kT) and D is the self-
diffusion coefficient, answer questions (a) to (f), which relate to diffusion by a 
vacancy mechanism in a close-packed metal:  
(a) What are the vacancy concentrations at 1/4, 1/2, and 3/4 Tm (in kelvin)?  
(b) Estimate the diffusion coefficient of the vacancies at 1/4, 1/2, and 3/4 Tm.  
(c) Estimate the self-diffusion coefficient for the metal at 1/4, 1/2, and 3/4 Tm. 
(d) How far does a vacancy diffuse at Tm/2 in 1 h?  
(e) How far does an atom diffuse at Tm/2 in 1 h? 
(f) If copper melts at 1065oC, estimate Ef. (Boltzmann’s constant kB = 8.6×10‒5 eV 
K‒1).  

Problem 7.3 
The diffusivity of lithium in silicon is 10‒9 m2s‒1 at 1376 K and 10‒10 m2s‒1 at 968 K. 
What are the values of ED and D0 for diffusion of lithium in silicon? (ED is the 
activation energy for diffusion in J mol‒1 and R = 8.314 J mol‒1

 K‒1.) 

Problem 7.4 
The diffusion coefficients for copper in aluminum at 500 and 600oC are 4.8×10‒14 
and 5.3×10‒13 m2s‒1, respectively. Determine the approximate time at 500oC that 
will produce the same diffusion result (in terms of concentration of Cu at some 
specific point in Al) as a 10 h heat treatment at 600oC. 
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Problem 7.5 
The structure of an as-cast Cu-Ni alloy has a dendrite arm spacing of 120 μm. If 
the activation energy for diffusion in this system is 120 kJ mol‒1 and the pre-
exponential factor is 6.5×10‒9 m2s‒1, estimate the temperature at which this alloy 
needs to be ‘soaked’ in order to achieve homogenization in 24 h.  

Problem 7.6 
In carburizing an alloy that initially has a uniform carbon concentration of 0.25 
wt% and is to be treated at 950oC (1223 K), if the concentration of carbon at the 
surface is suddenly brought to and maintained at 1.20 wt%, how long will it take 
to achieve a carbon content of 0.80 wt% at a position 0.5 mm below the surface? 
The diffusion coefficient for carbon in iron at this temperature is 1.6×10‒11 m2s‒1. 
Assume that the steel piece is semi-infinite.  

Problem 7.7 
Base Si wafer characteristics are developed by diffusing in B or P. Diffusion of P 
into Si forms n-type semiconductor material and can take place from a gaseous 
atmosphere. Estimate the time taken at 1200oC to develop a doping level of 1021 
atoms per cubic meter at a depth of 1 μm, if the gaseous atmosphere generates a 
surface P concentration of 2×1022 atoms per m3. 
Diffusion of P in Si: D0 = 7.5×10‒5 m2s‒1, Q = 3.35 eV, R = 8.314 kJ mol‒1, Avogadro’s 
number: 6.02×1023.  

Problem 7.8 
Another alternative route to Problem 7.7 is to coat the pure Si wafer with a Si – 10 
at.% P coating of thickness 1 μm and diffusing P in at 1200oC. Estimate the 
change in process time compared with the gaseous route. Given: density of Si = 
2300 kg m‒3, atomic weight of Si = 28.09. 

Problem 7.9 
Ion implantation followed by diffusion is a modern method of surface enrichment. 
If nitrogen ions are implanted to a depth of 0.1 μm producing a surface layer of 10 
wt% N and a maximum hardness requires a nitrogen content of 0.25 wt%, 
calculate the time required to produce a 1 μm hardened layer by diffusion at 
1000oC when D = 9.6249×10‒12 m2s‒1.  

Problem 7.10 
A thin layer of radioactivity doped gold has been sputtered on the end of a gold 
block and held at 1000oC for 16 h. The specimen was then sectioned and the 
radioactive count of each slice determined as a function of distance from the 
sputtered end. The variation of activity with distance was:  

Counts (min‒1) 
Distance from  
sputtered end 

(×10‒4 m) 
8164 1 
6413 2 
4042 3 
2350 4 
828 5 

 

Plot the data and calculate the self-diffusion coefficient of Au at 1000oC.  

Problem 7.11 
A thin film of radioactive gold was deposited on the end of a gold bar and 
annealed for 24 h near Tm. The specimen was then sectioned and the radioactivity 
of each slice measured as follows. Determine D.  

Distance from end of bar 
to center of slice (𝛍𝛍m) 

10 20 30 40 50 

Activity 83.8 66.4 42.0 23.6 8.74 

◼ Chapter 8 – Physical Properties 
Problem 8.2 
Given that the resistivity of copper at 0oC is 1.67×10‒8 Ω ∙ m and the temperature 
coefficient of resistivity 𝛼𝛼 is 6.8×10‒3 oC‒1, calculate the conductivity at ‒100oC.  

Problem 8.7 
The resistivity of intrinsic germanium is 0.028 Ω ∙ m at 385 K and 2.74×10‒4 Ω ∙ m. 
at 714 K. Assume that the hole and electron mobilities both vary as T‒3/2.  
(a) Determine the band gap energy Eg.  
(b) At what wavelength would you expect the onset of optical absorption?  
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Problem 8.8 
An n-type semiconductor has an electron concentration of 5×1017

 m‒3 and drift 
velocity of 500 m/s in an electric field of 1500 V/m. Calculate the conductivity.  

Problem 8.10 
For Si the room temperature electrical conductivity is 4×10‒4 (Ω ∙ m)‒1, the 
electron and hole mobilities are respectively 0.14 m2 V‒1 s‒1 and 0.05 m2 V‒1 s‒1. 
Calculate the intrinsic carrier concentration n at room temperature.  

Problem 8.13 
If Nb is to be used in an MRI with a magnetic field of 40.0 mA m‒1, what 
temperature must be achieved to maintain superconductivity? The temperature T 
below which superconductivity occurs for a magnetic field is given by Eq. (8.14). 
For Nb, Hc = 156.77 mA m‒1 and Tc = 9.25 K.  

Problem 8.14 
The magnetic susceptibility (𝜒𝜒) of iron is temperature dependent according to 𝜒𝜒 ∝ 
1/(T – TC), where TC is the Curie temperature. At 900oC, 𝜒𝜒 has a value of 2.5×10‒4. 
TC for iron is 770oC. Determine the susceptibility at 800oC.  

◼ Chapter 9 – Plastic Deformation and Dislocation Behaviour  
Problem 9.4 
Estimate the shear stress at the upper yield point and the yield drop (shear stress) 
that occurs when the mobile dislocation density increases by two orders of 
magnitude from the initial density of 105 cm‒2. (Take the strain rate to be 10‒3 s‒1, 
𝜏𝜏0 the stress for unit dislocation velocity of 1 cm/s to be 2.8×104 N cm‒2, n to be 
20 and b, the Burgers vector, to be 2×10‒8 cm.) 

Problem 9.7 
The resolved shear stress for copper is 0.69 MN m‒2 with a dislocation density of 
1010 m‒2. Estimate the resolved shear stress when the copper is deformed to an 
increased dislocation density of 1012 m‒2. Take n to be 10.  

Problem 9.8 
The Vickers hardness of a steel is 2.0 GN m‒2. Estimate its yield stress.   

Problem 9.9 
A copper alloy has a true stress 𝜎𝜎𝑇𝑇 of 414 MPa at true strain 𝜀𝜀𝑇𝑇 = 0.15 and 𝜎𝜎𝑇𝑇 of 
483 MPa at true strain 𝜀𝜀𝑇𝑇 = 0.25. What is the value of 𝜎𝜎𝑇𝑇 at 𝜀𝜀𝑇𝑇 = 0.2?  

Problem 9.12 
By assuming Ludvig strain hardening equation 𝜎𝜎 = K𝜀𝜀𝑛𝑛 for the true stress and 
strain. Show that the engineering (nominal) tensile strength is given by 𝜎𝜎𝑇𝑇𝑇𝑇 = 
K𝑛𝑛𝑛𝑛/𝑒𝑒𝑛𝑛. 

Problem 9.13 
An alloy has a strain hardening relation given by 𝜎𝜎 = 630𝜀𝜀0.4 MPa. Estimate its 
nominal tensile strength. In a tensile experiment, the actual tensile strength 
recorded is 230 MPa. Comment on any difference.  

◼ Chapter 10 – Surfaces, Grain Boundaries and Interfaces  
Problem 10.5 
The strengthening of a polycrystalline metal is provided by grain refinement and 
dispersion of particles. The tensile yield stress of the metal is 400 MPa when the 
grain size is 0.32 mm and 300 MPa when d = 1 mm. Calculate the average distance 
between the particles. Assume the shear modulus of the metal 𝜇𝜇 = 80 GPa and b = 
0.25 nm. 

