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Quiz NC1 

 
 

Lucas Monteiro Nogueira 
 

Problems Subject 
1 – 9  Basic nuclear processes 

10 – 14  Semiempirical mass formula and applications 
15 – 20 Scattering and electrostatic energy 
21 – 34  Radioactive decay 

 
 

A PROBLEMS 
A 1. Basic Nuclear Processes  
[ Problem 1 
Consider the following nuclear reaction equations. True or false? 

 

( )1 14 1
0 7 1(a) N ? Hn + → +  

( ) ( )2 9 1
1 4 0b H + Be ? n→ +  

( ) ( )1 10 4
0 5 2c B ? Hen + → +  

 

1.(   ) In reaction (a), the missing product is carbon-14. 
2.(   ) In reaction (b), the missing product is carbon-12. 
3.(   ) In reaction (c), the missing product is lithium-6. 

■ Problem 2.1 
Find the energy release in the reaction Li 

6 (n,𝛼𝛼) H 3 .  
Given: M( Li3

6 ) = 6.015123 u, M( He2
4 ) = 4.002603 u, M( H13 ) = 3.016049 u and 𝑚𝑚𝑛𝑛 = 

1.008665 u.   

■ Problem 2.2 
Calculate the energy yield from the following reaction. 

235 1 92 140 1
92 0 37 55 0U Rb Cs +4n n Q+ → + +  

Given: M( U92
235 ) = 235.04392992 u, M( Rb37

92 ) = 91.9197289 u, M( Cs55
140 ) = 

139.91728235 u and 𝑚𝑚𝑛𝑛 = 1.008665 u. 

[ Problem 3 
Using data from the following table, determine the reproduction factor of U-
233 and Pu-239.  
 

Element Total  
neutron yield 

Thermal microscopic cross-sections 
Capture, 𝜎𝜎𝛾𝛾 Fission, 𝜎𝜎𝑓𝑓 

U-233 2.4968 45.5 529.1 
Pu-239 2.8836 269.3 748.1 

 

A) 𝜂𝜂𝑈𝑈,233 = 2.214 and 𝜂𝜂Pu,239 = 2.121 
B) 𝜂𝜂𝑈𝑈,233 = 2.214 and 𝜂𝜂Pu,239 = 2.183 
C) 𝜂𝜂𝑈𝑈,233 = 2.299 and 𝜂𝜂Pu,239 = 2.121 
D) 𝜂𝜂𝑈𝑈,233 = 2.299 and 𝜂𝜂Pu,239 = 2.183 
 
 



2 
© 2023 Montogue Quiz 

■ Problem 4.1 
Calculate the macroscopic cross-section Σ for scattering of 1 eV neutrons in 
water, using 0.0334×1024 cm-3 as the number density N of water, along with 
scattering cross-sections of 20 barns for hydrogen and 3.8 barns for oxygen.  
A) Σ = 1.21 cm-1 

B) Σ = 1.46 cm-1 
C) Σ = 1.60 cm-1 
D) Σ = 1.82 cm-1 

■ Problem 4.2 
What is the scattering mean free path 𝜆𝜆𝑠𝑠 for the situation introduced in the 
previous problem? 

[ Problem 5 
Find the speed 𝜈𝜈 and the density of neutrons of energy 1.5 MeV in a flux of 
7×1013 cm-2∙s-1.  
A) 𝜈𝜈 = 1.69×107 m/s and 𝑛𝑛 = 4.14×104 cm-1  
B) 𝜈𝜈 = 1.69×107 m/s and 𝑛𝑛 = 8.28×104 cm-1  
C) 𝜈𝜈 = 3.38×107 m/s and 𝑛𝑛 = 4.14×104 cm-1  
D) 𝜈𝜈 = 3.38×107 m/s and 𝑛𝑛 = 8.28×104 cm-1  

[ Problem 6 
Compute the flux, macroscopic cross-section, and reaction rate for the 
following data. True or false?  

Neutron density, n  2×105 cm-3 
Neutron speed, 𝜈𝜈 3×108 cm/s 

Number density, N 0.04×1024 cm-3 
Microscopic cross-section, 𝜎𝜎 0.5×10-24 cm2 

 

1.(   ) The flux is greater than 7.0×1013 cm-2s-1. 
2.(   ) The macroscopic cross-section is greater than 0.015 cm-1.  
3.(   ) The reaction rate is greater than 1012 cm-3s-1.  

[ Problem 7 
What are the values of the average logarithmic energy change 𝜉𝜉 and the 
average cosine of the scattering angle 𝜇̅𝜇 for neutrons in beryllium, A = 9? How 
many collisions are needed to slow neutrons from 2 MeV to 0.025 eV in Be-9? 
What is the value of the diffusion coefficient D for 0.025-eV neutrons if the 
macroscopic cross-section Σ is 0.90 cm-1? True or false? 
1.(   ) The average logarithmic energy change for Be-9 is greater than 0.2. 
2.(   ) The average cosine of the scattering angle for Be-9 is greater than 0.08. 
3.(   ) The No. of collisions needed to reduce the energy of neutrons from 2 MeV 
to 0.025 eV is greater than 95.  
4.(   ) The diffusion coefficient is greater than 0.35 cm.  

[ Problem 8 
Verify that neutrons of speed 2200 m/s have an energy of 0.0253 eV. If the 
neutron absorption cross-section of boron-10 at 0.0253 eV is 3842 barns, what 
would it be at 0.1 eV?  

[ Problem 9 
Calculate the absorption cross-section of the element zirconium using the 
isotopic data in the following table. 
 

 

Mass number Abundance 
(atom %) 

Cross-section 
(barns) 

90 51.45 0.014 
91 11.22 1.2 
92 17.15 0.2 
94 17.38 0.049 
96 2.80 0.020 

 

A) 𝜎𝜎 = 0.1467 b 
B) 𝜎𝜎 = 0.1611 b 
C) 𝜎𝜎 = 0.1852 b 
D) 𝜎𝜎 = 0.2015 b 
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A 1I. Semi-Empirical Mass Formula and Applications  
■ Problem 10.1 
The nuclear binding energy may be approximated by the empirical expression 

( )22 3 2 1 3 1
1 2 3 4. . 2B E a A a A a Z A a A Z A− −= − − − −  

Name the four terms in this expression.  

■ Problem 10.2 
Considering a set of isobaric nuclei, derive a relationship between A and Z for 
naturally occurring nuclei. 

■ Problem 10.3 
Use a Fermi gas model to estimate the magnitude of a4. You may assume A ≠ 2Z 
and that the nuclear radius is R = R0A1/3. 

[ Problem 11 
Among the A = 197 isobars, the nucleus Au79

197  is stable. What are the expected 
radioactive decay types for Pt78

197  and Hg80
197  to Au79

197 ? 

[ Problem 12 
The sun is a copious source of neutrinos (solar neutrinos). The first observation 
of these particles was achieved in 1978 by R. Davis. Davis used a large detector 
filled with C2Cl4; the reaction used for the detection was 

37 37
17 18Cl Arev e−+ → +  

Using the data below, calculate the threshold energy for this reaction. 

Data: Assume both nuclei to be in their ground states. The difference between 
rest mass of a proton and a neutron can be taken as mp – mn = −1.293 MeV/c2; 
the rest mass of an electron can be taken as me = 0.511 MeV/c2. The Coulomb 
and asymmetry coefficients in the semi-empirical mass formula can be taken 
as aC = 0.697 MeV and aA = 23.3 MeV, respectively.  
A) 𝐸𝐸th = 0.114 MeV 
B) 𝐸𝐸th = 0.693 MeV 
C) 𝐸𝐸th = 1.50 MeV 
D) 𝐸𝐸th = 2.11 MeV 

[ Problem 13 
Use the semi-empirical mass formula to establish if the nucleus Cu29

64  can 
undergo 𝛽𝛽− decay to yield Zn30

64  or 𝛽𝛽+ decay to yield Ni28
64 . Also calculate the 

maximum energies of the emitted electrons/positrons. Use mp = 938.272 
MeV/c2, mn = 939.565 MeV/c2, and me = 0.511 MeV/c2 as the rest masses of a 
proton, a neutron, and an electron, respectively. 
A) Both 𝛽𝛽− and 𝛽𝛽+ decays are allowed. 
B) Only 𝛽𝛽− decay is allowed. 
C) Only 𝛽𝛽+ decay is allowed. 
D) Neither 𝛽𝛽− nor 𝛽𝛽+ decay is allowed. 

■ Problem 14.1 
A nuclear reactor produces a total power of 1.88 GW. The fission reaction 
involved in energy production is 

( ) ( )235
92 1 2U , ,92 200MeVA Z A Z k n→ + − + +  

where k is an integer with value 2 or 3. Calculate the number of fission 
reactions per second. 
A) 𝑟𝑟 = 3.45×1018 s-1 

B) 𝑟𝑟 = 8.17×1018 s-1 

C) 𝑟𝑟 = 1.34×1019 s-1 
D) 𝑟𝑟 = 5.88×1019 s-1 

■ Problem 14.2 
Knowing that the fissile nucleus, U92

235 , constitutes about 33% of the 
total fuel mass, estimate how much fuel is consumed in a year. 
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A) 𝑀𝑀 = 723 kg 

B) 𝑀𝑀 = 985 kg 

C) 𝑀𝑀 = 1810 kg 
D) 𝑀𝑀 = 2190 kg 

■ Problem 14.3 
Nuclear reactors are the main source of human-generated neutrinos. Neutrinos 
are produced in the 𝛽𝛽− decay of neutron-rich uranium fission fragments, which 
implies that they may actually be antineutrinos, 𝜈̅𝜈𝑒𝑒. Assuming for simplicity 
that all neutrinos originate from the decay of La57

145  (as representative of all 
possible 𝛽𝛽− decays) and the total decay rate corresponds to about 22% of the 
total fission rate, calculate the maximum neutrino energy.  
A) 𝑄𝑄− = 2.45 MeV 

B) 𝑄𝑄− = 4.81 MeV 

C) 𝑄𝑄− = 6.76 MeV 
D) 𝑄𝑄− = 8.09 MeV 

■ Problem 14.4 
Calculate the neutrino flux at a distance of 400 m from the reactor core. 
A) Φ = 8.75×10-11 m-2s-1 
B) Φ = 2.44×1012 m-2s-1 
C) Φ = 6.42×1012 m-2s-1 
D) Φ = 1.15×1013 m-2s-1 

■ Problem 14.5 
Knowing that the cross-section for the inverse beta decay reaction 𝜈̅𝜈𝑒𝑒 + p → n + 
e+ at reactor energies is about 6×10–44 cm2, with an ideal detector of 1 ton active 
mass placed at 400 m from the core, how many neutrinos per year are 
detected? In the following alternatives, A denotes the atomic mass of the 
material that constitutes the detector. 
A) 454/A neutrinos will be detected per year.  
B) 732/A neutrinos will be detected per year.  
C) 1080/A neutrinos will be detected per year.  
D) 1340/A neutrinos will be detected per year. 

A 1II. Scattering and Electrostatic Energy  
■ Problem 15.1 
A gamma ray from neutron capture has an energy of 7 MeV. Find its frequency 
and wavelength. 
A) f = 1.69×1021 Hz and 𝜆𝜆 = 0.178 pm 
B) f = 1.69×1021 Hz and 𝜆𝜆 = 0.356 pm  
C) f = 3.38×1021 Hz and 𝜆𝜆 = 0.178 pm  
D) f = 3.38×1021 Hz and 𝜆𝜆 = 0.356 pm 
■ Problem 15.2 
For 180o scattering of gamma or X-rays by electrons, the final energy of the 
photon is 

0

1
1 2E
E E

−
 

′ = + 
 

 

where E is the energy of an incident photon and E0 ≈ 0.511 MeV is the rest mass 
energy of an electron. What is the final photon energy for the 7-MeV gamma 
ray of the previous problem? 
A) E’ = 0.113 MeV 
B) E’ = 0.247 MeV  
C) E’ = 0.378 MeV  
D) E’ = 0.525 MeV 

■ Problem 15.3 
Verify that if 𝐸𝐸 ≫ 𝐸𝐸0, then 𝐸𝐸′ ≈ 𝐸𝐸0/2 and if 𝐸𝐸 ≪ 𝐸𝐸0, then (𝐸𝐸 − 𝐸𝐸′) ≈ 2𝐸𝐸/𝐸𝐸0. Which 
approximation should be used for a 7-MeV gamma ray? Verify numerically.  
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■ Problems 16.1 – 16.5 
Referring to Figure 1 in the Additional Information section, indicate which of 
the three major interaction processes (photoelectric absorption, Compton 
scattering or pair production) is dominant in the situations 16.1 to 16.5. 