Problem 10.6 
A steel with a grain size of 25 μm has a yield stress of 200 MPa and with a grain 
size of 9 μm a yield stress of 300 MPa. A dispersion of non-deformable particles is 
required to raise the strength to 500 MPa in a steel with grain size 100 μm. What 
would be the required dispersion spacing? (Assume the shear modulus 𝜇𝜇 = 80 GPa, 
and the Burguers vector b = 0.2 nm.) 

Problem 10.15 
The strengthening of a polycrystalline metal is provided by grain refinement and 
dispersion of particles. The tensile yield stress of the metal is 400 MPa when the 
grain size is 0.32 mm and 300 MPa when d = 1 mm. Calculate the average distance 
between the particles. Assume the shear modulus of the metal 𝜇𝜇 = 80 GPa, b = 
0.25 mm. 
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Problem 10.16 
Assume that strengthening of a low-carbon steel is achieved by grain size 
refinement and by fine carbide dispersions. Uniaxial tensile tests show that the 
tensile yield stress is 380 MPa when the grain diameter d is 0.32 mm and 276 MPa 
when d is 1.0 mm. What is the average distance of closest approach between the 
particles? The shear modulus is 11.98×1010 Pa, b = 2×10‒10 m.  

Problem 10.17 
A steel with a grain size of 25 μm has a yield stress of 200 MPa and with a grain 
size of 9 μm a yield stress of 300 MPa. A dispersion of non-deformable particles is 
required to raise the strength to 500 MPa in a steel with grain size 100 μm. What 
would be the required dispersion spacing? (Assume the shear modulus 𝜇𝜇 = 80 GPa, 
the Burgers vector b = 0.2 nm.) 

◼ Chapter 11 – Work Hardening and Annealing  
Problem 11.7 
Copper is 50% recrystallized in the following times at the different temperatures. 
Calculate the activation energy for the process.  

Time (min) Temperature (oC) 
75 102 
21 119 
9 135 

Problem 11.8 
The kinetics of recrystallization obey the Avrami relationship f = 1 – exp(‒Ktn), 
where f is the fraction recrystallized in time t and K, n are constants. Using the 
fraction transformed data given below, determine the total time required for 95% 
recrystallization.  

Fraction 
recrystallized Time, t (s) 

0.2 280 
0.6 450 

◼ Chapter 12 – Steel Transformations  
Problem 12.9 
The kinetics of the austenite-to-pearlite transformations obey the Avrami 
relationship f = 1 – exp(‒Ktn), where f is the fraction transformed in time t and K, n 
are constants. Using the fraction transformed-time data given below, determine 
the time required for 95% of the austenite to transform to pearlite.  

Fraction 
transformed Time (t) 

0.2 280  
0.6 425 

 

Estimate the values of K and n.  

◼ Chapter 13 – Precipitation Hardening  
Problem 13.1 
During age hardening of an aluminum alloy the maximum hardness could be 
achieved by ageing at 327oC for 10 h or 280 h at 227oC. How long would it take at 
257oC? If the alloy then contains precipitates 10‒7 m diameter separated by 10‒6 
m, estimate the tensile yield stress.  

Problem 13.2 
In certain Al-Cu alloys, enhanced diffusion occurs following quenching from an 
elevated temperature. From the data given below for an Al-4 wt% Cu alloy, 
calculate the energies of formation, Ef, and motion, Em, of vacancies by assuming 
that the activation energy for diffusion in an annealed alloy equals Ef + Em. For an 
alloy at 25oC show graphically how the factor Re by which quenching increases 
diffusivity, varies with quenching temperature, Tq, between 25oC and 550oC.  
Diffusion coefficients of Cu in Al-4 wt% Cu:  

ToC‒1 D m‒2s‒1 Heat treatment 
500 3.63×10‒14 Annealed 
25 8.61×10‒30 Annealed 
25 2.76×10‒21 Quenched from 500oC 
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Problem 13.5 
In an Al-Ag precipitation hardening alloy with spherical particles, the zone size 
increases from 2 to 5 nm in 3 h at 120oC and to 10 nm after 5 h at 160oC. 
Determine the activation energy for diffusion of Ag in Al. 

◼ Chapter 14 – Selected Alloys 
Problem 14.4 
The surfaces of steel specimens can be hardened by enrichment in their nitrogen 
content. One route is to maintain a nitrogen-rich atmosphere around a heated 
steel specimen. If this atmosphere gives a constant N content of 1.53 wt.% at 
1000oC and the minimum hardness requires a nitrogen content of 0.25 wt.%, 
calculate the time required to achieve a hardened depth of (a) 1 μm and (b) 1.75 
μm under these conditions.  
Data: Diffusion of N in 𝛾𝛾-Fe: D0 = 9.1×10‒5 m2s‒1, Q = 170 kJ mol‒1. Values of the 
error function are tabulated below.  

 
 

 

◼ Chapter 15 – Creep, Fatigue and Fracture 
Problem 15.1 
A thick steel plate had a microcrack of 5 mm and a fracture toughness Kc ∼ 40 
MN∙m‒3/2. Determine the stress at which fast fracture takes place.  

Problem 15.2 
The crack growth rate equation in a steel component da/dN = c(ΔK)m has values of 
a = 0.1 mm, c = 2×10‒13 (MN∙m‒2)‒4 m‒1, m = 4 and Kc = 54 MN∙m‒3/2. Calculate the 
lifetime to failure if the component is subjected to an alternating stress from 0 to 
180 MN∙m‒2 about the mean Δ𝜎𝜎/2. 

Problem 15.3 
The deformation mechanism map in the figure below shows three fields of creep 
for each of which the creep rate 𝜀𝜀̇ (s‒1) is represented by an expression of the form 
𝜀𝜀̇ = A𝜎𝜎𝑛𝑛exp(‒Q/RT). The constant A is 1.5×105, 5.8×105/d2 and 10‒9/d3 for 
dislocation creep, Herring-Nabarro creep and Coble creep, respectively (d = grain 
size in meters), while the stress exponent n is 5, 1 and 1 and the activation energy 
Q (kJ mol‒1) is 550, 550 and 400. The stress 𝜎𝜎 is in MPa. Assuming that the grain 
size of the material is 1 mm and given the gas constant R = 8.3 J mol‒1 K‒1,  
(a) Label the three creep fields.  
(b) Calculate the stress level 𝜎𝜎 in MPa of the boundary AB.  
(c) Calculate the temperature (K) of the boundary AC.  

 

Problem 15.4 
In a high temperature application an alloy is observed to creep at an acceptable 
steady-state rate under a stress of 70 MPa at a temperature of 1250 K. If 
metallurgical improvements would allow the alloy to operate at the same creep 
rate but at a higher stress level of 77 MPa, estimate the new temperature at which 
the alloy would operate under the original stress conditions. Take stress exponent 
n to be 5, and activation energy for creep Q to be 200 kJ mol‒1.  
 
 
 
 

z 0.85 0.90 0.95 1.0 1.1 1.2 
erf(z) 0.770 0.797 0.8209 0.8427 0.8802 0.910 

z 1.3 1.4 1.5 1.6 1.7 1.8 
erf(z) 0.934 0.9523 0.9661 0.9763 0.9838 0.9891 



6 
© 2023 Montogue Quiz 

Problem 15.5 
Cyclic fatigue of an aluminum alloy showed it failed under a stress range Δ𝜎𝜎 = 280 
MPa after 105 cycles, and for a range 200 MPa after 107 cycles. Using Basquin’s 
law, estimate the life of the component subjected to a stress range of 150 MPa.  

◼ Chapter 16 – Oxidation, Corrosion and Surface Engineering 
Problem 16.5 
Iron oxidizes parabolically with time and the constant k is given by  
 

1
5 2 172.4 kJ mol2.5 10 exp cm sk

RT

−
− − 

= × × −  
 

 

 

(a) What is the value of k at 500oC?  
(b) What is the depth to which oxidation will occur at 500oC in 1 year?  

Problem 16.6 
Assuming that oxidation of Fe to FeO obeys parabolic kinetics calculate the weight 
of metal lost at 600oC after 1 year if the oxidation constant is 2×10‒7 kg2m‒4s‒1. 
What thickness does this correspond to? 

Problem 16.8 
A thin film of radioactive copper was electroplated on the end of a copper 
cylinder. After a high temperature anneal of 20 h, the specimen was sectioned and 
the activity of each section counted. The following results were obtained:  

Counts/minute 
Distance from 

Plated end (10‒4 m) 
5012 1 
3981 2 
2512 3 
1413 4 
525 5 

 

Plot the data and determine the self-diffusion coefficient of Cu at the 
temperature of the experiment.  

Problem 16.11 
Ion implantation followed by diffusion is a modern method of surface enrichment. 
If nitrogen ions are implanted to a depth of 0.1 μm producing a surface layer of 10 
wt% N and a maximum hardness requires a nitrogen content of 0.25 wt%, 
calculate the time required to produce a 1 μm hardened layer by diffusion at 
1000oC when D = 9.6249×10‒12 m2s‒1. (Hint: the ‘thin-surface-film’ solution of 
Fick’s second law is Cx,t = (𝛼𝛼/√𝜋𝜋𝜋𝜋𝜋𝜋)exp(‒x2/4Dt), where 𝛼𝛼 is the amount of impurity 
per unit area present in the initial surface layer, D is the diffusivity, x is distance 
and t is time.)  

Problem 16.13 
The strain energy within a thin, flat oxide layer which remains attached to a thick 
metal substrate during cooling from the oxidation temperature, Tox, is 

( )( ) ( )2 21ox oxW E Tν α∗ = − ∆ ∆  

where W* is the strain energy density (J m‒3) within the oxide, Eox is Young’s 
modulus of the oxide (Pa), 𝜈𝜈𝑜𝑜𝑜𝑜 is its Poisson ratio, ΔT = Tox – T is the temperature 
drop (K) and Δ𝜎𝜎 (= [𝛼𝛼metal – 𝛼𝛼ox]) is the difference (K‒1) between the linear thermal 
expansion coefficient of metal and oxide.  
(a) Derive this equation for W* assuming that the oxide is stress-free at the 
oxidation temperature and that the oxide layer experiences equal bi-axial, in-plane 
strains during cooling.  
(b) Show how the expression for W* can be used to predict the critical 
temperature drop, ΔTc, to initiate oxide spallation. (Hint: assume that there is no 
change in strain energy within the alloy substrate when spallation is initiated. Let 
the effective fracture energy of the oxide-metal interface be 𝛾𝛾𝑓𝑓, J∙m‒2, and the 
oxide thickness be h, m.)  
(c) Calculate the value of 𝛾𝛾𝑓𝑓 using the following values: Eox = 380 GPa, 𝜈𝜈ox = 0.27, 
Δ𝛼𝛼 = 8.0×10‒6 K‒1, h = 5×10‒6 m, Δ𝑇𝑇𝑐𝑐 = 671 K. Why does this value of 𝛾𝛾𝑓𝑓 differ from 
the intrinsic value of 2 J∙m‒2 for fracture of the oxide/metal interface?  
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Solutions 

◼ P7.1 
This is a straightforward application of Fick’s first law:  

( )11 9 2 11.2 0.83 10 2.4 10 kg m s
0.005 0.01

cJ D
x

− − − −∆ −
= − = − × × = − ×

∆ −
 

◼ P7.2 
Part (a): We know that D0 = 10‒4 = exp(‒Ef/kBTm). Calculations for other 
temperatures are shown next.  
 

( ) ( )
4

44 16at : exp exp 10 10
4 4

f fm

B m m

E ET
k T kT

− −    
− = − = =     ×     

 

( ) ( )
2

24 8at : exp exp 10 10
2 2

f fm

B m m

E ET
k T kT

− −    
− = − = =     ×     

 

( ) ( )
4

43 4 633at : exp exp 10 4.64 10
4 3 4

f fm

B m m

E ET
k T kT

− −    
− = − = = ×     ×     

 

 

Part (b): Noting that Dv = Doexp(‒Em/kBT) and assuming Em = Ef, we can use the 
results in part (a) to compute the diffusion coefficients of vacancies:  
 

4 16 20 2 1
0at : exp 10 10 10 m s

4
m m

v
B

T ED D
k T

− − − − 
= − = × = 

 
 

4 8 12 2 1
0at : exp 10 10 10 m s

2
m m

v
B

T ED D
k T

− − − − 
= − = × = 

 
 

( )4 6 10 2 1
0

3at : exp 10 4.64 10 4.64 10 m s
4

m m
v

B

T ED D
k T

− − − − 
= − = × × = × 

 
 

 

Part (c): Note that  

( )
0 exp expf m f

v
B B

E E E
D D D

k T k T

 +  
 = − = − 
    

 

Using the vacancy concentrations determined in part (a) and the diffusion 
coefficients determined in part (b), we may write 

20 16 36 2 1at : 10 10 10 m s
4
mT D − − − −= × =  

12 8 20 2 1at : 10 10 10 m s
2
mT D − − − −= × =  

( ) ( )10 6 15 2 13at : 4.6 10 4.6 10 2.12 10 m s
4

mT D − − − −= × × × = ×  

Part (d): Using the diffusivity determined in the second calculation of part (b), the 
diffusion length is found as 
 

12 510 3600 6.0 10 m 60.0 μmvx D t − −= = × = × =  

Part (e): Using the diffusivity determined in the second calculation of part (c), the 
diffusion length is found as 
 

20 910 3600 6.0 10 m 6.0 nmx Dt − −= = × = × =  
 

Part (f): Solving for Ef, we have 
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( )4 410 exp ln 10f
f B m

B m

E
E k T

k T
− − 
= − → = − 

 
 

( ) ( )4 5ln(10 ) 8.6 10 1065 273 1.06 eVfE − −∴ = − × × × + =  

◼ P7.3 
The diffusion coefficient is given by the Arrhenius-like law D = D0exp(‒ED/RT), so 
that 

0ln ln DED D
RT

= −  

and  

1

2 1 2

1 1ln DD E
D R T T

   
= − −   

   
 

Solving for the activation energy for diffusion, 
 

( )
( )

1 21

2 1 2 1 2

ln1 1ln
1 1

D
D

R D DD E E
D R T T T T

   
= − − → = −    −   

 

( )
( )

9 10
1 1

8.314 ln 10 10
62,500 J mol 62.5 kJ mol

1 1376 1 968DE
− −

− −
×

∴ = − = =
−

 

 

Lastly, we can determine D0:  

10 7 2 1
0

62,500exp 10 exp 2.36 10 m s
8.314 968

DED D
RT

− − −   = = × = ×   ×   
 

◼ P7.4 

We may assume that the diffusion length √𝐷𝐷𝐷𝐷 is the same for both situations 
described in the problem statement. Letting t500 denote the time at 500oC that 
will yield the same diffusion result as a 10-hour treatment at 600oC, it follows that 

600
500 500 600 600 500 600

500

DD t D t t t
D

= → =  

13

500 14
5.3 10 10 110 hr
4.8 10

t
−

−
×

∴ = × =
×

 

◼ P7.5 
The soaking temperature can be estimated from the diffusion coefficient, which in 
turn can be determined by dint of the diffusion length equation 𝑥𝑥 = √𝐷𝐷𝐷𝐷. For a 
dendrite arm spacing of 120 μm, the diffusion distance will be 120/2 = 60 μm, so 
that  

2xx Dt D
t

= → =  

( )26
14 2 1

60 10
4.17 10 m s

24 3600
D

−
− −

×
∴ = = ×

×
 

In turn,  

( )0
0

exp
ln

Q Q RD D T
RT D D

 = − → = − 
 

 

( ) ( )14 9
120,000 8.314 1210 K

ln 4.17 10 6.5 10
T

− −
∴ = − =

 × × 

 

◼ P7.6 
In this unsteady diffusion problem, the concentration c(x,t) of carbon varies 
according to equation (7.10):  



9 
© 2023 Montogue Quiz 

( ) 0

0

,
1 erf

2s

c x t c x
c c Dt

−  = −  −  
 

Substituting the given data, 

( )
4

11

0.80 0.25 5 101 erf
1.20 0.25 2 1.6 10 t

−

−

 
− × = −  − × × 

 

 

62.50.579 1 erf
t

 ∴ = −  
 

 

62.5erf 0.421
t

 ∴ = 
 

 

 

The number X for which erf(X) = 0.421 can be obtained in an error function table, 
or by using a computer algebra system such as Mathematica:  

 

Finally,  
262.5 62.50.392

0.392
t

t
 = → =  
 

 

25,400 s 7.06 hrt∴ = =  

◼ P7.7 
The concentration c(x,t) of P in Si varies according to equation (7.10), which, for 
an initial concentration c0 = 0, can be restated as 

( ) ( )0 0, 1 erf
2s

xc x t c c c
Dt

  = + − −  
  

 

( ), 1 erf (I)
2s

xc x t c
Dt

  ∴ = −  
  

 

We proceed to compute the diffusivity of P in Si:  

( ) ( ) ( )19 23
5

0
3.35 1.60 10 6.02 10

exp 7.5 10 exp
8.314 1473

QD D
RT

−
−

 × × × ×   = − = × × −   × 
 

 

16 2 12.71 10 m sD − −∴ = ×  

Substituting this quantity in (I), along with c(x,t) = 1×1021 and cs = 2×1022 m‒3, we 
have 

( )
( )

6
21 22

16

1.0 1010 2 10 1 erf
2 2.71 10 t

−

−

  
×  = × × −  
× ×    

 