  A. Photoelectric 
absorption 

B. Compton 
scattering 

C. Pair 
production 

16.1 1 MeV gamma rays in aluminum    
16.2 100 keV gamma rays in hydrogen    
16.3 100 keV gamma rays in germanium    
16.4 10 MeV gamma rays in carbon    
16.5 10 MeV gamma rays in lead     

 

■ Problem 17.1 
Calculate the electrostatic energy W of a charge Q distributed uniformly 
throughout a sphere of radius R. 
A) W = 2Q2/5R 
B) W = Q2/2R 
C) W = 3Q2/5R 
D) W = 3Q2/4R 

■ Problem 17.2 
Since Si14

27  and Al13
27  are “mirror nuclei,” their ground states are identical except 

for charge. If their mass difference is 6 MeV, estimate their radius. Neglect the 
proton-neutron mass difference.  
A) R = 3.08 fm 
B) R = 3.48 fm 
C) R = 3.88 fm 
D) R = 4.28 fm 

[ Problem 18 
The binding energy of Zr5040

90  is 783.916 MeV. The binding energy of Y5139
90  is 

782.410 MeV. Estimate the excitation energy of the lowest T = 6 isospin state in 
90Zr.  
A) E = 12.98 MeV 
B) E = 13.40 MeV 
C) E = 13.84 MeV  
D) E = 14.15 MeV 

■ Problem 19.1 
A convenient model for the potential energy V of a particle of charge q 
scattering from an atom of nuclear charge Q is  

rqQeV
r

α−
=  

where 𝛼𝛼−1 represents the screening length of the atomic electrons. 
Use the Born approximation, 

( ) 3
2

1 2
4

i mf e V r d
π

− ∆ ⋅= − ∫ k r r


 

to calculate the scattering cross-section 𝜎𝜎. 

■ Problem 19.2 
How should 𝛼𝛼 depend on the nuclear charge Z? 

■ Problem 20.1 
Consider the scattering of a 1-keV proton by a hydrogen atom. What do you 
expect the angular distribution to look like? Sketch a graph and comment on its 
shape. 

■ Problem 20.2 
Estimate the total cross-section and choose the option that best approximates 
your result.  
A) 𝜎𝜎 = 1.8×10–20 cm2 
B) 𝜎𝜎 = 1.8×10–18 cm2  
C) 𝜎𝜎 = 1.8×10–16 cm2  
D) 𝜎𝜎 = 1.8×10–14 cm2 
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A IV. Radioactive Decay  
■ Problem 21.1 
If a reactor part contains 5000 curies of cobalt-60 (half-life = 5.27 years), how 
much activity will remain after 45 years? 
A) A = 13.4 Ci 
B) A = 17.7 Ci 
C) A = 26.5 Ci 
D) A = 33.0 Ci 

■ Problem 21.2 
Assume that a source of 137Cs (half-life = 30.07 years) can be safely managed if it 
contains less than 0.01 Ci. How long would it take for a source containing 4 Ci 
of 137Cs to reach this value? 
A) t = 114 yr 
B) t = 260 yr 
C) t = 355 yr 
D) t = 481 yr  

■ Problem 21.3 
Consider 12% of technetium-99m-DTPA (diethylene-triamine-pentaacetate) is 
eliminated from the body of a patient by renal excretion, 22% by fecal 
excretion, and 3% by perspiration within six hours. What is the effective half-
life of this radiopharmaceutical, given that the physical half-life for Tc-99m is 
six hours? 
A) Te = 3.45 hr 
B) Te = 4.59 hr 
C) Te = 5.35 hr 
D) Te = 6.04 hr  

■ Problem 22.1 
The data in the following table show the measured activity 𝐴𝐴 in millicuries 
(mCi) as a function of time t for an unknown radionuclide F that decays into a 
stable daughter G. Estimate the half-life of unknown radionuclide F. 

Time, t (min) 0 1 2 3 4 5 6 8 10 12 
Activity, A (mCi) 3.6 3.23 2.78 2.41 2.09 1.88 1.62 1.31 0.98 0.73 

 

A) t1/2 = 3.49 min 
B) t1/2 = 4.12 min 
C) t1/2 = 5.29 min 
D) t1/2 = 6.88 min 

■ Problem 22.2 
In its original (1911) form the Geiger-Nuttall law expresses the general 

relationship between 𝛼𝛼-particle range (𝑅𝑅𝛼𝛼) and decay constant (𝜆𝜆) in natural 𝛼𝛼-
radioactivity as a linear relation between log 𝜆𝜆 and log R. Subsequently, this was 
modified to an approximate linear relationship between log 𝜆𝜆 and some power 
of the 𝛼𝛼-particle energy, Ex (𝛼𝛼). 

Explain how this relationship between decay constant and energy is 
explained quantum-mechanically. Show also how the known general features 
of the atomic nucleus make it possible to explain the extremely rapid 
dependence of 𝜆𝜆 on E(𝛼𝛼). (For example, from E(𝛼𝛼) = 5.3 MeV for Po-210 to E(𝛼𝛼) = 
7.7 MeV for Po-214, 𝜆𝜆 increases by a factor of some 1010, from a half-life of 
about 140 days to one of 1.6×10-4 sec.) 

■ Problem 22.3 
Natural gold Au79

197  is radioactive since it is unstable against 𝛼𝛼-decay 
with an energy of 3.3 MeV. Estimate the lifetime of Au79

197  to explain why gold 
does not burn a hole in your pocket.  
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■ Problems 23.1 – 23.3  
Determine the specific activity a for the following radionuclides. 
23.1. Cobalt-60 (half-life = 5.26 yr) 
23.2. Iodine-131 (half-life = 8.02 d) 
23.3. Cesium-137 (half-life = 30 yr) 

23.1 23.2 23.3 
A) a = 104 Ci/g A) a = 78.8 Ci/g A) a = 86.9 Ci/g 
B) a = 1130 Ci/g B) a = 1670 Ci/g B) a = 185 Ci/g 
C) a = 8400 Ci/g C) a = 45,200 Ci/g C) a = 512 Ci/g 
D) a = 54,500 Ci/g D) a = 124,000 Ci/g D) a = 2430 Ci/g 

[ Problem 24 
How long does it take for a sample of 400 MBq of iodine-123 (t1/2 = 13.2 h) and a 
sample of 1780 MBq of technetium-99m (t1/2 = 6 h) to reach the same activity? 
A) t = 6.82 h 
B) t = 12.2 h 
C) t = 16.5 h 
D) t = 23.8 h 

[ Problem 25 
Carbon is often used in dating of organic specimens. Carbon-14 is a radioactive 
isotope of carbon produced by the action of cosmic rays in the atmosphere. If 
the flux of cosmic rays remains roughly constant over time, the ratio of C614  to 
the stable most abundant isotope C612  tends to an equilibrium value of about 
1.3×10-12. C614  decays by 𝛽𝛽− with a half-life of 5700 years. Measuring the activity 
of a fossil of 6-g mass, earth scientists measured 5400 decays in 3 hours. The 
age of the fossil is, most nearly: 
A) T = 5250 yr 
B) T = 6400 yr 
C) T = 7850 yr 
D) T = 9090 yr 

■ Problem 26.1 
A solution contains an unknown amount of gold-198 (Au-198) and iodine-131 (I-
131) beta-emitters. If the total activity A(t) of the solution at time t = 0 is 0.25 
μCi (9.25 kBq) and drops to half of its initial value in 3 days, calculate the initial 
activities 𝐴𝐴𝐴𝐴𝐴𝐴(0) and 𝐴𝐴𝐼𝐼(0) of Au-198 and I-131, respectively, in the solution. The 
half-lives of Au-198 and I-131 are 2.70 days and 8.05 days, respectively.  

■ Problem 26.2 
Calculate the total activity 𝐴𝐴(t) of the solution at time t = 6 days. 
A) A(6) = 0.0325 μCi 
B) A(6) = 0.0650 μCi 
C) A(6) = 0.0934 μCi 
D) A(6) = 0.141 μCi 

■ Problem 26.3 
Calculate the time T at which the activities of Au-198 and I-131 in the solution 
are equal. What is the common activity at this time T? 
A) The activities of Au-198 and I-131 both equal 0.0109 μCi at T = 5.85 days. 
B) The activities of Au-198 and I-131 both equal 0.0109 μCi at T = 11.7 days. 
C) The activities of Au-198 and I-131 both equal 0.0218 μCi at T = 5.85 days. 
D) The activities of Au-198 and I-131 both equal 0.0218 μCi at T = 11.7 days. 

■ Problem 27.1 
Radioactive decay through a series of radioactive transformations is much 
more common than the simple radioactive decay from a radioactive parent into 
a stable daughter. The radioactive decay series forms a decay chain starting 
with the parent radionuclide and moves through several generations to 
eventually end with a stable nuclide.  

Consider the simple chain 𝑃𝑃 → 𝐷𝐷 → 𝐺𝐺 where both the parent P and daughter D 
are radioactive and the granddaughter G is stable. The parent decays with a 
decay constant 𝜆𝜆𝑃𝑃 while the daughter decays with a decay constant 𝜆𝜆𝐷𝐷. For this 
simple decay series, state the differential equations governing the kinetics of 
the radioactive parent and radioactive daughter.  

■ Problem 27.2 
Solve the differential equations in Part 1 with the following initial conditions.  
(I) Initial number of parent nuclei NP (t) at time t = 0 is NP (0). 
(II) Initial number of daughter nuclei ND(t) at time t = 0 is ND(0) = 0.  
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■ Problem 27.3 
Using the results of Part 2, obtain an expression for the activity of the daughter 
AD(t). 

■ Problem 27.4 
The expression for the daughter activity AD(t) derived in the previous part 
should predict AD(t) = 0 (in accord with the initial condition ND(0) = 0) and AD(t →
∞) = 0 (because at infinite time all daughter nuclei will have decayed). It follows 
that AD(t) must reach a maximum value (AD)max at a characteristic time (tmax)D 
somewhere between the two extremes, (tmax)D ∈ (0, ∞). Derive an expression for 
the characteristic time (tmax)D.  

■ Problem 27.5 
Show that for 𝜆𝜆𝑃𝑃 ≳ 𝜆𝜆𝐷𝐷 (but not for 𝜆𝜆𝑃𝑃 = 𝜆𝜆𝐷𝐷) and for 𝜆𝜆𝑃𝑃 ≲ 𝜆𝜆𝐷𝐷 (but not for 𝜆𝜆𝑃𝑃 = 𝜆𝜆𝐷𝐷) 
the characteristic time (tmax)D can be approximated by  

( )max
1

D
P D

t
λ λ

≈  

To verify this approximation calculate (tmax)D with this approximation and 
compare results with the expression derived in 27.4 for the following two 
radioactive series decays: (1) Series decay with 𝜆𝜆𝑃𝑃 = 1.08 yr and 𝜆𝜆𝐷𝐷 = 1.0 yr and (2) 
Series decay with 𝜆𝜆𝑃𝑃 = 3.1 yr and 𝜆𝜆𝐷𝐷 = 3.5 yr. 

■ Problem 28.1 
The molybdenum-99 (Mo-99) → technetium-99m (Tc-99m) → technetium-99 
(Tc-99) decay series plays an important role in nuclear medicine because it 
serves as a source of Tc-99m, the most widely used radionuclide for nuclear 
imaging tests. The series parent radionuclide Mo-99 decays through 𝛽𝛽− decay 
with a half-life (t1/2)Mo-99 = 66.0 hours into daughter radionuclide Tc-99m. 
Subsequently, the daughter Tc-99m decays through gamma emission with a 
half-life (t1/2)Tc-99m = 6.02 hours to the granddaughter radionuclide Tc-99. The Tc-
99 radionuclide has a much longer half-life [(t1/2)Tc-99 = 2.1×105 yr] in comparison 
with Mo-99 and Tc-99m and decays through 𝛽𝛽− decay to ruthenium-99 (Ru-
99). Starting with a pure 20 mCi (0.74 GBq) Mo-99 source, state or derive 
equations for activities of the Mo-99 parent and Tc-99m daughter as a 
function of time.  