( )
21 6

22 16

10 1.0 101 erf
2 10 2 2.71 10 t

−

−

 
× ∴ = −  × × × 

 

 

30.40.05 1 erf
t

 ∴ = −  
 

 

30.4erf 0.95
t

 ∴ = 
 
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Using Mathematica as we did in the previous problem:  

 

Therefore,  

30.4 30.4erf 0.95 1.386
t t

  = → = 
 

 

230.4 481 s 8.02 min
1.386

t  ∴ = = = 
 

 

◼ P7.8 
In this case, the equation that governs the diffusion process is (7.18):  

( )
2

, exp (I)
4
xc x t
DtDt

α
π

 
= −  

 
 

where 𝛼𝛼 is the initial amount of P in a thin layer. Now, note that one mole of Si 
(density = 2300 kg/m3) weighs 28.09 g and occupies a volume (28.09×10‒3)/2300 
= 1.22×10‒5 m3. Then, one cubic meter of Si contains (6.02×1023)/(1.22×10‒5) = 
4.93×1028 P atoms. Since the wafer is made of a 10 at.% P coating, the number of 
P atoms per cubic meter becomes 10% × 4.93×1028 = 4.93×1027. For an unit area 
of surface, 1-μm thickness of alloy contains 4.93×1027 × 10‒6 = 4.93×1021 P 
atoms/m2. Accordingly, 𝛼𝛼 = 4.93×1021 at/m2. Substituting the pertaining data into 
(I),  

( )
( )

( )

2628
21

1616

104.93 1010 exp (I)
4 2.71 102.71 10 ttπ

−

−−

 
×  = − × × ×× × ×  

 

 

29
21 1.69 10 92310 exp

tt
×  ∴ = − 

 
 

This transcendental equation can be solved with Mathematica’s FindRoot 
command using an initial guess of, say, t = 100 sec:  

 

As shown, t ≈ 54.5 sec. This is about 89% less than the pure-Si wafer situation 
examined in Problem 7.7. 
◼ P7.9 
Much like the previous problem, this one involves equation (7.18):  

( )
2

, exp (I)
4
xc x t
DtDt

α
π

 
= −  

 
 

Here, for a surface layer of 10 wt% N with 0.1-μm thickness, we may write 

( )6 610 0.1 10 10 wt%α − −= × × =  

Substituting the pertaining data into (I), we get 

( )
( )

( )

266

1212

10100.25 exp
4 9.6249 109.6249 10 ttπ

−−

−−

 
 = − × × ×× × ×   
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0.182 0.02600.25 exp
tt

 ∴ = − 
 

 

This transcendental equation can be solved with help of Mathematica’s FindRoot 
command:  

 

Thus, t = 0.475 s = 475 msec.  

◼ P7.10 
This is a thin film problem, hence the concentration at distance x from the 
sputtered end after heating for time t is given by equation (7.18): 

( )
2

, exp
4
xc x t
DtDt

α
π

 
= −  

 
 

Taking natural logarithms on both sides,  

( )
2

ln , ln
4
xc x t
DtDt

α
π

 = − 
 

 

Hence, a plot of ln[c(x,t)] versus x2 should yield a straight line of slope ‒1/4Dt. The 
data are processed and plotted in continuation. 

 

 

As shown in the plot, the slope of the trendline is found to be ‒9.404×106. It 
follows that  

61Slope 9.404 10
4Dt

= − = − ×  

( )
61 9.404 10

4 16 3600D
∴ = ×

× × ×
 

( ) ( )
13 2 1

6
1 4.62 10 m s

4 16 3600 9.404 10
D − −∴ = = ×

× × × ×
 

◼ P7.11 
This problem is similar to 7.10; we must find the slope of the linear fit  

8164 9.007 1 1.00E-08
6413 8.766 2 4.00E-08
4042 8.304 3 9.00E-08
2350 7.762 4 1.60E-07
828 6.719 5 2.50E-07

Counts (min-1) ln(Counts) x (×10-4 m) x2 (m)
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( )
2

ln , ln
4
xc x t
DtDt

α
π

 = − 
 

 

The data are processed and plotted below.  

 

 

As shown, the slope of the linear fit is ‒9.35×10‒4 μm‒2 = ‒9.35×108 m‒2. Solving 
for diffusivity, we obtain 

8 19.35 10
4Dt

− × = −  

8 19.35 10
4 86,400D

∴ × =
× ×

 

( )
15 2 1

8
1 3.09 10 m s

4 9.35 10 86,400
D − −∴ = = ×

× × ×
 

◼ P8.2 
The resistivity can be assumed to vary with temperature according to the 
relationship  

( )0 1T Tρ ρ α= + ∆  

Using the resistivity at 0oC as the base value, we may write 

( ) ( ) ( )8 3 91.67 10 1 6.8 10 100 0 5.34 10 mTρ
− − − = × × + × × − − = × Ω⋅   

Since conductivity is the reciprocal of resistivity,  

( ) 18
9

1 1.87 10 m
5.34 10

κ −
−= = × Ω⋅

×
 

◼ P8.7 

Part (a): Firstly, we write, for the conductivity of a semiconductor such as 
germanium,  

1 1

e e h hn e n e
ρ

κ µ µ
= =

+
 

where n denotes concentration, 𝜇𝜇 denotes mobility, and e is the elementary 
charge. Assuming that the concentrations of electrons and holes are equal, we 
may write 

83.8 4.428 10 1.00E+02
66.4 4.196 20 4.00E+02
42 3.738 30 9.00E+02

23.6 3.161 40 1.60E+03
8.74 2.168 50 2.50E+03

Activity ln(Activity) x (μm) x2 (μm²)
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( )
1 1

e e h h e e hn e n e n e
ρ

µ µ µ µ
= =

+ +
 

Next, assuming that mobility is dependent on temperature T‒3/2,  

( ) 3 2
1 1 (I)

e e h en e n eBT
ρ

µ µ −= =
+

 

where B is a constant. Next, note that electron concentration varies with 
temperature as 

3 2 exp
2

g
e

B

E
n AT

k T
 

= − 
 

 

where A is a constant, Eg is bandgap energy, and kB is Boltzmann’s constant. 
Substituting in (I) brings to 

( )3 2 3 2 3 2
1 1

exp 2e g Bn eBT AT E k T BT
ρ − −= =

 − 
 

( )
1

exp 2g BAB E k T
ρ∴ =

 − 
 

exp
2

g

B

E
C

k T
ρ

 
∴ =  

 
 

where we have condensed constants A and B into a single constant C. Applying 
logarithms to the equation above, we have  

ln ln ln exp
2

g

B

E
C

k T
ρ

  
= +   

   
 

ln ln
2

g

B

E
C

k T
ρ∴ = +  

Denoting two specific data points with subscripts 1 and 2, 

1

2 1 2

1 1ln
2

g

B

E
k T T

ρ
ρ

   
= −   

   
 

Solving for bandgap energy,  

( )
( )

( ) ( )23 4
191 2

1 2

2 1.38 10 ln 0.028 2.74 102 ln
1.07 10 J

1 1 1 385 1 714
B

g
k

E
T T

ρ ρ
− −

−
 × × × × = = = ×

− −
 

1.07 eVgE∴ =  

Part (b): Optical absorption ensues when the energy of the incident photon is 
greater than or equal to the bandgap energy Eg:  
 

g g
hch E Eν
λ

= → =  

( ) ( )34 8
6

19

6.63 10 3.0 10
1.86 10 m 1860 nm

1.07 10g

hc
E

λ
−

−
−

× × ×
∴ = = = × =

×
 

◼ P8.8 
We first solve equation (8.11) for electron mobility 𝜇𝜇𝑒𝑒:  

d
d e ev E

E
νµ µ= → =  

2500 0.333 m /V s
1500eµ∴ = = ⋅  
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Then, the conductivity 𝜎𝜎 follows from equation (8.12):  

( ) ( )17 19 15 10 1.60 10 0.333 0.0266 ( m)eneσ µ − −= = × × × × = Ω⋅  

◼ P8.10 
Assuming concentrations ne = nh = ni, we solve equation (8.13) for intrinsic carrier 
concentration to obtain 

( )e e h h i
e h

n e n e n
e

σσ µ µ
µ µ

= + → =
+

 

( ) ( )

4
16 3

19
4 10 1.32 10 m

1.60 10 0.14 0.05
in

−
−

−

×
∴ = = ×

× × +
 

◼ P8.13 
All we have to do is solve equation (8.14) for temperature:  

2 2

0 1 40.0 156.77 1
9.25c

c

T TH H
T

       = − → = × −            
 

240 1
156.77 9.25

T ∴ = −  
 

 

2
0.255 1

85.6
T

∴ = −  

2
1 0.255

85.6
T

∴ = −  

( )85.6 1 0.255 7.99 K 8.0 KT∴ = × − = ≈  

◼ P8.14 
Per the problem statement, the magnetic susceptibility 𝜒𝜒 is expressed as 

C

c
T T

χ =
−

 

where TC is the Curie temperature and c is a constant. For iron, TC = 770oC; also, 
we were told that 𝜒𝜒 = 2.5×10‒4 for a temperature of 900oC. We can use this 
information to compute constant c:  

42.5 10
900 770C

c c
T T

χ −= → × =
− −

 

( ) ( )42.5 10 900 770 0.0325c −∴ = × × − =  

Lastly, the susceptibility 𝜒𝜒 at 800oC becomes  

30.0325 1.0833 10
800 770C

c
T T

χ −= = = ×
− −

 

◼ P9.4 
After yielding, the plastic strain rate is much larger than the elastic strain rate, so 
we may assume that the total strain rate consists of a plastic component only, i.e., 
𝜀𝜀ṫotal ≈ 𝜀𝜀𝑝̇𝑝. At the upper yield point, noting that 𝜀𝜀̇ = 𝜑𝜑𝜑𝜑𝜌𝜌𝑚𝑚𝜈̅𝜈, we may write 

( )3 8 5
total

0

110 2 10 10
2

n

mb τε ϕ ρ ν
τ

− −  
= = = × × × × 

 
  

0
1 cm/s

n
τ
τ
 

∴ = 
 

 

But we were told that the stress for a unit dislocation velocity of 1 cm/s is 2.8×104 
N cm‒2. Therefore, 𝜏𝜏 = 2.8×104 N/cm2. Assuming now that the dislocation density 
increases from 105 to 107 cm‒2 (i.e., a two-order-of-magnitude increase), we may 
write 
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( ) 73 8
total

0

110 02 0 11
2

n

mb τε ϕ ρ ν
τ

− −  
= = = × × × × 

 
  

2

0
10

n
τ
τ

− 
∴ = 
 

 

( )
1

2
010 nτ τ−∴ =  

( ) ( ) ( ) ( )
1 1
20 202 2 4 4 2

010 10 2.8 10 2.224 10 N cmτ τ− − −∴ = × = × × = ×  

Accordingly, the yield drop is about 5760 N∙cm‒2 or ∼20.6%.  
◼ P9.7 
Since the dislocation velocity is given by 𝜈𝜈 = (𝜏𝜏/𝜏𝜏0)n and the shear rate may be 
expressed as 𝛾̇𝛾 = 𝜌𝜌b𝜈𝜈, we have  

0

n

b
τ γ
τ ρ
 

= 
 


 

so that, for the same shear rate, 𝜏𝜏𝑛𝑛 ∝ 1/𝜌𝜌 or  

1

2 1

1 2

nτ ρ
τ ρ

 
=  
 

, giving  

1 1

2 1 1
2 1

1 2 2

n nτ ρ ρτ τ
τ ρ ρ

   
= → =   
   

 

1
10 10 2

2 12
100.69 0.435 MN m
10

τ − 
∴ = × = ⋅  

 
 

◼ P9.8 
The Vickers hardness can be estimated to be ≈3.3 times the yield stress; 
accordingly,  

3.3
3.3

V
V y y

HH σ σ≈ → =  

2.0 0.606 GPa 606 MPa
3.3yσ∴ = = =  

◼ P9.9 
In general, true stress and true strain are related by the exponential law 𝜎𝜎𝑇𝑇 = K𝜀𝜀𝑇𝑇𝑛𝑛. 
Dividing one of the given data points by the other and solving for exponent n, we 
obtain 

( )
( )

( )
( )

( )
( )

( )
( )

1 1 1 1

2 2 2 2
ln lnT T T T

T T T T

n

n
σ ε σ ε
σ ε σ ε

     
= → = ×     
          

 

( ) ( )
( ) ( )

( )
( )

1 2

1 2

ln ln 414 483
0.3018

ln 0.15 0.25ln
T T

T T
n

σ σ

ε ε

  ∴ = = =
  

 

Using this exponent and one of the given data points, we proceed to compute the 
flow stress at 𝜀𝜀𝑇𝑇 = 0.2,  

( ) ( ) ( )
( )

0.3018
3

3 1
1

0.2414 452 MPa
0.15

T
T T

T

n
ε

σ σ
ε

   = × = × =   
   

 

◼ P9.12 
In a tensile test, since volume is conserved, the product area × length is conserved, 
giving 

true true original originalA A=   

Denoting the mechanical load as P, the nominal stress becomes  
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true trueoriginal

original

n
P P

AA
σ = =





 



( )

original

true true

1
1

n

n

P
A

ε

σ

σ

=
+

=

 
∴ = × 

 






 

(I)
1n

n

σσ
ε

∴ =
+

 

But the nominal strain 𝜀𝜀𝑛𝑛 is related to the true strain 𝜀𝜀 by 𝜀𝜀 = ln(1 + 𝜀𝜀𝑛𝑛), so that 1 + 
𝜀𝜀𝑛𝑛 = 𝑒𝑒𝜀𝜀. Substituting in (I), 

(II)
1n

n eε
σ σσ
ε

= =
+

 

Noting that breakage occurs when d𝜎𝜎/d𝜀𝜀 = 𝜎𝜎, we can substitute Ludvig’s law to 
obtain 

( )nd d K
d d
σ σ ε σ
ε ε
= → =  

1nnKε σ−∴ =  
n

n K σε
ε

∴ =  

n σσ
ε

∴ =  

1 1n
ε

∴ × =  

nε∴ =  

Lastly, we substitute into (II) to obtain 

n n

n n
K Kn

e e eε ε
σ εσ = = =  

as we intended to show.  
◼ P9.13 
The nominal tensile strength can be estimated using the formula derived in 
Problem 9.12:  

0.4

0.4
630 0.4 292.7 293 MPa

n

n n
Kn
e e

σ ×
= = = ≈  

This is substantially greater than the experimental tensile strength of 230 MPa. 
This is due to local weakness in the sample, which leads to necking. The Considère 
construction used to derive 𝜎𝜎𝑇𝑇𝑇𝑇 = 𝐾𝐾𝑛𝑛𝑛𝑛𝑒𝑒−𝑛𝑛 assumes uniform reduction in cross-
sectional area without necking.  

◼ P10.5 
We have two data points to substitute in the Hall-Petch equation, namely:  

1 2
y i yk dσ σ −= +  

( )
( )

1 23

1 23

400 0.32 10

300 1.0 10

i y

i y

k

k

σ

σ

−−

−−

 = + × ×

 = + × ×

 

400 55.9 (I)

300 31.6 (II)
i y

i y

k

k

σ

σ

= +∴ = +
 



17 
© 2023 Montogue Quiz 

Rearranging equation (II), we get ky = 9.48 – 0.0316𝜎𝜎𝑖𝑖. Substituting in (I) and 
solving for friction stress, we obtain 

( )400 55.9 9.48 0.0316i iσ σ= + × −  

400 530 1.77i iσ σ∴ = + −  

130 0.77 iσ∴− = −  

130 169 MPa
0.77iσ
−

∴ = =
−

 

 

Finally, we can solve the Orowan equation for the particle spacing ℓ; a factor of 2 
is included because the stress in question is tensile rather than shear.  

2 2
D

D

b bµ µσ
σ

= → =


 

( ) ( )9 9
7

6

2 80 10 0.25 10
2.37 10 m 237 nm

169 10

−
−

× × × ×
∴ = = × =

×
  

◼ P10.6 

We have two data points to substitute in the Hall-Petch equation, so that  

1 2
y i yk dσ σ −= +  

( )
( )

1 26

1 26

300 9 10

200 25 10

i y

i y

k

k

σ

σ

−−

−−

 = + × ×

 = + × ×

 

Subtracting the second equation from the first and solving for ky, we obtain 

300 200 iσ− = ( ) 1 269 10y ik σ
−−+ × × − ( ) 1 2625 10yk

−−− × ×  

( ) ( )1 2 1 26 6100 9 10 25 10yk
− −− − ∴ = × × − ×  

 

( ) ( )
3 2

1 2 1 26 6

100 0.75 MN m
9 10 25 10

yk −
− −− −

∴ = = ⋅
 × − ×  

 

 

Substituting k in the first equation gives the lattice friction stress:  

( ) 1 26300 0.75 9 10iσ
−−= + × ×  

( ) 1 26300 0.75 9 10 50 MPaiσ
−−∴ = − × × =  

Assuming that strengthening by dispersion is additive, we may write 

6

0.75500 MPa 50 MPa MPa
100 10

Dσ
−

= + +
×

 

500 50 75 Dσ∴ = + +  

375 MPaDσ∴ =  

Finally, solving the Orowan equation for spacing ℓ, we get 

2 2
D

D

b bµ µσ
σ

= → =


 