■ Problem 28.2 
Calculate the characteristic time (tmax)Tc-99m at which the Tc-99m daughter 
radionuclide attains its maximum activity.  
A) (tmax)Tc-99m = 20.3 h 
B) (tmax)Tc-99m = 22.9 h 
C) (tmax)Tc-99m = 25.2 h 
D) (tmax)Tc-99m = 26.7 h 

■ Problem 28.3 
Calculate the maximum activity of the Tc-99m radionuclide. 
A) AD,max = 9.67 mCi 
B) AD,max = 11.4 mCi 
C) AD,max = 15.7 mCi 
D) AD,max = 19.4 mCi 

■ Problem 28.4 
Sketch the activities of the Mo-99 parent and the Tc-99m daughter as a 
function of time and highlight the salient features of the two radioactive decay 
curves.  

■ Problem 29.1 
Consider the simplest radioactive decay series P → D → G, where both the 
parent P and daughter D are radioactive and the granddaughter G is stable. 
State or derive expressions for NP(t), ND(t), and NG(t), where NP(t) is the number 
of parent nuclei, ND(t) is the number of daughter nuclei, and NG(t) is the number 
of grand-daughter nuclei, all as a function of time t, such that 0 ≤ t < ∞. Use as 
initial conditions NP (t = 0) = NP (0) > 0, ND(t = 0) = 0, and NG(t = 0) = 0.  
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■ Problem 29.2 
Validate the expression for NG(t) obtained in Part 1 by showing that the 
following limits are true: 

( )
0

(I) lim 0Gt
N t

→
=  

( ) ( )(II) lim 0G Pt
N t N

→∞
=  

■ Problem 29.3 
Calculate the sum Np(t) + ND(t) + NG(t) using expressions for NP(t), ND(t), and NG(t) 
obtained in Part 1. Did you get the result you expected? 

■ Problem 29.4 
The following figure shows three curves representing NP(t), ND(t), and NG(t) 
normalized such that NP(t = 0) = 1 and plotted against time t for the decay series 
molybdenum-99 (Mo-99) → Technetium-99m (Tc-99m) → Technetium-99 (Tc-
99), for which we have decay constants 𝜆𝜆𝑃𝑃 = 0.0105 h-1, 𝜆𝜆𝐷𝐷 = 0.115 h-1, and 𝜆𝜆𝐺𝐺 ≈ 0. 
Identify the 3 curves.  

 

■ Problem 29.5 
Of the 3 curves in the Figure given, curve 1 decreases from 1 exponentially with 
time. Curve 2 starts at zero, increases with time, exhibits a peak and then 
decreases with time. Curve 3 increases with time from zero and approaches 
unity asymptotically. For curve 2, calculate the time tmax at which the curve 
attains its peak value and determine the normalized peak value. 
A) tmax = 11.5 h; the normalized peak activity is 0.0359. 
B) tmax = 11.5 h; the normalized peak activity is 0.0718. 
C) tmax = 22.9 h; the normalized peak activity is 0.0359. 
D) tmax = 22.9 h; the normalized peak activity is 0.0718. 
 

[ Problem 30 
A radioactive source (210At) with unknown activity is positioned in a vacuum 
chamber with volume equal to 12 dm3. The activity is determined by measuring 
the amount of He (helium) that is obtained when the emitted 𝛼𝛼 particles 
attract electrons and produce stable He atoms. Assume that all 𝛼𝛼 particles are 
transformed to He gas. After one month (30 days) of exposure, the mass of He 
was measured to be 2.5 ng. Calculate the initial activity of 210Al. Recall that 210At 
decays to 210Po by electron capture; the half-lives of 210At and 210Po are 8.10 h 
and 138.4 days, respectively.  
A) AAt(0) = 12.1 GBq 
B) AAt(0) = 25.4 GBq 
C) AAt(0) = 51.1 GBq 
D) AAt(0) = 74.4 GBq 
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[ Problem 31 
At time t = 0, a radioactive source of pure 210Bi is placed in a container of lead 
that absorbs all emitted radiation, including the produced bremsstrahlung, 
emanated when electrons are absorbed. All energy absorbed by the radioactive 
source and the container is converted to heat; the heat power is measured with 
a calorimeter. If at t = 0 the 210Bi activity is 105 GBq, calculate the time it takes 
for the heat power read by the calorimeter to equal 4 mW. Assume that in every 
decay the bismuth atoms are converted to the ground state of the daughter 
nuclide, and that only one particle is emitted in each decay. 

Data: 
 The decay process in question is 210Bil → 210Po → 206Pb (stable). 
 For 210Bi, the half-life is T1/2 = 5.01 days, the maximum energy of 𝛽𝛽-decay is 
𝐸𝐸𝛽𝛽,max = 1.16 MeV, and the mean energy of 𝛽𝛽-decay is 𝐸𝐸𝛽𝛽,mean = 0.344 MeV. 
 For 210Po, the half-life is T1/2 = 138.4 days and the energy of 𝛼𝛼-decay is 𝐸𝐸𝛼𝛼  = 
5.2497 MeV.  

 

A) t = 1.76 days 
B) t = 4.21 days 
C) t = 8.40 days 
D) t = 10.2 days 

■ Problem 32.1 
A gold foil 0.03 cm thick is irradiated by a beam of thermal neutrons with a flux 
of 2×1012 neutrons/cm2/s. The nuclide 198Au with a half-life of 2.7 days is 
produced by the reaction 197Au(n,𝛾𝛾)198Au. The density of gold is 19.3 g/cm3 and 
the cross-section for the reaction is 91.5×10-24 cm2. 197Au is 100% naturally 
abundant. If the foil is irradiated for 6 minutes, what is the 198Au activity of the 
foil in decays/cm2/s? 
A) A(t = 6 min) = 1.73×108 cm-2s-1 
B) A(t = 6 min) = 3.46×108 cm-2s-1 
C) A(t = 6 min) = 5.19×108 cm-2s-1 
D) A(t = 6 min) = 7.79×108 cm-2s-1 

■ Problem 32.2 
What is the maximum amount of 198Au/cm2 that can be produced in the foil? 

■ Problem 32.3 
How long must the foil be irradiated if it is to have 2/3 of its maximum 
activity? 

[ Problem 33 
A foil of 7Li of mass 0.08 gram is irradiated with thermal neutrons (capture 
cross-section 37 millibarns) and forms 8Li, which decays by 𝛽𝛽− decay with a 
half-life of 0.85 s. Find the time it takes to reach equilibrium and the 
equilibrium activity (number of 𝛽𝛽 decays per second) when the foil is exposed 
to a steady neutron flux of 4×1012 neutrons/sec∙cm2. 
A) teq = 18.0 s and Aeq = 27.7 mCi 
B) teq = 18.0 s and Aeq = 55.4 mCi 
C) teq = 36.0 s and Aeq = 27.7 mCi 
D) teq = 36.0 s and Aeq = 55.4 mCi 
 

[ Problem 34 
In a neutron-activation experiment, a flux of 2×108 neutrons/cm2∙s is incident 
normally on a foil of area 2 cm2, density 1022 atoms/cm3, and thickness 0.018 
cm. The target nuclei have a total cross-section for neutron capture of 1 barn, 
and the capture leads uniquely to a nuclear state which 𝛽𝛽-decays with a 
lifetime of 104 sec. At the end of 120 sec of neutron irradiation, at what rate will 
the foil be emitting 𝛽𝛽-rays? 
A) A = 859 Bq 
B) A = 1.72 kBq 
C) A = 4.05 kBq 
D) A = 8.10 kBq 
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A ADDITIONAL INFORMATION 
Figure 1. Relative importance of the three major types of gamma-ray interaction. 
The solid lines show the values of Z and hv for which the two neighboring effects 

are just equal. 

 
A SOLUTIONS 
P.1 c Solution 

1. True. Firstly, from the conservation of atomic mass number, denoting 
by A the mass number of the missing species, we find that 

1 14 1 14A A+ = + → =  

Next, from the conservation of atomic number, denoting by Z the 
atomic No. of the missing species, we find that 

0 7 1 6Z Z+ = + → =  

Thus, C614  is the missing species.  
2. False. Conservation of atomic mass number implies that the missing 

species should have an A value equal to A = (2 + 9) – 1 = 10. Further, conservation 
of atomic number implies that the missing species should have a Z value equal 
to Z = (1 + 4) – 0 = 5. This combination of A and Z corresponds to boron, B510 , not 
carbon-12.  

3. False. In this case, the missing species has A = (1 + 10) – 4 = 7 and Z = (0 
+ 5) – 2 = 3. The missing species is lithium-7, not lithium-6.   

P.2 c Solution 
Problem 2.1: The reaction in question is 

6 1 4 3
3 0 2 1Li He Hn+ → +  

The variation in mass is Δ𝑚𝑚 = 6.015123 + 1.008665 – 4.002603 – 3.016049 
= 0.005136, and the energy release is calculated to be 

2
2 931.5MeV/0.005136 u 4.78MeV

u
cQ mc= ∆ = × =  

 

Problem 2.2: The variation in mass is Δ𝑚𝑚 = 235.04392992 + 1.008665 – 
91.9197289 – 139.91728235 – 4 × 1.008665 = 0.18092367, and the energy release is 
found as 

2
2 931.5MeV/0.18092367 u 168.5MeV

u
cQ mc= ∆ = × =  

P.3 c Solution 

The reproduction factor is given by 
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f

a

νσ
η

σ
=  

 

where 𝜈𝜈 is the number of neutrons produced per fission, 𝜎𝜎𝑓𝑓 is the fission cross-
section, and 𝜎𝜎𝑎𝑎 is the absorption cross-section. For uranium-233, we have 𝜈𝜈 = 
2.4968, 𝜎𝜎𝑓𝑓 = 529.1 and 𝜎𝜎𝑎𝑎 = 𝜎𝜎𝑓𝑓 + 𝜎𝜎𝛾𝛾 = 529.1 + 45.5 = 574.6, giving a reproduction 
factor such that 

,233
529.12.4968 2.299
574.6Uη = × =  

Proceeding similarly with plutonium-239, we have 𝜈𝜈 = 2.8836, 𝜎𝜎𝑓𝑓 = 748.1, 
and 𝜎𝜎𝑎𝑎 = 𝜎𝜎𝑓𝑓 + 𝜎𝜎𝛾𝛾 = 748.1 + 269.3 = 1017, so that 

Pu,239
748.12.8836 2.121
1017

f

a

νσ
η

σ
= = × =  

, The correct answer is C. 

P.4 c Solution 

Part 1: The macroscopic cross-section can be estimated as  

( )2 H ON σ σΣ = +  

where N = 0.0334×1024 is the number density of water and 𝜎𝜎𝐻𝐻 = 20 b and 𝜎𝜎𝑂𝑂 = 
3.8 b are the scattering cross-sections for hydrogen and oxygen, respectively. 
Substituting, we obtain 

( ) ( )
24 2

24 110 cm0.0334 10 2 20 3.8 1.46 cm
1b

−
−Σ = × × × + × =  

, The correct answer is B. 

Part 2: The scattering mean free path is simply the reciprocal of Σ, 

1 1 0.685cm
1.46sλ = = =

Σ
 

P.5 c Solution 

As the student surely knows, kinetic energy, velocity and mass are 
related by 𝐾𝐾𝐾𝐾 = 𝑚𝑚𝑣𝑣2/2. Solving for 𝑣𝑣 yields 

( )2 2
2

KEmvKE v
m

= → =  

Noting that 1.5 MeV = 1.6×10-13
 J and recalling that 1 u = 1.66×10-27 kg, we obtain 

( )
( )

13
7

27

2 1.5 1.6 10
1.69 10 m/s

1.008665 1.66 10
v

−

−

 × × × = = ×
× ×

 

The neutron density can be established by dividing the given flux by the 
velocity obtained above, 

13 27 10 cm secn φ
ν

−× ⋅
= =

1

71.69 10 m

−

× / sec 100cm/ m×
4 34.14 10 cm−= ×  

, The correct answer is A. 