( ) ( )9 9
8

6

2 80 10 0.2 10
8.53 10 m 85.3 nm

375 10

−
−

× × × ×
∴ = = × =

×
  

◼ P10.15 
Using the Hall-Petch equation as we did in previous problems, we write:  



18 
© 2023 Montogue Quiz 

1 2
y i yk dσ σ −= +  

( )
( )

1 23

1 23

400 0.32 10

300 1.0 10

i y

i y

k

k

σ

σ

−−

−−

 = + × ×

 = + × ×

 

The solution to this system of linear equations is straightforward and has been 
exemplified in problems 10.5 and 10.6. We can speed things up using MATLAB’s 
fsolve function:  

function F = hallpetch(x) 
F(1) = 400 - x(1) - x(2)*(0.32e-3)^(-0.5); 
F(2) = 300 - x(1) - x(2)*(1e-3)^(-0.5); 

>> fun = @hallpetch; 
x0 = [100, 1]; 

x = fsolve(fun,x0) 
x = 
  169.7521    4.1188 

As shown in the code snippet, 𝜎𝜎𝑖𝑖 ≈ 170 MPa. Then, using the Orowan equation,  
 

2 2
D

D

b bµ µσ
σ

= → =


 

( ) ( )9 9
7

6

2 80 10 0.25 10
2.35 10 m 235 nm

170 10

−
−

× × × ×
∴ = = × =

×
  

◼ P10.16 
The equation to use is, you guessed it, the Hall-Petch equation:  

1 2
y i yk dσ σ −= +  

( )
( )

1 23

1 23

380 0.32 10

276 1.0 10

i y

i y

k

k

σ

σ

−−

−−

 = + × ×

 = + × ×

 

As in the previous problem, we can speed things up using MATLAB’s fsolve 
command:  

function F = hallpetch(x) 
F(1) = 380 - x(1) - x(2)*(0.32e-3)^(-0.5); 
F(2) = 276 - x(1) - x(2)*(1e-3)^(-0.5); 

>> fun = @hallpetch; 
x0 = [100, 1]; 

x = fsolve(fun,x0) 
x = 
  140.5422    4.2836 

As shown in the code snippet, 𝜎𝜎𝑖𝑖 ≈ 141 MPa. Substituting this and other data 
into the Orowan equation, we get 

2 2
D

D

b bµ µσ
σ

= → =


 

( ) ( )10 10
7

6

2 11.98 10 2 10
3.40 10 m 340 nm

141 10

−
−

× × × ×
∴ = = × =

×
  

◼ P10.17 
The equation to use is, wait for it, the Hall-Petch equation:  

1 2
y i yk dσ σ −= +  

( )
( )

1 26

1 26

200 25 10

300 9 10

i y

i y

k

k

σ

σ

−−

−−

 = + × ×

 = + × ×
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We can easily solve these two equations for 𝜎𝜎𝑖𝑖 and ky using Mathematica’s Solve 
command:  

 

As shown, the solutions are 𝜎𝜎𝑖𝑖 = 50 MPa and ky = 0.75 MN∙m‒3/2. Assuming 
strengthening by dispersion is additive, we may write 

6

0.75500 MPa 50 MPa MPa
100 10

Dσ
−

= + +
×

 

375 MPaDσ∴ =  

Using the Orowan equation, dispersion spacing ℓ is determined as 

2 2
D

D

b bµ µσ
σ

= → =


 

( ) ( )9 9
8

6

2 80 10 0.2 10
8.53 10 m 85.3 nm

375 10

−
−

× × × ×
∴ = = × =

×
  

◼ P11.7 
The recrystallization process can be modelled with the Arrhenius-like equation 

Rate exp
B

QA
k T

 
= − 

 
 

which implies that a plot of ln(Rate) versus reciprocal temperature should yield a 
straight line with slope ‒Q/kB. The present data are processed and plotted below.  

Time (min) Rate (min-1) ln(Rate) T (oC) T (K) 1/T (K-1) 
75 0.013333 -4.317488 102 375 0.0026667 
21 0.047619 -3.044522 119 392 0.002551 
9 0.111111 -2.197225 135 408 0.002451 

 

As shown, the slope of the line obtained is ‒9860.7. Then, the activation energy Q 
is calculated to be 

Slope 9860.7
B

Q
k

= − = −  

( )59860.7 9860.7 8.62 10 0.850 eVBQ k −∴ = × = × × =  

◼ P11.8 
The Avrami equation can be adjusted to yield 

( ) ( )1 exp ln 1n nf Kt Kt f= − − → − = −  

Dividing one of the given data points by the other and solving for n, we have  
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( )
( )

ln 1 0.6450
280 ln 1 0.2

n −  =  − 
 

450 4.11
280

n
 ∴ = 
 

 

( )450ln ln 4.11
280

n  ∴ × = 
 

 

( )
( )
ln 4.11

2.98
ln 450 280

n∴ = =  

 

Then, coefficient K can be obtained from either of the two data points:  

( ) ( )ln 1
ln 1n

n
f

Kt f K
t
−

− = − → = −  

( ) 8
2.98

ln 1 0.6
1.14 10

450
K −−

∴ = − = ×  

Thus, the recrystallization process is described by the Avrami kinetic equation 

( )8 2.981 exp 1.14 10f t− = − − × ×   

Solving for t, we can determine the time required for f = 0.95:  

( ) ( )
1

ln 1 ln 1 n
n

f f
K t

Kt
−  − 

= − → = − 
 

 

( )
1

2.98
8

ln 1 0.95
669 s 11.2 min

1.14 10
t −

 − 
∴ = − = = 

× 
 

◼ P12.9 

Substituting the two data points and rearranging, we obtain 

( )0.2 1 exp 280nK= − − ×  

( )exp 280 0.8nK∴ − × =  

( )280 ln 0.8 (I)nK∴ × = −  

( )0.6 1 exp 425nK= − − ×  

( )exp 425 0.4nK∴ − × =  

( )425 ln 0.4 (II)nK∴ × = −  

Dividing (II) by (I) and solving for n, we get 

K 425n

K
× ( )

( )
ln 0.4
ln 0.8280n =

×
 

425 4.11
280

n
 ∴ = 
 

 

( )425ln ln 4.11
280

n  ∴ × = 
 

 

0.417 1.41n∴ × =  

3.38n∴ =  

Substituting the newly obtained value of n into (I) and solving for K,  
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( )3.38280 ln 0.8K × = −  

( ) 9
3.38

ln 0.8
1.19 10

280
K −∴ = − = ×  

Accordingly, the austenite-to-pearlite transition can be described by the Avrami-
kinetic relationship  

( )9 3.381 exp 1.19 10f t− = − − × × 
 

To find the time required for 95% transformation, we write 

( )9 3.380.95 1 exp 1.19 10 t− = − − × ×   

( )9 3.38exp 1.19 10 0.05t− ∴ − × × =   

( ) ( )9 3.381.19 10 ln 0.05t−∴ × × = −  

( )3.38
9

ln 0.05
1.19 10

t −

−
∴ =

×
 

( )
1

3.38
9

ln 0.05
604 s

1.19 10
t −

 
∴ = − = 

× 
 

The transition will reach 95% completion within approximately 10 minutes.  

◼ P13.1 
Any two age hardening times t1 and t2 are related by Arrhenius-like equation 

2

1 2 1

1 1ln t Q
t R T T

   
= −   

   
 

In the present case, we have t1 = 10 h, T1 = 600 K, t2 = 280 h, and T2 = 500 K, so 
that  

280 1 1ln
10 500 600

Q
R

   = −   
   

 

( )43.33 3.33 10Q
R

−∴ = × ×  

41.0 10 KQ
R

∴ = ×  

It follows that the time t3 required to achieve age hardening at a temperature T3 = 
257oC = 530 K is 

4
3 2

3 2

1 1 1 1exp 280 exp 10 90.26 h
530 500

Qt t
R T T

     = − = × × − =         
 

Now, the source length is 10‒6 – 10‒7 = 0.9×10‒6. For aluminum, 𝜇𝜇 = 40 GPa; b may 
be taken as 0.25 nm. Then, the tensile stress can be estimated with the Orowan 
equation:  

( ) ( )9 9
7

6

2 40 10 0.25 102 2.22 10 Pa 22.2 MPa
0.9 10

bµσ
−

−

× × × ×
= = = × =

×
 

◼ P13.2 
In general, diffusivity varies as a function of temperature according to the 
following Arrhenius-like equation:  

0 exp aED D
RT

 = − 
 
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For substitutional diffusion, energy Ea is constituted of a component Ef for 
vacancy formation and a component Em for vacancy movement, so that 

0 0exp exp f ma E EED D D
RT RT

+  = − = −  
   

 

0 exp expf mE ED D
RT RT

   ∴ = − −   
  

 