P.6 c Solution 

1.False. The flux is the product of neutron density and neutron speed, 

( ) ( )5 8 13 2 12 10 3 10 6.0 10 cm snφ ν − −= = × × × = ×  

2.True. The macroscopic cross-section is given by the product of 
number density N and micro cross-section 𝜎𝜎,  
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( ) ( )24 24 10.04 10 0.5 10 0.02cmNσ − −Σ = = × × × =  

3.True. The reaction rate is simply the product of 𝜙𝜙 and Σ, 

( )13 12 3 10.02 6.0 10 1.2 10 cm sR φ − −= Σ = × × = ×  

P.7 c Solution 

1.True. The average logarithmic energy change is given by 

ln1
1
α αξ

α
= +

−
 

where 𝛼𝛼 is given by  

( )
( )

( )
( )

2 2

2 2

1 9 1
0.64

1 9 1
A
A

α
− −

= = =
+ +

 

so that  

0.64 ln 0.641 0.207
1 0.64

ξ ×
= + =

−
 

2.False. The average cosine of the scattering angle is given by 

2 2 0.0741
3 3 9A

µ = = =
×

 

3.False. The number of collisions C required to reduce the energy of 
neutrons from some initial value E0 = 2 MeV to a final value EF = 0.025 eV is 
determined as 

( ) ( )6
0

ln 2 10 0.025ln
87.9 88

0.207
FE E

C
ξ

×
= = = ≈  

About 88 collisions are necessary to reduce the energy of neutrons from 
2 MeV to 0.025 eV.  

4.True. Given the macroscopic cross-section Σ = 0.90 cm-1 and the 
scattering angle cosine 𝜇̅𝜇 = 0.0741 calculated above, the diffusion coefficient 
follows as 

( ) ( )
1 1 0.400cm

3 1 3 0.90 1 0.0741
D

µ
= = =

Σ − × × −
 

P.8 c Solution 

The mass of a neutron is 1.008665 u, and 1 u = 1.66×10-27 kg. Thus, the 
kinetic energy of a neutron at 2200 m/s is 

( )27 22
211.008665 1.66 10 2200

4.05 10 J
2 2

mKE ν
−

−
× × ×

= = = ×  

Noting that 1 eV = 1.6×10-19 J,  

21
19

1eV4.05 10 J 0.0253eV
1.6 10 J

KE −
−= × × =

×
 

as we intended to show. Now, cross-sections and kinetic energies are related as 

0
0 0 1 1 1 0

1

EE E
E

σ σ σ σ= → =  

1
0.02533842 1932b

0.1
σ∴ = × =  

The absorption cross-section of the neutron at 0.1 eV is close to 1930 
barns. 
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P.9 c Solution 

The absorption cross-section of zirconium is given by the general 
formula 

 

i i
i

σ γ σ=∑  

 

where 𝛾𝛾𝑖𝑖  is the abundance of a given isotope and 𝜎𝜎𝑖𝑖 is its cross-section. 
Substituting the data from the table given, we obtain 

0.5145 0.014 0.1122 1.2

0.1715 0.2 0.1738 0.049 0.028 0.02 0.1852b
iσ∴ = × + ×

+ × + × + × =
 

, The correct answer is C. 

P.10 c Solution 

Part 1: Term 𝑎𝑎1 is the volume term; 𝑎𝑎2 is the surface term; 𝑎𝑎3 is the 
Coulomb term; and 𝑎𝑎4 is the asymmetry term. Explanations of each term can be 
found in any introductory nuclear physics text, e.g. Krane (1988), chapter 3.  

Part 2: For isobaric nuclei, that is, atoms of the same A but different Z, 
the stable nuclides should satisfy 

( ) ( )1 3 1
3 4

. .
2 4 2 0

B E
A a Z a A A Z

Z
− −∂

= − + − =
∂

 

1 3 1
3 4 42 4 8 0A a Z a a A Z− −∴− + − =  

( )1 3 1
3 4 42 8 4 0A a a A Z a− −∴ − − + =  

( )2 3
3 4 42 8 4 0A a a Z a A− − + =  

( )2 3
3 4 42 8 4A a a Z a A∴ + =  

( )2 3
3 4 44 2A a a Z a A∴ + =  

4
2 3

3 4

2
4

a AZ
a A a

∴ =
+

 

2 3
3 4

4 4

4
2 2

AZ
a A a

a a

∴ =
+

 

2 3
3

4

2
2

AZ
a A

a

∴ =
+

 

Substituting a3 = 0.714 MeV and a4 = 23.20 MeV, we obtain 

2 3 2 30.714 2 0.01542
2 23.20

A AZ
A A

= =
+

+
×

 

Part 3: A Fermi gas of volume V and absolute temperature T = 0 has 
energy 

5
0

2
2 4

5 2
V pE

m
π

= × ×


 

and particle number  

3
03

2 4
3

VN p
h

π
= × ×  

where we have assumed that each phase cell can accommodate two particles 
(neutrons or protons) of opposite signs. The limiting momentum is then 

0

1 33
8

Np h
Vπ

 = × 
 
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and the corresponding energy is 

2 52
3 3

2
33 3

40
hE V N
mπ

− =  
 

 

For nucleus (A,Z) consider the neutrons and protons as independent 
gases in the nuclear volume V. Then the energy of the lowest state is 

2 5 3 5 3

2 3

2
33 3

40
h N ZE
m Vπ

+ =  
 

 

2 5 3

2 2
0

5 3

2 3

2
33 9

40 4
h N ZE

mR Aπ
+ ∴ =  

 
 

5 3 5 3

2 3
N ZE C

A
+

∴ =  

In these passages, V = (4𝜋𝜋/3)𝑅𝑅03𝐴𝐴, 𝑅𝑅0 ≈ 1.2 fm, and C is the rather 
complicated constant 

2 2
0

2 2
33 9 1

40 4
hcC

mc Rπ
  =   

   
 

2

2 233 9 1 1238 31.69 31.7MeV
40 4 940 1.2

C
π

   ∴ = = ≈   
   

 

For stable nuclei, N + Z = A, N ≈ Z. Now, let 

1 1
2

N A
A
ε = + 

 
 

and 

1 1
2

Z A
A
ε = − 

 
 

where 𝜀𝜀/A ≪ 1. Given the smallness of this ratio, we can employ the series 
expansions 

2

2

5 3 5 51 1 ...
3 9A A A

ε ε ε + = + + + 
 

 

2

2

5 3 5 51 1 ...
3 9A A A

ε ε ε − = − + − 
 

 

so that 

2

2

5 5
3 3

5
3 52 1

2 9
AN Z

A
ε  + ≈ +  

   
 

and 

( )22
2 3 2 3 2 3

2
5 52 1 2 2
9 9

N Z
E CA CA C

A A
ε− − − − 

≈ + = + × 
 

 

The second term has the form 𝑎𝑎4(N – Z)2/A, leading us to conclude that  

2 3
4

5 2
9

a C−= ×  

That is, 
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2 3
4

5 2 31.7 11.1 MeV
9

a −= × × =  

P.11 c Solution 

Decays among isobars are beta decays in nature. In the present case the 
mass number, A = 197, is odd, so there is only one stable nucleus. Indeed, using 
the semi-empirical mass formula the atomic mass M(A, Z) as a function of Z is a 
single curve, because the pairing term is null for all isobars. The stable nucleus 
has  Zs = 79, and can be achieved by 𝛽𝛽− decay of the nucleus with atomic 
number Zs – 1 = 78 or via 𝛽𝛽+ decay or electron capture of the nucleus with 
atomic number Zs + 1 = 80. The atomic mass of the A = 197 nuclei can be 
described by the general expression 

( ) ( ) ( )
2

197,
197, 197p n e

B Z
M Z Zm Z m Zm

c
= + − − +  

where mp is the mass of a proton, mn is the mass of a neutron, me is the mass of 
an electron, and B(197, Z) is the nuclear binding energy. Writing explicitly only 
the terms depending on Z, we have 

( ) ( ) ( )22
2 2

1 3

107 2
197, const.

197 197p n e C A
ZZM Z c Z m m m c a a

−
= + − + + +  

Noting that aA = 23.3 eV (asymmetry coefficient) and aC = 0.697 eV 
(Coulomb coefficient), we have  

( ) ( )22 2197, const. 0.782 0.120 0.118 197 2M Z c Z Z Z= − + + −  

For the 𝛽𝛽− transition from Pt78
197 , we get 

( ) ( ) ( )
( )

22 2 2

22

197,78 197,79 const. 0.782 78 0.120 78 0.118 197 2 78

const. 0.782 79 0.120 79 0.118 197 2 79 0.822 MeV

M c M c− = − × + × + − ×

 − − × + × + − × ≈ 
 

Thus, the 𝛽𝛽− transmutation of Pt78
197  is allowed. Now, the 𝛽𝛽+ transition 

from Hg80
197  is allowed if M(197, 80) – M(197, 79) > 2me, otherwise only electron 

capture is possible. Evaluating the difference in question gives 

( ) ( ) ( )
( )

22

22 2

197,80 197,79 const. 0.782 80 0.120 80 0.118 197 2 80

const. 0.782 79 0.120 79 0.118 197 2 79 0.362MeV/c

M M− = + × + × + × − ×

 − + × + × + × − × ≈ 
 

Lastly, we conclude that the possible decay types in the situation at 
hand are 𝛽𝛽− decay and electron capture, in accord with the following reactions. 

197 197
78 79: Pt Au ee vβ − −→ + +  

197 197
80 79: Hg Au eEC e v− + → +  

P.12 c Solution 

The reaction given belongs to the general class of reactions 

( ) ( ), , 1ev A Z A Z e−+ → + +  

The threshold energy is given by 

( )2

th (I)
2

em M M
E

M
′+ −

=  

where M and M’ are the masses of (A, Z) and (A, Z+1) nuclei, respectively. The 
former can be expressed as 

( ) ( ) 2,p nM Zm A Z m B A Z c= + − −  

and the latter as 
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( ) ( ) ( ) 21 1 , 1p nM Z m A Z m B A Z c M M′ = + + − − − + = + ∆  

where 

( ) 2 (II)p nM m m B c∆ = − + ∆  

with  

( ) ( ), , 1B B A Z B A Z∆ = − +  

Δ𝐵𝐵 can be determined with the binding energy formula, noting all the 
while that only the Coulomb and asymmetry terms are needed because (1) the 
volume and surface terms depend only on A and they cancel out in the 
difference, and (2) for odd A the pairing term is null for both initial and final 
nuclei. Thus, we write 

( ) ( ) ( ) 22 22

1 3 1 3

2 11 2
C A

A ZZ A ZZB a a
A A A A

   − + + −  ∆ = − − − −   
      

 

1 3
2 1 2 14C A

Z A ZB a a
A A
+ − −

∴∆ = −  

For the reaction considered in the text, Z = 17 and A = 37, giving 

1 3
2 17 1 37 2 17 10.697 4 23.3 2.28 MeV

37 37
B × + − × −

∆ = × − × × =  

Substituting Δ𝐵𝐵 into equation (II) gives 

1.293 2.28 0.987MeVM∆ = − + =  

Lastly, we insert this result into equation (I) to obtain 

( ) ( ) ( )
2 2

th
2 2 2

2 2
e e e em M M M m m M M m M M

E
M M

+ + ∆ −  + + ∆ + ∆ + = =  

th 0.511 0.987 1.498 1.50 MeVeE m M∴ ≈ + ∆ = + = ≈  

The threshold energy for the reaction is approximately 1.5 MeV.   

, The correct answer is C. 

P.13 c Solution 

Denoting by 𝑄𝑄− the Q-factor for the 𝛽𝛽− decay 

64 64
29 30Cu Zn ee v−→ + +  

and by 𝑄𝑄+ the one for the 𝛽𝛽+ decay 

64 64
29 28Cu Ni ee v+→ + +  

we have (omitting the factor c2 in the mass terms) 

( ) ( ) ( ) ( )29 64 29 64,29 30 64 30 64,30p n p n eQ m m B m m B m− = + − − − − − + −  

( ) ( )64,30 64,29n p eQ m m m B B−∴ = − − + −  

( ) ( )939.565 938.272 0.511 64,30 64,29Q B B−∴ = − − + −  

( ) ( )640.782 ,30 64,29Q B B− −∴ = +  

and, similarly, 

( ) ( )64,28 64,29p n eQ m m m B B+ = − − + −  

( ) ( )938.272 939.565 0.511 64,28 64,29Q B B+∴ = − − + −  

( ) ( )64,28 64,1.804 29Q B B+∴ −= − +  
 

The difference in blue can be evaluated with recourse to the semi-
empirical formula, 
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( ) ( ) ( ) ( )2 22 2

1 3

4

64 60 64 5830 290.697 23.64, 3
64 64

30 64,29

12 12 5 10 MeV
64

B B

−

− − −−
= − × − ×

+
+ = ×

−
 

The same applies to the difference in red, 

( ) ( ) ( ) ( )2 22 2

1 3

64 56
64

64 5828 290.697 23.3
64 64

12 12 2.7385 2

,28 64,

.74 M

29

eV
64

B B
− − −−

= − × − ×

=

−

+
+ ≈

 

Finally, 

0.782 0.0005 0.783MeVQ− = + =  

and 

1.80 2.74 0.940 MeVQ+ = − + =  

Both decays are allowed. The maximum kinetic energy of the electron 
yielded when Cu29

64  decays to Zn30
64  is about 0.78 MeV. The maximum kinetic 

energy of the positron produced when Cu29
64  decays to Ni28

64  is about 0.94 MeV.  