Consider first specimens diffusing at 25oC. As the metal is annealed at 25oC, 
vacancies are formed at 25oC and move at this same temperature, so we can write 

1 0 exp exp (I)
298 298

f mE ED D
T T

   = − −   × ×  
 

In turn, as the metal is quenched from 500oC, vacancies are formed at 500oC and 
move at 25oC, so we may write 

2 0 exp exp (II)
773 298

f mE ED D
T T

   = − −   × ×  
 

Dividing (II) by (I) and using the diffusivity data that accompanies the problem 
statement, we have 

021
2

30
1

2.76 10
8.61 10

D
D
D

−

−
×

= =
×

exp exp
773 298

f mE E
T T

   − −   × ×  

0D exp exp
298 298

f mE E
T T

   − −   × ×  

 

21
2

30
1

2.76 10 1 1exp
773 2988.61 10

fED
D R

−

−

 ×  ∴ = = − −  
×   

 

8 1 13.21 10 exp
773 298

fE
R

  ∴ × = − −  
  

 

83.21 10 exp 0.00206 fE
R

 
∴ × = × 

 
 

( )8ln 3.21 10 0.00206 fE
R

∴ × = ×  

( )8
1

ln 3.21 10 8.314
79,050 J mol

0.00206fE −
× ×

∴ = =  

179.05 kJ molfE −∴ =  

It remains to find the energy of motion Em. Note that for a specimen annealed at 
500oC, vacancies are formed and move at 500oC, so that  

2 0 exp exp (III)
773 773

f mE ED D
T T

   = − −   × ×  
 

Dividing (II) by (I) and using the diffusivity data given in the problem statement, 
we have 

014
3

30
1

3.63 10
8.61 10

D
D
D

−

−
×

= =
×

0

exp exp
773 773

f mE E
T T

D

   − −   × ×  

exp exp
298 298

f mE E
T T

   − −   × ×  
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( )15 1 14.22 10 exp
773 298

f mE E

R

 +   ∴ × = − −    
 

( )154.22 10 exp 0.00206 f mE E

R

 +
 ∴ × = ×
  

 

( ) ( )15ln 4.22 10 0.00206 f mE E

R

+
∴ × = ×  

( )
36.0 0.00206 f mE E

R

+
∴ = ×  

( )79,050
36.0 0.00206

8.314
mE+

∴ = ×  

1 166,200 J mol 66.2 kJ molmE − −∴ = =  

Lastly, we note that factor ℜ varies with temperature according to the 
exponential law  

( ) ( )
( ) ( )

0 2 1

2 10 1 1

exp exp 1 1exp
exp exp

f m f

f m

D E RT E RT E
R T TD E RT E RT

− −   
ℜ = = − −  

− −   
 

Alternatively, we can apply logarithms to both sides and write 

2 1

1 1ln fE
R T T
 

ℜ = − − 
 

 

which indicates that the logarithm of ℜ varies linearly with reciprocal 
temperature; the two foregoing equations should be familiar to those who have 
taken a class on chemical kinetics during an elementary chemistry course.  

 

◼ P13.5 
The Ostwald ripening equation for coarsening reads  

3 3 8
9

m
t o

c Dtr r
RT

γ ν
− =  

With the surface free energy  𝛾𝛾, the solute concentration c and the molar volume 
𝜈𝜈𝑚𝑚 assumed independent of temperature, the process is governed by the 
diffusivity D, which of course follows the Arrhenius-like law Aexp(‒Q/kBT). 
Therefore, at 120oC, we write 

3 3
expt o

B

r r QA
t k T

 −
= − ∆  

 

3 35 2 exp
3 393B

QA
k

 −
∴ = − × 

 

39 exp (I)
393B

QA
k

 
∴ = − × 

 

In turn, at 160oC,  
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3 310 2 exp
5 433B

QA
k

 −
= − × 

 

198 exp (II)
433B

QA
k

 
∴ = − × 

 

Dividing (II) by (I) and solving for activation energy,  

exp
433198

39
B

QA
k

A

 
− × =

exp
393B

Q
k

 
− × 

 

198 1 1exp
39 393 433B

Q
k
  ∴ = −  

  
 

198 1 1ln
39 393 433B

Q
k

   ∴ = −   
   

 

41.62 2.35 10
B

Q
k

−∴ = × ×  

4
1.62 6890

2.35 10B

Q
k −∴ = =

×
 

( )56890 8.62 10 0.594 eVQ −∴ = × × =  

◼ P14.4 
This question involves the infinite couple solution of Fick’s second law for a 
constant surface concentration, which is discussed in section 7.2.2 of the 
textbook. The equation to use is 

( ) ( )0 0, 1 erf
2s

xc x t c c c
Dt

  = + − −  
  

 

Assuming the initial bulk nitrogen concentration to be 0, then for cs = 1.53 wt% 
and c(x,t) = 0.25:  

( )0.25 0 1.53 0 1 erf
2

x
Dt

  = + − −  
  

 

0.25 1.53 1 erf
2

x
Dt

  ∴ = −  
  

 

0.25 1 erf
1.53 2

x
Dt

 ∴ = −  
 

 

0.25erf 1
1.532

x
Dt

 ∴ = − 
 

 

erf 0.837
2

x
Dt

 ∴ = 
 

 

Interpolating values in the given table or using a computer algebra system such as 
Mathematica, we have:  

 

Therefore,  
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erf 0.837 0.9865
2 2

x x
Dt Dt

  = → = 
 

 

2
0.973

4
x
Dt

∴ =  

2
(I)

3.89
xt

D
∴ =  

Pausing for a moment to compute the diffusion coefficient, we have 

( )5 12 2 1
0

170,000exp 9.1 10 exp 9.62 10 m s
8.314 1273

QD D
RT

− − −   = − = × × − = ×   ×   
 

Substituting in (I) with x = 1 μm = 10‒6 m,  

( )
( )

26

12

10
0.0267 s

3.89 9.62 10
t

−

−
= =

× ×
 

Similarly, with x = 1.75×10‒6 m,  

( )
( )

26

12

1.75 10
0.0818 s

3.89 9.62 10
t

−

−

×
= =

× ×
 

◼ P15.1 
Solving the fracture toughness equation for stress 𝜎𝜎, we obtain 

c
c

KK a
a

π σ σ
π

= → =  

( )3

40 319 MPa
5 10

σ
π −

∴ = =
× ×

 

◼ P15.2 

Noting that ΔK = Δ𝜎𝜎√𝜋𝜋𝜋𝜋, the crack growth rate equation can be restated as  

( ) ( )413 2 22 10mda c K a
dN

σ π−= ∆ = × ∆  

Substituting the alternating stress amplitude Δ𝜎𝜎 = 180 MPa,  

( )413 2 2 3 22 10 180 2.072 10da a a
dN

π− −= × × × × = ×  

Separating variables and integrating,  

3 2
3 2

12.072 10
2.072 10

da daa dN
dN a

−
−= × → =

×
 

2483
a f

ai

da dN
a

∴ =∫ ∫  

1 1483f
i f

N
a a

 
∴ = −  

 
 

where ai = 0.1 mm = 10‒4 m and  

2 2

max

1 1 54 0.0287 m
180

c
f

Ka
π σ π
   = = × =   

  
 

so that  

6
4

1 1483 4.81 10 cycles to failure
0.028710fN −

 = − = × 
 

 

The steel component can withstand 4.8 million cycles before failure ensues.  
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◼ P15.3 
Part (a): The area delimited by ABC represents Herring-Nabarro creep. The area 
below DAC represents Coble creep. The area above BAD represents dislocation 
creep. 
Part (b): At the dislocation creep/Herring-Nabarro creep boundary the creep rate 
given by the two mechanisms are equal. Accordingly, we may write 
 

Disl H-Nε ε=   

5 5 550,0001.5 10 exp
RT

σ  ∴ × − 
 

5

2
5.8 10 550,000exp

RTd
σ×  = − 

 
 

5
5 5

2
5.8 101.5 10

d
σ σ×

∴ × =  

( )
5

4
2 5

5.8 10
1.5 10d

σ ×
∴ =

× ×
 

( ) ( )

1
45

23 5

5.8 10 44.3 MPa
10 1.5 10

σ
−

 
× ∴ = = 
× ×  

 

 

Part (c): For the Herring-Nabarro/Coble creep boundary, we may write  
 

H-N Cε ε=   

5

2
5.8 10

d
σ×

∴
9

3
550,000 10exp

RT d
σ

− − = 
 

400,000exp
RT

 − 
 

 

( )
( )

5

9
exp 400,0005.8 10
exp 550,00010

RTd
RT−

−×
∴ =

−
 

5 3

9
5.8 10 10 150,000exp

10 RT

−

−
× ×  ∴ =  

 
 