, The correct answer is A. 

P.14 c Solution 

Part 1: Each fission reaction yields 200 MeV = 2×108 eV × 1.6×10-19 J/eV = 
3.2×10-11

 J. For the reaction to produce 1.88 GJ per second, the number of fission 
reactions in each second must equal 

9
19 1

11
fiss

1.88 10 5.88 10 s
3.2 10

Pr
E

−
−

×
= = = ×

×
 

, The correct answer is D. 

Part 2: One gram of 235U releases an energy 

( )
23

11 10
fiss

6.02 103.2 10 8.20 10 J/g
235

ANE
A

− ×
× = × × = ×  

The total energy produced by the reactor in one year is 

9 16J s day1.88 10 86,400 365 5.93 10 J/yr
s day year

× × × = ×  

The mass of uranium consumed over the course of a year is calculated 
as 

16

10
5.93 10 J/yr 723,000g 723kg
8.20 10 J/g

m ×
= = =

×
 

Since 33% of the fuel is constituted of uranium-235, the mass of solid 
fuel required to feed the reactor for a full year equals 723/0.33 = 2190 kg = 2.19 
metric tons.  

, The correct answer is D. 

Part 3:The maximum neutrino energy equals the Q-factor of the 𝛽𝛽− 
decay. Denoting this factor as 𝑄𝑄−, we have, for 𝛽𝛽− decay of La57

145 , 

( ) ( )145,57 145,58n p eQ m m m B B− = − − − +  

0.782Q B−∴ = −∆  

where ΔB is the difference in binding energy between parent and daughter 
nuclei. Referring to the semi-empirical formula, we have, for odd-atomic mass 
nuclei, 
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( ) ( ), , 1B B A Z B A Z−∆ = − +  

( ) ( ) ( ) 2222

1 3

2 2 11
C A

A Z A ZZ Z
B a a

A A−

− − − + − +  ∴∆ = − −  

so that, in the present case, 

( ) ( )2 22 2

1 3

145 114 145 11657 580.697 23.3 4.0256 4.03MeV
145 145

B−

− − −−
∴∆ = − × − × = − ≈ −  

The maximum neutrino energy is calculated to be 

( )0.782 4.03 4.81 MeVQ− = − − =  

, The correct answer is B. 

Part 4: The neutrino intensity is 22% of the fission rate, or Iv = 0.22 × 
5.88×1019 = 1.29×1019 s-1. At 400-m distance the neutrino flux is determined as 

19
12 2 1

2 2
1.29 10 6.42 10 m s

4 4 400
vI
Rπ π

− −×
Φ = = = ×

×
 

, The correct answer is C. 

Part 5: For a detector having length ℓ (along the neutrino direction), a 
section S, constituted of material of density 𝜌𝜌 and atomic mass A, the 
interaction rate is 

A AN Nr S M
A A

σ ρ σ= Φ× × × ≈ Φ× × ×  

Such proportionality between rate and mass holds whenever the 
detector length is much smaller than the interaction length. Inserting our 
values brings to 

( ) ( )
23 5

12 48 6 16.02 10 2.32 106.42 10 6 10 10 sr
A A

−
− −× ×

= × × × × × =  

1732 yrr
A

−∴ =  

, The correct answer is B. 

P.15 c Solution 

Part 1: Noting that Planck’s constant ℎ = 4.14×10-15 eV∙s, the frequency 
of the radiation in question is 

EE hf f
h

= → =  

6
21

15
7 10 1.69 10 Hz

4.14 10
f −

×
∴ = = ×

×
 

 

The wavelength, in turn, is  

8
13

21
3 10 1.78 10 m 0.178 pm

1.69 10
c
f

λ −×
= = = × =

×
 

, The correct answer is A. 

Part 2: Substituting E = 7 MeV and E0 = 0.511 MeV into the equation in 
focus, we get 

0

11
1 2 1 2

7 0.511
E E

E E

−−
   ′ ′= + → = +   

  
 

0.247 MeVE′∴ =  

, The correct answer is B. 
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Part 3: If 𝐸𝐸 ≫ 𝐸𝐸0, the term 1/E can be neglected in the equation for E’, 
giving 

1

0 0

1
1 2 2E
E E E

−−
   

′ = + ≈   
   

 

0

2
EE′∴ =  

The first approximation has been proved. Suppose now that 𝐸𝐸 ≪ 𝐸𝐸0. We 
first rearrange the equation given to obtain 

0

0

1
1 2 1

1 2E E
E E

E E

−
 

′ ′= + → = 
  +

 

0

0

1
2E E E

EE

′∴ =
+  

0

0 2
EEE

E E
′∴ =

+
 

It follows that 

0

0 2
EEE

E E E E
E E

−
′− +
=  

( )0 0

0 0

2
2 2

E E E EE
E E E E E E

E E

+
−

′− + +
∴ =  

( )
2

0 0

0

2
2

E E EE E EE
E E E E

′− + −
∴ =

+
 

0

2
2

E E E
E E E

′−
∴ =

+
 

Neglecting 2E in the denominator, we ultimately obtain 

0

2E E E
E E

′−
≈  

as we intended to show. The energy of a 7-MeV gamma ray is substantially 
greater than the rest mass energy of an electron, so the approximation to use is 
𝐸𝐸′ ≈ 𝐸𝐸0/2; that is, 

0 0.511 0.256 MeV
2 2
EE′ = = =  

This result is within 3.5% of the actual final photon energy of 0.247 
MeV; a decent approximation, indeed.   

P.16 c Solution 

Part 1: The atomic number of aluminum is Z = 13. Entering this value of Z 
and hv = 1 MeV into Figure 1, we see that the dominant interaction process in 
this case is Compton scattering (blue dot). 

, The correct answer is B. 

Part 2: The atomic number of hydrogen is Z = 1. Entering this value of Z 
and hv = 0.1 MeV into Figure 1, we see that the dominant interaction process in 
this case is Compton scattering (red dot). 
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, The correct answer is B. 

Part 3: The atomic number of germanium is Z = 32. Entering this value of 
Z and hv = 0.1 MeV into Figure 1, we see that the dominant interaction process 
in this case is photoelectric absorption (green dot). 

, The correct answer is A. 

Part 4: The atomic number of carbon is Z = 6. Entering this value of Z and 
hv = 10 MeV into Figure 1, we see that the dominant interaction process in this 
case is Compton scattering (yellow dot). 

, The correct answer is B. 

Part 5: The atomic number of carbon is Z = 6. Entering this value of Z and 
hv = 10 MeV into Figure 1, we see that the dominant interaction process in this 
case is pair production (purple dot). 

, The correct answer is C. 

 

P.17 c Solution 

Part 1: The electric field intensity at a point distance r from the center of 
a uniformly charged sphere of radius R is given by 

( )
3

2

;

;

Qr r R
RE r
Q r R
r

 <= 
 <


 

The electrostatic energy is obtained from the integral 

22 2
2 2

3 40 0

14 4
8 8

R

R

E Q rW dr r dr r dr
R r

π π
π π

∞ ∞  = = + ×  
   

∫ ∫ ∫  

2 4

6 20

4 4
8

R

R

Q rW dr dr
R r
π π

π
∞ 

∴ = + 
 
∫ ∫  

2 5

6
0

4 4
8 5

R

R

Q rW
R r
π π

π

∞ 
 ∴ = −
 
 

 

2 5 2

6
4 4 30 0

8 5 5
Q R QW

R R R
π π

π
 

∴ = − − + = 
 

 

, The correct answer is C. 
Part 2: The mass difference between mirror nuclei Si14

27  and Al13
27  can be 

attributed to a difference in electrostatic energy, giving  

( )
2

2 2
1 2

3
5
eW Z Z
R

∆ = −  

Solving for radius and manipulating, we obtain 
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( ) ( )
2 2

2 2 2 2
1 2 1 2

3 3
5 5
e eW Z Z R Z Z
R W

∆ = − → = −
∆

 




( )11

2
2 21.97 10

1137

3
14 13

5

hc
eR

W hc
−= ×

=

×
 

∴ = − ∆  
 

( ) ( )
11

2 2 133 1.97 10 1 14 13 3.88 10 m
5 6 137

R
−

−
× ×

∴ = × × − = ×
×

 

3.88 fmR∴ =  

, The correct answer is C. 

P.18 c Solution 

The energy difference between two members of the same isospin 
multiplet is determined by the Coulomb energies and the neutron-proton mass 
difference. Mathematically, 

( ) ( ) ( ) 2, 1 , e n pE E A Z E A Z E m m c∆ = + − = ∆ − −  

( ) ( )2 3 2 13 2 1 0.78 0.78
5 5

Z cheE Z
R R

α+
∴∆ = + − = −  

Using R ≈ 1.2A1/3 fm, we find that 

( )
( )1 3

3 2 39 1 197
0.78 11.89 MeV

5 1.2 90 137
E

× × + ×
∆ = − =

× × ×
 

Hence the excitation energy of the T = 6 state of 90Zr is calculated to be 

782.410 11.89 783.916 13.40 MeVE = − + + =  

, The correct answer is B. 

P.19 c Solution 

Part 1: Appealing to the Born approximation, we may write 

( ) 3
22

imf V e d
π

− ⋅= − ∫ q rr r


 

where 𝒒𝒒 = k – k0 is the momentum transferred from the incident particle to the 
outgoing particle. Here, |𝒒𝒒| = 2k0sin(𝜃𝜃/2), where 𝜃𝜃 is the angle between the 
incident and outgoing particles. As V(r) is spherically symmetric, we may write 

( ) ( ) ( )
2 2

2 0 0 0

cos sin
2

i krmf V r e r drd d
π π θθ θ ϕ θ

π
∞ − ∆= − ∫ ∫ ∫

 

( ) ( ) ( )2 0

2 sinmf V r kr rdr
k

θ
∞

∴ = − ∆
∆ ∫

 

( )
( )22 2

2 1mQqf
k

θ
α

∴ = −
+ ∆

 

The differential cross-section is 

( )
( )

2 2 2
2

24 22

4m Q q dd f d
k

σ θ
α

Ω
= Ω =

 + ∆ 


 

2 2 2

4 4 20 2
2
0

24
sin

4 2

m Q q dd
k

k

σ
α θ

Ω
∴ =

 
+ 

 


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The total cross-section is then 

2 2 2 2

24 4 0 0 2
0 2

2
0

sin
4

sin
4 2

m Q q d dd
k

k

π π θ θ ϕσ σ
α θ

= =
 

+ 
 

∫ ∫ ∫
 

( )
2 2 2

4 2 2 2
0

16
4
m Q q

k
πσ

α α
∴ =

+
 

Part 2: 𝛼𝛼−1 is a measure of the size of atoms. As Z increases, the number 
of electrons outside the nucleus as well as their probability of finding them 
near the nucleus will increase, enhancing the screening effect. Hence, 𝛼𝛼 is an 
increasing function of Z.  

P.20 c Solution 

Part 1: The differential cross-section for scattering is (see also Problem 
19.1), 

2 2 2

4 4 20

4
0

2
1

4
sin

4 2

d m q Q
d k

k

σ

α θ
=

Ω  
+ 

 


 

For a proton and a hydrogen nucleus, Q = q = e, where e is the elementary 
charge. The screening length can be taken to be 𝛼𝛼−1 ≈ R0, where R0 is the Bohr 
radius of the hydrogen atom. For an incident proton of 1-keV energy, the 
wavelength can be estimated to be 

( )0 2 3

197 203.4 fm
2 2 1 938 10

c
E c E

λ
µ µ −

= = = =
× ×

 
 

With 𝛼𝛼−1 ≈ 𝑅𝑅0 = 5.4×10-11 m = 53,000 fm as the Bohr radius of hydrogen, 
we see that 𝛼𝛼2/4𝑘𝑘02 = (𝜆𝜆0/2𝛼𝛼−1)2 ≪ 1, enabling us to simplify the equation for 
d𝜎𝜎/dΩ and obtain 

( )
2 4

2 2 4
04 sin 2

d m e
d k
σ

θ
≈

Ω 
 

which is the Rutherford scattering formula. A sketch of d𝜎𝜎/dΩ versus 𝜃𝜃 is 
provided below. The scattering of 1-keV protons from hydrogen atoms occurs 
mainly at small angles. The probability associated with large-angle scattering is 
very small, as the hydrogen atom has a very small nucleus.  