11 150,0005.8 10 exp
8.3 T

 ∴ × =  × 
 

11 18,1005.8 10 exp
T

 ∴ × =  
 

 

( )11 18,100ln 5.8 10
T

∴ × =  

( )11
18,100 668 K

ln 5.8 10
T∴ = =

×
 

For completeness, we could establish the stress-temperature relationship for the 
dislocation creep/Coble creep boundary:  

Disl Cε ε=   

3 9 3
5 5

3
550 10 10 400 101.5 10 exp exp

RT RTd
σ σ

−   × ×
∴ × − = −      

   
 

3 9 3
5 4

3
550 10 10 400 101.5 10 exp exp

RT RTd
σ

−   × ×
∴ × − = −      

   
 

( )4 6 36.67 10 exp 150 10 8.31 Tσ −  ∴ = × × ×   

( ) [ ]0.0508exp 4510 MPaTσ∴ =  
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◼ P15.4 
The steady-state creep equation is 𝜀𝜀̇ = A𝜎𝜎𝑛𝑛exp(‒Q/RT). After metallurgical 
improvements, the creep rate at 𝜎𝜎0 = 77 MPa and T0 = 1250 K is required to be the 
same as that at 𝜎𝜎1 = 70 MPa and a higher temperature T1, so that  

0 1
0 1

exp expn nQ Q
RT RT

σ σ
   
− = −   

  
 

( )
( )

10

01

exp
exp

n

n
Q RT
Q RT

σ
σ

−
∴ =

−
 

0

1 0 1

1 1ln Qn
R T T

σ
σ

  
∴ = −  

   
 

1

77 200,000 1 15 ln
70 8.314 1250 T

  ∴ × = −  
   

 

5

1

1 11.98 10
1250 T

−∴ × = −  

5

1

1 1 1.98 10
1250T

−∴ = − ×  

4

1

1 7.80 10
T

−∴ = ×  

1 4
1 1280 K

7.80 10
T −∴ = =

×
 

◼ P15.5 
Assuming the fatigue behavior is represented by Basquin’s law, we may surmise 
that Δ𝜎𝜎(Nf)a = C, where Δ𝜎𝜎 is stress range, Nf is the number of cycles to failure, and 
a and C are constants. We can substitute the two given data points and solve for 
exponent a:  

( ) ( )1 ,1 2 ,2
a a

f fN Nσ σ∆ = ∆  

( ) ( )5 7280 10 200 10
a a

∴ × = ×  

5

7
10 200

28010

a
 

∴ =  
 

 

( )210 0.714
a−∴ =  

( ) ( )2ln 10 ln 0.714a −∴ × =  

( )
( )2

ln 0.714
0.0732

ln 10
a

−
∴ = =  

Using either of the two data points, we can determine constant C:  

( ) ( )0.07327
1 ,1 200 10 651 MPa

a
fC Nσ= ∆ = × =  

Lastly, we compute the number of cycles to failure at Δ𝜎𝜎 = 150 MPa:  

( ) ( )
1a
af fC N N Cσ σ= ∆ → = ∆  

1
0.0732 8651 5.12 10 cycles

150fN  ∴ = = × 
 
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◼ P16.5 
Part (a): Substituting T = 500oC = 773 K in the given expression for k, we obtain 

 

5 10 2 172,4002.5 10 exp 3.20 10 cm s
8.314 773

k − − − = × × − = × × 
 

Part (b): Noting that 1 year ≈ 3.15×107 s, the oxidation depth Δ𝑥𝑥 is calculated to 
be 

( )2x kt x kt∆ = → ∆ =  

( ) ( )10 73.20 10 3.15 10 0.10 cm 1.0 mmx −∴∆ = × × × = =  

◼ P16.6 
Noting that 1 year ≈ 3.15×107 s and kp = 2×10‒7 kg2m‒4s‒1, the weight gain Δm is 
determined as 

( )2 p pm k t m k t∆ = → ∆ =  

( ) ( )7 7 22 10 3.15 10 2.51 kg mm − −∴∆ = × × × =  

The number of oxygen atoms absorbed is 
( )

2.51
16 AN

, where 16 is the molar mass 

of oxygen and NA is Avogadro’s number. Since the compound produced by 
oxidation is FeO, we surmise that the number of Fe atoms removed equals the 
number of O atoms absorbed. Then, the mass of Fe atoms removed is  

( )
22.51 55.9Mass of Fe atoms removed 8.77 kg m

16 A AN N
−= × =  

where we have used 55.9 kg/kmol as the molar mass of Fe. It remains to compute 
the thickness 𝛿𝛿 of iron removed, 

8.77 0.00111 m 1.11 mm
7870

δ = = =  

where we have used 7870 kg/m3 as the density of iron.  
◼ P16.8 
This problem is similar to 7.10. The key is to note that the thin-film diffusion 
equation 

( )
2

, exp
4
xc x t
DtDt

α
π

 
= −  

 
 

can be adjusted to yield 

( )
2

ln , ln
4
xc x t
DtDt

α
π

= −  

so that a plot of log(c) versus x2 should yield a straight line with slope ‒1/4Dt. The 
data are processed and plotted below.  

 

Counts (min) ln (Counts)
Dist. from 

plated end (m) x 2  (m²)

5012 8.520 1.00E-04 1.00E-08
3981 8.289 2.00E-04 4.00E-08
2512 7.829 3.00E-04 9.00E-08
1413 7.253 4.00E-04 1.60E-07
525 6.263 5.00E-04 2.50E-07
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As shown, the linear fit has slope −9.34×106, hence, 

( )
6 1 19.34 10

4 4 20 3600Dt D
− × = − = −

× × ×
 

( ) ( )
13 2 1

6
1 3.72 10 m s

4 9.34 10 20 3600
D − −∴ = = ×

× × × ×
 

◼ P16.11 
This problem is akin to Problem 7.9. The amount of impurity per unit area is 𝛼𝛼 = 10 
× (0.1×10‒6) = 10‒6 wt%. Substituting this and other data into the concentration 
distribution equation, we have 
 

( )
2

, exp
4
xC x t
DtDt

α
π

 
= −  

 
 

( )
( )

( )

266

1212

10100.25 exp
4 9.6249 109.6249 10 ttπ

−−

−−

 
 ∴ = − × × ×× × ×  
 

 

0.182 0.02600.25 exp
tt

 ∴ = − 
 

 

0.182 0.0260exp 0.25 0
tt

 ∴ − − = 
 

 

This transcendental equation can be solved with MATLAB:  

>> f = @(t) 0.182/sqrt(t)*exp(-0.026/t) - 0.25; 
t0 = 1; 
fsolve(f,t0) 

ans = 

    0.4750 

Therefore, t ≈ 0.475 sec.  

◼ P16.13 
Part (a): Noting that the principal strain 𝜀𝜀𝑜𝑜𝑜𝑜 = (𝜎𝜎𝑜𝑜𝑜𝑜/𝐸𝐸𝑜𝑜𝑜𝑜)(1 – 𝜈𝜈ox), we may write, for 
the biaxially-stressed oxide layer,  

( )
21 1 1

2 2
ox

ox ox ox ox ox
ox

W
E
σσ ε σ ε ν∗ = + = −  

But 𝜎𝜎ox = (ΔT)(Δ𝛼𝛼)𝐸𝐸𝑜𝑜𝑜𝑜, giving 

( ) ( )( ) ( )
22

1 1oxox
ox ox

ox ox

T E
W

E E
ασ ν ν∗  ∆ ∆  = − = −  

( )( ) ( )2 21ox oxW E Tν α∗∴ = − ∆ ∆  
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as we intended to show.  
Part (b): Assume oxide spallation will occur when the strain energy within the 
oxide layer, of thickness h, is equal to the energy required to produce decohesion 
over an interface area A. The volume of the oxide above area A is Ah and the 
energy within this volume is AhW*. The fracture energy required is A𝛾𝛾𝑓𝑓 and, so, 
using the given expression for W* within the energy balance:  
 

( )( ) ( )2 21 (I)ox ox fE h Tν α γ− ∆ ∆ =  

( )
1

1
f

c
ox ox

T
E h

γ
α ν

∴∆ =
∆ −

 

Part (c): Substituting the given data into equation (I), we obtain  
 

( ) ( ) ( ) ( ) ( )229 6 6380 10 5 10 1 0.27 671 8 10fγ
− −= × × × × − × ×  

239.97 40.0 J mfγ
−∴ = ≈  

 

This is much larger than the intrinsic value for interfacial fracture because much of 
the oxide strain energy is dissipated during cooling, mainly by creep deformation 
in the vicinity of the tips of cracks at the oxide/metal interface. Alloys weak in 
creep are expected to show greater resistance to oxide spallation (i.e. higher 𝛾𝛾𝑓𝑓 
and Δ𝑇𝑇𝑐𝑐) than strong alloys where creep relaxation will be more limited.  
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