 

Part 2: To estimate the total cross-section, we appeal to the equation 
derived in Part 2 of the previous problem, 

( )
22 4 2 4

4 2 24 2 2 2
00

22
0016 16 4

44
m e m R eme

ckk c
c λπ πσ π

αα α
  

= ≈ =   +    
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( )4
12 2

2

1
203

19
5

7
.3

4 1.757 10
9 8 1

37
m

0
f

3
σ π

 × ×
∴ = ×   = ×

× 

×


 

14 21.76 10 cmσ −∴ = ×  

, The correct answer is D. 

P.21 c Solution 

Problem 21.1: The activity A(t) of cobalt-60 at any given time is A(n) = 
A0/2n, where n is the number of half-lives elapsed over the course of time t; in 
the case in focus, A0 = 5000 Ci, n = 45/5.27 = 8.54 half-lives, and 

( ) 8.54
50008.54 13.4 Ci
2

A = =  

, The correct answer is A. 
Problem 21.2: In this case, we are looking for the number n of half-lives 

that need to elapse for the cesium sample to transition from an initial activity 
A0 = 4 Ci to a final activity A = 0.01 Ci; referring to the decay equation, we have 

 

( ) 0 40.01
2 2n n
AA n = → =  

42
0.01

n∴ =  

2 400n∴ =  

2 2log 2 log 400n∴ × =  

1 8.64n∴ × =  

8.64 HLn∴ =  

This quantity of half-lives amounts to a time t such that 

8.64 HLt = yr30.07
HL

× 260 yr=  

, The correct answer is B. 
Problem 21.3: The total biological elimination is 12 + 22 + 3 = 37%. The 

time required to achieve 50% elimination is the biological half-life Tb, namely 

50 6.0h 8.11h
37bT = × =  

The effective half-life Te is given by 

1 1 1 pb
e

e p pb b

T T
T

T T T T T
= + → =

+
 

8.11 6.0 3.45h
8.11 6.0eT ×

∴ = =
+

 

, The correct answer is A. 

P.22 c Solution 

Problem 22.1: 
The activity A(t) of the 
radionuclide in question 
is plotted against time 
in semilogarithmic 
paper, as shown to the 
side. 
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The half-life is the time required to reduce the initial activity by half. In 
the present case, A0 = 3.6 mCi, so the half-life is the time required to reduce the 
activity to 1.8 millicuries. Entering this ordinate into the graph, we read 𝑡𝑡1 2⁄ ≈ 
5.3 min. Instead of eyeballing the plot above, we could use the fact that the 
activity can be modelled by the usual exponential law 

( ) ( )0 expA t A tλ= −  

where A0 = 3.6 mCi and 𝜆𝜆 is the decay constant. We can fit our data to an 
equation of the form 3.6exp(−𝜆𝜆𝜆𝜆) by dint of Mathematica’s FindFit command, 

 

That is, the program returns a decay constant of 0.131. The half-life 
easily follows, 

1 2
1 2

ln 2 ln 2t
t

λ
λ

= → =  

1 2
ln 2 5.29min

0.131
t∴ = =  

, The correct answer is C. 

Problem 22.2: 𝛼𝛼-decay can be viewed as the transmission of an 𝛼𝛼-
particle through the potential barrier of the daughter nucleus. Suppose R 
denotes the nuclear radius and r1 is the point where the Coulomb repulsive 
potential V(r) = Zze2/r equals the 𝛼𝛼-particle energy E. Using a three-dimensional 
potential and neglecting angular momentum, we can appeal to the WKB 
method and write the following expression for transmission coefficient T, 

2GT e−=  

where 

( )1 1 21 2
r

R
G M E V dr= −∫  

with V = zZe2/r, E = zZe2/r1, z = 2, Ze being the charge of the daughter nucleus. 
Integration gives 

( )
2

2
1 2

1 1 1

1 2
1 21 2 arccos R R RG mzZe r

r r r

    
 = − −   
     

 

so that, with R/r1 → 0, 

( )2
1

1

1 2
1 21 2

2
RG mzZe r
r

π  
 = −  
   

 

Suppose the 𝛼𝛼-particle has velocity v0 in the potential well. Then it 
collides with the walls v0/R times per unit time and the probability of decay per 
unit time is 𝜆𝜆 = 𝑣𝑣0T/R. Accordingly, 

0
1 1
2 22 2ln lnmBR vE B

R
πλ

π
− − 

= − − + 
 

 

where B = zZe2/R. As can be seen, there is a linear relationship between log 𝜆𝜆 
and E-1/2 for 𝛼𝛼-emitters of the same radioactive series. Considering the 
polonium isotopes specifically, we have the ratio 

( )
( ) ( ) ( )

210
214 210

10 214

Po
log 0.434 ln Po ln Po

Po

T

T
λ = − 
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( )
( )

210 2
2

10 214
210 214

Po 1 1log 0.434 2 10
Po

T emc zZ
cT E E

  
∴ = − ≈     

 

That is, the lifetimes differ by 10 orders of magnitude.  
Problem 22.3: Let us apply the Geiger-Nuttall law, 

1 2
10log C DEαλ −= −  

where 𝜆𝜆 is the decay constant, 𝐸𝐸𝛼𝛼  is the 𝛼𝛼-particle energy, and C and D are 
constants. For a rough estimate, use the values of C and D for Pb, namely C ≈ 52 
and D ≈ 140 MeV1/2, 

1 21 2
10log 10C DEC DE α

αλ λ
−−−= − → =  

1 252 140 3.3 26 110 8.56 10 sλ
−− × − −∴ = = ×  

The corresponding half-life is 

24 17
1 2 26

ln 2 ln 2 8.10 10 s 2.57 10 yr
8.56 10

t
λ −= = = × = ×

×
 

Thus the number of decays in a human’s lifetime is too small to worry 
about.  

P.23 c Solution 

The specific activity a of a radionuclide is defined as the activity 𝒜𝒜 per 
unit mass m, 

a
m

=
A

 

However, the activity can be replaced by the product of decay constant 
𝜆𝜆 and No. of atoms N, 

Na
m
λ

=  

and the decay constant can be replaced by the ratio of ln 2 to half-life 𝑡𝑡1 2⁄ , 

1 2

ln 2Na
t m

=  

Lastly, we replace N/m with the ratio of Avogadro’s number NA to 
atomic mass A, 

1 2

ln 2 ANa
t A

=  

This equation enables us to determine the specific activity of any 
isotope from its atomic number and half-life. For cobalt-60, A = 60 g/mol and 
𝑡𝑡1 2⁄  = 5.26 yr = 5.26 × 86,400 × 365 = 1.66×108 sec, giving 

( )
( )

23 1
13 1 13

8

ln 2 6.02 10 mol
4.19 10 s /g 4.19 10 Bq/gg1.66 10 sec 60

mol

a
−

−
× ×

= = × = ×
× ×

 

Lastly, since 1 Bq = 3.70×10-11 Ci, we find that 

13 11Bq Ci4.19 10 3.70 10 1130 Ci/g
g Bq

a −= × × × =  

For iodine-131, A = 131 g/mol and 𝑡𝑡1 2⁄  = 8.02 days = 8.02 × 86,400 = 
693,000 sec, so that 
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( )
( )

23 1
15ln 2 6.02 10 mol

4.60 10 Bq/gg693,000 sec 131
mol

a
−× ×

= = ×
×

 

Converting to curies, 

15 11Bq Ci4.60 10 3.70 10 124,000 Ci/g
g Bq

a −= × × × =  

For cesium-137, A = 137 g/mol and 𝑡𝑡1 2⁄  = 30 yrs = 30 × 86,400 × 365 = 
9.46×108 sec, so that 

( )
( )

23 1
12

8

ln 2 6.02 10 mol
3.22 10 Bq/gg9.46 10 sec 137

mol

a
−× ×

= = ×
× ×

 

Converting to curies, 

12 11Bq Ci3.22 10 3.70 10 86.9 Ci/g
g Bq

a −= × × × =  

, The correct answers to 23.1, 23.2, and 23.3 are B, D, and A, 
respectively. 

P.24 c Solution 

The decay constant of iodine-123 is 𝜆𝜆I = ln 2/13.2 = 0.0525 h-1, and the 
radioactive decay of the iodine sample is described by the exponential law 

( ) 0.0525400I
tA t e−=  

            Similarly, the decay constant of technetium-99m is 𝜆𝜆Tc = ln 2/6 = 0.115 h-1, 
and the decay of the Tc sample is described by 

( )Tc
0.1151780 tA t e−=  

Equating the two expressions and manipulating, 

( ) ( ) 0.0525 0.115
Tc 400 1780t t

IA t A t e e− −= → =  

0.0525

0.115
1780
400

t

t
e
e

−

−∴ =  

0.0625 4.45te∴ =  

0.0625 ln 4.45t∴ =  

0.0625 1.49t∴ =  

1.49 23.8h
0.0625

t∴ = =  

The two samples will have equal activities within approximately 24 
hours.  

, The correct answer is D. 

P.25 c Solution 

𝛽𝛽− decay of carbon-14 is described by the reaction 

14 14
6 7C N ee v−→ + +  

The specimen activity is given by 

( )
( )

14

14

C
(I)

C

NdNA
dt τ

= =  

The number of C614  nuclei present in the specimen when it was still a 
living organism is  
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( ) ( ) ( )
14

0 0C C
C
ANN f N f m

A
= × = × ×  

Here, f = 1.3×10-12 is the fraction of C614  nuclei in a living organism, m = 6 
g is the mass of the organism, NA = 6.02×1023 is Avogadro’s number, and 〈𝐴𝐴(𝐶𝐶)〉 
= 12.001 is the atomic mass of natural carbon, giving 

( ) ( )
( ) ( )12 23

14 11
0

1.3 10 6 6.02 10
C 3.91 10

12.001
AfmNN

A C

−× × × ×
= = = ×  

 The mean lifetime of carbon-14 equals the ratio of its half-life to ln 2,  

( )14 5700C 8220 yrs
ln 2

τ = =  

Substituting the two previous results into (I) gives the activity when the 
organism died, 

( )
( ) ( )

14 11
0 1

0 14

C 3.91 10 1.51s
8220 365 86,400C

N
A

τ
−×

= ≈ =
× ×

 

The present activity, in turn, is 

( ) 5400 0.5decays/s
3 3600

A T = =
×

 

The present and past activities are related by the equation 

( ) ( )0 expA t A t τ= −  

Solving for the age of the fossil T, 

( ) ( ) ( )
0

0

exp ln
A T

A t A T T
A

τ τ= − → = −  

0.58220 ln 9090 yr
1.51

T∴ = − × =  

The fossil is over nine thousand years old.  

, The correct answer is D. 

P.26 c Solution 

Problem 26.1: We express the variation in activity of the gold isotope 
with the exponential law 

( ) ( ) ( ) ( ) ( )Au Au Au Au
1 2 Au

ln 20 exp 0 expA t A t A t
t

λ
 
 = − = −
 
 

 

Likewise, for iodine-131, 

( ) ( ) ( ) ( ) ( )I I
1 2

ln 20 exp 0 expI I

I

A t A t A t
t

λ
 
 = − = −
 
 

 

The data given stipulates an initial activity of 0.25 μCi for the solution; 
in mathematical terms, 

( ) ( )Au 0 0 0.25 (I)IA A+ =  

Further, we know that the total activity dropped by half within three 
days, so  

( ) ( ) ( ) ( )Au I
1 2 1 2Au

ln 2 ln 20 exp 3 0 exp 3 0.125
I

A A
t t

   
   − × + − × =

  
  
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( ) ( )Au I
ln 2 ln 20 exp 3 0 exp 3 0.125
2.70 8.05

A A   ∴ − × + − × =   
   

 

( ) ( )Au I0.463 0 0.772 0 0.125 (II)A A∴ + =  

Equations (I) and (II) constitute a system of linear equations with 
variables 𝐴𝐴Au(0) and 𝐴𝐴𝐼𝐼(0), 

( ) ( )
( ) ( )

Au

Au

0 0 0.25

0.463 0 0.772 0 0.125
I

I

A A

A A

 + =


+ =
 

Solving the system above gives the initial activities 𝐴𝐴Au(0) = 0.220 μCi 
and 𝐴𝐴𝐼𝐼(0) = 0.0299 μCi.  

Problem 26.2: Equipped with the half-lives given and the initial 
activities determined in Part 1, we can easily establish the total activity at any 
time t, 

( ) ln 2 ln 26 0.220 exp 6 0.0299 exp 6 0.0650 μCi
2.70 8.05

A    = × − × + × − × =   
   

 

, The correct answer is B. 

Problem 26.3: To determine the time t at which the activities of the gold 
and iodine isotopes are equal, simply equate the exponential laws that yield the 
activity of each element and solve for time T, 

( ) ( ) ( ) ( ) ( ) ( )Au I Au I
1 2 1 2Au I

ln 2 ln 20 exp 0 expA t A t A T A T
t t

   
   = → − = −

  
  

 

( ) ( ) ( ) ( )
( ) ( )

1 2 1 2 Au

1 2 1 2

Au I

I Au

ln 0 0

ln 2
It t A A

T
t t

  ∴ =
 − 

 

The half-lives were given in the problem statement, and the initial 
activities 𝐴𝐴Au(0) and 𝐴𝐴𝐼𝐼(0) were determined in Part 1; substituting,  

( )
( )

2.70 8.05 ln 0.220 0.0299
11.7 days

8.05 2.70 ln 2
T

× ×
= =

− ×
 

To calculate the activity at this time, simply substitute T into either of 
the two exponential laws, 

( )Au
ln 211.7 0.220 exp 11.7 0.0109μCi
2.70

A  = × − × = 
 

 

( ) ln 211.7 0.0299 exp 11.7 0.0109μCi
8.05IA  = × − × = 

 
 

Notice that 𝐴𝐴Au(11.7) = 𝐴𝐴𝐼𝐼(11.7), as expected.  

, The correct answer is B. 

P.27 c Solution 

Part 1: We aim to describe the rate of change in the number of parent 
nuclei, NP, and in the number of daughter nuclei, ND. For the parent, the rate of 
change in the number of parent nuclei is given by the usual nuclear decay ODE, 

( ) ( ) (i)P
P P

dN t
N t

dt
λ= −  

The negative sign on the right-hand side indicates a decrease in the 
number of parent nuclei NP(t) with increasing time t.  

Now, the rate of change dND(t)/dt in the number of daughter nuclei D is 
equal to the supply of new daughter nuclei D through the decay of P (given as 
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𝜆𝜆𝑃𝑃𝑁𝑁𝑃𝑃(t)) and the loss of daughter nuclei D from the decay of D to G (formulated 
as −𝜆𝜆𝐷𝐷𝑁𝑁𝐷𝐷(t)). The rate of change dND/dt then becomes 

( ) ( ) ( ) (ii)D
P P D D

dN t
N t N t

dt
λ λ= −  

Part 2: The governing equation we proposed for the rate of change in 
parent nuclei, combined with the initial condition NP (t = 0) = Np(0), suggests 
that the solution has the form 

( ) ( )0 (iii)P
P P

tN t N e λ−=  

The solution that describes the evolution in number of daughter nuclei 
is more complicated and can be determined after inserting NP (t) into the 
differential equation 

( ) ( ) ( )0 (iv)PD
P P D D

tdN t
N e N t

dt
λλ λ−= −  

The general solution to this differential equation is  

( ) ( )( )0 (v)DP
D P

ttN t N a e b e λλ− −= × + ×  

Here, a and b are constants to be determined as follows. 
Step 1: Differentiate the equation with respect to time to obtain 

( ) ( )( )0 (vi)DPD
P p D

ttdN t
N a e b e

dt
λλλ λ− −= − −  

Then, insert (v) and (vi) into (iv) and rearrange terms to obtain 

( ) 0 (vii)p
P P D

te a aλ λ λ λ− − − + =  

The factor in parentheses must be equal to zero to satisfy the equation 
for all values of t, yielding the following expression for constant a, 

(viii)P

D P

a λ
λ λ

=
−

 

Coefficient b, in turn, depends on the initial condition ND(0) = 0, which 
can be applied to (v) to yield, ultimately, 

0 (ix)a b+ =  

Inserting (viii) yields  

(x)P P

D P P D

b a λ λ
λ λ λ λ

= − = − =
− −

 

Finally, we can insert (viii) and (x) into (vi) to obtain the following 
equation for the number of daughter nuclei as a function of time t, 

( ) ( ) ( ) ( )0 xiP DP
D P

D P

t tN t N e eλ λλ
λ λ

− −= −
−

 

Part 3: The simple 𝑃𝑃 → 𝐷𝐷 → 𝐺𝐺 radioactive series decay with radioactive 
parent P decaying through radioactive daughter D into stable grand-daughter G 
is characterized by equations describing the number of parent nuclei NP (t) and 
number of daughter nuclei ND(t) given by eqs. (iii) and (xi), respectively. 
Activities Ap(t) and AD(t) of the parent and daughter, respectively, are also of 
interest and can be determined by recalling that, in general, the activity A(t) of 
a radionuclide is the product of its decay constant 𝜆𝜆 and the number N(t) of 
radioactive nuclei present in the sample. It follows that the activity of the 
parent nuclei is given by 

( ) ( ) ( ) ( )0 0 (xii)P P
p P P P P P

t tA t N t N e A eλ λλ λ − −= = =  

The activity of the daughter nuclei, in turn, is given by 
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( ) ( ) ( ) ( ) (xiii)0 P D
D D D D P

D P

P t tA t N t e eN λ λλ λ
λ λ
λ − −= = −
−

 

The product of the terms in blue is actually Ap (0); finally, 

( ) ( ) ( ) ( ) ( )0 0 (xiv)P D P DD
D D P

P
P

D P D P

t t t tA t e e A e eN λ λ λ λλλ
λ λ λ
λ

λ
− − − −= − = −

− −
 

Note that AD(t) yields zero for t = 0, in accord with the initial condition 
ND(0) = 0, and for t → ∞, because by then all daughter nuclei will have decayed.  

Part 4: The characteristic time (tmax)D at which the daughter activity AD(t) 
attains its maximum (AD)max is determined by differentiating AD(t), setting the 
ensuing expression to zero, and solving for (tD)max.  

( )
( )

( ) ( )max
max

0 P D

D
D

D D P
P

D P

t t
t t

t t

dA t dN e e
dt dt

λ λλ λ
λ λ

− −

=
=

 = − −
 

( )
( )

( ) ( ) ( )max max

max

0 0 ( )P DD D

D

D D P
P P D

D P

t t

t t

dA t
N e e xv

dt
λ λλ λ λ λ

λ λ
− −

=

 ∴ = − + =  −
 

Setting the equation in brackets to zero, we find that 

( ) ( )max max 0P DD Dt t
P De eλ λλ λ− −+ =  

( ) ( )max maxP DD Dt t
P De eλ λλ λ− −∴ = −  

( )( ) ( )maxP D DP

D

te xviλ λλ
λ

−∴ =  

Applying logarithms and solving for (tmax)D, 

( )( ) ( ) ( )max
max

ln
( )P D D P DP

D
D P D

te t xviiλ λ λ λλ
λ λ λ

−= → =
−

 

The equation above gives the characteristic time at which the daughter 
activity will have reached a maximum.  

Part 5: For 𝜆𝜆𝑃𝑃 ≳ 𝜆𝜆𝐷𝐷 and 0 < 𝜀𝜀 ≪ 1, we may write the following relation 
between decay constants 𝜆𝜆𝑃𝑃 and 𝜆𝜆𝐷𝐷 of the parent and daughter,  

( )1 ( )P D xviiiλ λ ε= +  

( )1 ( )P D xixλ ε λ− ≈  

Plugging (xviii) and (xix) into the numerator and denominator of (xvii), 
respectively, we obtain 

( ) ( ) ( )
max

ln ln 1
( )P D

D
P D D

t xx
λ λ ε

λ λ ελ
+

= =
−

 

ln(1 + 𝜀𝜀) can be expanded as a Taylor series to give 

( ) 2 31 1ln 1 ... ( )
2 3

xxiε ε ε ε+ ≈ − + −  

Retaining the first two terms only and substituting into (xx), we obtain 

( )
2

max

1 11 12 2 ( )D
D D D

t xxii
ε ε ε ε
ελ λ λ

− − −
≈ = ≈  

From (xix), √1 − 𝜀𝜀 = (𝜆𝜆𝐷𝐷/𝜆𝜆𝑃𝑃)1/2, so that  

( ) ( )
max

1 2
1 ( )D P

D
D D P

t xxiii
λ λ

λ λ λ
≈ =  
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as we intended to show. Suppose now that 𝜆𝜆𝑃𝑃 ≲ 𝜆𝜆𝐷𝐷 and 0 < 𝜀𝜀 ≪ 1 (which needn’t 
have the same value as the foregoing approximation for 𝜆𝜆𝑃𝑃 ≳ 𝜆𝜆𝐷𝐷). We may write  
 

( ) ( )1P D xxivλ λ ε= −  

( ) ( )1P D xxvλ ε λ+ =  

Inserting (xxiv) and (xxv) into (xvii) brings to 

( ) ( ) ( )
max

ln ln 1
( )P D

D
P D D

t xxvi
λ λ ε

λ λ ελ
−

= =
− −

 

ln(1 –  𝜀𝜀) can be expanded as a Taylor series, 

( ) 2 31 1ln 1 ... ( )
2 3

xxviiε ε ε ε − ≈ − + + + 
 

 

As before, we take only the first two terms and substitute into (xxvii), 
giving 

( )
2

max

1 11 1 12 2 ( )D
D D D D P

t xxviii
ε ε ε ε
ελ λ λ λ λ

 − + +  + ≈ = ≈ =
−

 

as expected. We can now proceed to compute the characteristic times for the 
combinations of decay constants we were given. For decay 1, 𝜆𝜆𝑃𝑃 = 1.08 yr-1 and 
𝜆𝜆𝐷𝐷 = 1.0 yr-1; the exact characteristic time is given by equation (xvii), 

( ) ( ) ( )
max

ln ln 1.08 1.0
0.962 yr

1.08 1.0
P D

D
P D

t
λ λ

λ λ
= = =

− −
 

That is, the daughter nuclide will reach maximum activity within 0.96 
years or so. Applying the same data to approximation (xxiii), we obtain 

( )max
1 1 0.962 yr

1.0 1.08D
D P

t
λ λ

≈ = =
×

 

Clearly, the approximate formula conveys the exact same characteristic 
time within three decimal figures.  

Proceeding similarly with decay 2, we have 

( ) ( ) ( )
max

ln ln 3.1 3.5
0.303yr

3.1 3.5
P D

D
P D

t
λ λ

λ λ
= = =

− −
 

Applying the same data to approximation (xxiii), we obtain 

( )max
1 1 0.304 yr

3.5 3.1D
D P

t
λ λ

≈ = =
×

 

As in the previous situation, the approximate formula provides a good 
estimate of the characteristic time. 

P.28 c Solution 

Part 1: General equations for activity of a parent and daughter 
radionuclide in a P → D → G decay have been derived in the previous problem. 
Equation (xii) gives the activity of the parent nuclei, 

( ) ( )0 P
P P

tA t A e λ−=  

Equation (xiv), in turn, yields the activity of the daughter nuclei, 

( ) ( ) ( )0 P DD
D P

D P

t tA t A e eλ λλ
λ λ

− −= −
−

 

Before proceeding, we need decay constants 𝜆𝜆𝑃𝑃 and 𝜆𝜆𝐷𝐷, namely 
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1
Mo-99

1 2

ln 2 ln 2 0.0105 h
66.0P t

λ λ −= = = =  

1
Tc-99m

1 2

ln 2 ln 2 0.115 h
6.02D t

λ λ −= = = =  

Further, note that the starting activity is Ap(0) = 20 mCi. Substituting 
into the equations for Ap(t) and AD(t), we obtain 

( ) 0.010520P
tA t e−=  

( ) ( )0.0105 0.1150.11520
0.115 0.0105D

t tA t e e− −= × × −
−

 

( ) ( )0.0105 0.11522D
t tA t e e− −∴ = −  

Part 2: An expression for the characteristic time has been derived in the 
previous problem; the equation to use is (xvii), namely 

( ) ( ) ( )
max

ln ln 0.0105 0.115
22.9h

0.0105 0.115
P D

D
P D

t
λ λ

λ λ
= = =

− −
 

, The correct answer is B. 

Part 3: To find the maximum activity of the Tc-99m radionuclide, simply 
substitute (tmax)D obtained just now into AD(t), 

( ) ( )0.0105 0.11522D
t tA t e e− −= −  

( ) ( )0.0105 22.9 0.115 22.922.9 22 15.7mCiDA e e− × − ×∴ = − =  

, The correct answer is C. 

Part 4: Activities 𝐴𝐴𝑃𝑃(𝑡𝑡) and 𝐴𝐴𝐷𝐷(𝑡𝑡) are plotted below.  

 
 

Some findings can be highlighted from the graph: 
1. Parent activity AP(t) follows an exponential decay beginning at initial activity 
AP(0) = 20 mCi.  
2. Since the half-life of Mo-99 is 66 h, we can tell that Ap(66) = 0.5Ap(0) = 10 mCi, 
Ap(132) = 0.25Ap(0) = 5 mCi, etc. 
3. Daughter activity AD(t) reaches a maximum AD,max = 15.7 mCi at t = 22.9 h and 
then begins to decrease. 

P.29 c Solution 

Part 1: The equations that describe the decay of the parent and 
daughter nuclei are no different from the ones used in the Problems 27 and 28, 
namely 

( ) ( )P
P P

dN t
N t

dt
λ= −  



34 
© 2023 Montogue Quiz 

 

and 

( ) ( ) ( )D
P P D D

dN t
N t N t

dt
λ λ= −  

The solutions are also unchanged, 

( ) ( )0 ( )P
P P

tN t N e iλ−=  

( ) ( ) ( )0 ( )DPP
D P

D P

ttN t N e e iiλλλ
λ λ

−−= −
−

 

It remains to find the equation that provides the number of 
granddaughter nuclei, NG(t); to write a differential equation for NG(t), we 
observe that the rate of change of G is governed by the decay of daughters D, 
or, in mathematical terms, 

( ) ( )G
D D

dN t
N t

dt
λ= −  

Inserting ND(t) into the equation above and manipulating, we get 

( ) ( ) ( )0 P DG D P
P

D P

t tdN t
N e e

dt
λ λλ λ

λ λ
− −= −

−
 

Integrating the relation above from zero to t, we get 

( ) ( )0
P D

D P
G P

D P P D

t te eN t N C
λ λλ λ

λ λ λ λ

− − 
= − + +  −  

 

where C is an integration constant. Applying the initial condition NG(t = 0) =0, 
we obtain 

( ) ( ) 1 10 0 0D P
G P

D P D P

N t N Cλ λ
λ λ λ λ

 
= = − + + = −  

 

( ) ( )0 0 0P D
G P

D P

N t N Cλ λ
λ λ

−
∴ = = + =

−
 

( )0PC N∴ =  

It follows that  

( ) ( )0 1
P D

D P
G P

D P P D

t te eN t N
λ λλ λ

λ λ λ λ

− −  
= − −   −   

 

( ) ( )0 1 ( )
P D

D P
G P

D P D P

t te eN t N iii
λ λλ λ

λ λ λ λ

− − 
∴ = − +  − − 

 

In summary, the number of parent nuclei NP(t) is given by equation (i), 
the number of daughter nuclei by (ii), and the number of granddaughter nuclei 
by (iii).  

Part 2: Limit (I) can be obtained via the substitution rule, 

( ) ( )
0 0

0
lim 0 1

P D
D P

G Pt
D P D P

e eN t N
λ λλ λ

λ λ λ λ

− × − ×

→

 
= − + − − 

 

( ) ( )
0

0

lim 0 1 D P
G Pt

D P D P

N t N λ λ
λ λ λ λ→

=

 
∴ = − + − − 

 

( )
0

lim 0Gt
N t

→
∴ =  

 

Limit (II) becomes quite straightforward to show if we note that, as 𝑡𝑡 →
∞, the terms highlighted in red tend to zero, 
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( ) ( ) ( )lim 0 1 0
P D

D P

D P
G P Pt

D P

t te eN t N N
λ λλ λ

λ λ λ λ→∞

− − 
= − + =  

 − −
 

The limits have been confirmed; limit (I) shows that there are no 
granddaughter radionuclides at the beginning of the experiment, while limit (II) 
shows that at very long times the number of granddaughter nuclei approaches 
the number of parent nuclei.  

Part 3: Since the initial conditions for the radioactive sample stipulate 
that at t = 0 we are dealing with a pure parent radioactive source, i.e. such that 
NP(t = 0) = NP(0), ND(0) = 0, and NG(0) = 0, we surmise that at any time t > 0 the 
sum of all nuclei NP(t) + ND(t) + ND(t) must amount to NP(0). Adding (i), (ii) and (iii) 
from Part 1, we find that 

( ) ( ) ( ) ( ) ( ) ( )

( )

0 0

0 1
P D

P P DP
P D G P P

D P

D P
P

D P D P

t t

t t tN t N t N t N e N e e

e eN
λ λ

λ λ λλ
λ λ

λ λ
λ λ λ λ

− −

− − −+ + = + −
−

 
+ − + − − 

 

( )0 1
P D

P
DPt t

t P P D P
P

D P D P D P D P

tte e e eN N e
λ λ

λ
λλλ λ λ λ

λ λ λ λ λ λ λ λ

− −
−

−− 
∴Σ = + − + − + 

− − − −  
 

( )0PN N∴Σ =  

The sum Σ𝑁𝑁 of nuclides at any given instant t indeed equals NP(0).  
Part 4: Curve 1 depicts the decay of parent radionuclide Mo-99. Curve 2 

represents the growth and decay of the daughter radionuclide Tc-99m. Curve 3 
illustrates the growth of the granddaughter nuclide Tc-99 under the 
assumption that, because of its very long half-life, Tc-99 is essentially stable at 
the time scale of the experiment.  

Part 5: As mentioned in the solution to the previous part, curve 2 
represents the growth and decay of the daughter radionuclide Tc-99m. We 
have seen in Problem 27 that the characteristic time at which the daughter 
radionuclide Tc-99m attains maximum activity is given by the general 
expression 

( ) ( ) ( )
max

ln ln 0.0105 0.115
22.9h

0.0105 0.115
P D

D
P D

t
λ λ

λ λ
= = =

− −
 

To find the normalized peak value, substitute (tmax)D into equation (xiv) of 
Problem 27, giving 

( )
( )

( ) ( )( )max max

0
P DD DD P

P D P

t tN t
e e

N
λ λλ

λ λ
− −

= −
−

( )
( ) ( )0.0105 22.9 0.115 22.90.0105 0.0718
0 0.115 0.0105

D

P

N t
e e

N
− × − ×∴ = − =

−
 

The daughter nucleotide reaches a maximum normalized activity of 
0.0718 at time (tmax)D = 22.9 h. 

, The correct answer is D. 

P.30 c Solution 
210At decays to 210Po by electron capture. 210Po is also radioactive and 

transforms by 𝛼𝛼-decay to 206Pb, which is stable. The activity of 210Po is given by 

( ) ( ) ( )At PoAt Po
Po

Po At

0 t tA
A t e eλ λλ

λ λ
− −= −

−
 

The number of 210Po disintegrations from t = 0 to some time T is 
obtained by integration, 
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( ) ( ) Po At
At Po

Po0
Po At Po At Po At

0 1 1 (I)
T TT A e eN A t dt

λ λλ
λ λ λ λ λ λ

− − 
= = − − + −  
∫  

This is equal to the number of 𝛼𝛼 particles, as there is one 𝛼𝛼 particle per 
decay. Every 𝛼𝛼 particle is capturing electrons and is transferred to a He nucleus. 
The relation between the number of He nuclei and mass is  

He
He

Am NN
M

=  

Here, NHe is the number of helium nuclei, mHe = 2.5×10-9
 g is the mass of 

helium detected at the end of one month, M = 4 g/mol is the molar mass of 
helium, and NA is Avogadro’s number. Substituting, 

( ) ( )9 23
14

He

2.5 10 6.02 10
3.76 10

4
N

−× × ×
= = ×  

Further, 𝜆𝜆At = ln 2/t1/2 = 0.693/8.10 = 0.856 h-1 = 2.05 day-1 and 𝜆𝜆Po = ln 
2/138.4 = 0.00501 day-1. Substituting all data into equation (I) and solving for 
APo(t),  

( ) 0.00502 30 2.05 30
14 At 0 0.00502 30 3600 1 13.76 10

0.0502 2.05 0.00502 2.05 0.00501 2.05
A e e− × − ×× × ×  

× = − − + −  
 

( )At 0 51.1 GBqA∴ =  

The initial activity of the 210At source is close to 51 gigabecquerels. 

, The correct answer is C. 

P.31 c Solution 

The activity of 210Bi, ABi(t), varies with time according to the relation 

( ) ( )Bi Bi 0 BitA t A e λ−=  

The activity of 210Po, APo(t), varies with time according to the relation 

( ) ( ) ( )PoPo Bi
Po

Po Bi

0
Bit tA

A t e eλ λλ
λ λ

− −= −
−

 

The power from the radioactive nuclei equals the product of activity and 
energy released per decay. In the case at hand, we add the contributions of 
bismuth and polonium to obtain 

( ) ( ) ( )PoBiPo Bi
Bi

Po Bi

0
0 (I)Bi tt tA Q

P A E e e eβ
λλ λλ

λ λ
−− −= + −

−
 

Here, Q is the total energy released in the 𝛼𝛼 decay of polonium. We must 
account for both the kinetic energy from the 𝛼𝛼 particle, 𝐸𝐸𝛼𝛼, and the daughter 
nucleus, 𝐸𝐸𝐷𝐷; that is, 

D
D

E mQ E E E
m
α α

α α= + = +  

Here, 𝐸𝐸𝛼𝛼= 5.2497 MeV, 𝑚𝑚𝛼𝛼 = 4 is the atomic mass of an 𝛼𝛼 particle, and mD 
= 206 is the atomic mass of 206Pb, giving 

5.2497 4 5.2497 5.3516 MeV
206

Q ×
= + =  

Further, we have decay constants 𝜆𝜆Bi = ln 2/5.01 = 0.138 d-1 and 𝜆𝜆Po = ln 
2/138.4 = 0.00501 d-1. Noting that 1 MeV ≈ 1.60×10-13

 J, we substitute Q and all 
else into equation (I) to obtain 
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( ) ( )
( ) ( ) ( )

3 9 13

9 13

0.138

0.138 0.00501

4.0 10 105 10 0.344 1.6 10

0.00501 105 10 5.3516 1.6 10
0.00501 0.138

t

t t

e

e e

− −

−

− ×

− −

× = × × × × ×

× × × × ×
+ × −

−

 

( )3 0.138 0.005010.1384.0 10 0.00578 0.00339 t tte e e− − −−∴ × = − −  

Notice that we have arrived at a transcendental equation. One way to 
solve it is to take all terms to one side and apply Mathematica’s FindRoot 
command, 

 

The required time is about 8.4 days.  

, The correct answer is C. 

P.32 c Solution 

Part 1: Initially, the number of 197Au nuclei per unit area of foil is 

( )
3

23 21 2
1

0.03cm 19.3g/cm 10 6.02 10 1.77 10 cm
197g/mol mol

N −×
= × × = ×  

Let the numbers of 197Au and 198Au nuclei at time t be N1 and N2, 
respectively; further, 𝜎𝜎 denotes the cross-section of the (n,𝛾𝛾) reaction, 𝐼𝐼 is the 
flux of the incident neutron beam, and 𝜆𝜆 is the decay constant of 198Au. We 
proceed to write the differential equations 

1
1

dN IN
dt

σ= −  

2
1 2

dN IN N
dt

σ λ= −  

 

Integrating, we obtain 

( ) ( )1 1 0 ItN t N e σ−=  

( ) ( )( )2 1 0 It tIN t N e e
I

σ λσ
λ σ

− −= −
−

 

Here, 

6 1ln 2 2.97 10 s
2.7 86,400

λ − −= = ×
×

 

( ) ( )24 12 10 191.5 10 2 10 1.83 10 sIσ − − −= × × × = ×  

Note that 𝜎𝜎𝜎𝜎 ≪ 𝜆𝜆. At t = 6 min = 360 s, the activity of 198Au is 

( ) ( ) ( ) ( )1
2

0
360 360 It tIN

A t N t e e
I

σ λλσ
λ

λ σ
− −= = = = −

−
 

( ) ( )( )1360 0 1 tA t IN e λσ −∴ = ≈ −  

( ) ( ) ( ) ( )6
10 21 8 2 12.97 10 360

360 1.83 10 1.77 10 1 3.46 10 cm sA t e
−

− − −× ×− ∴ = ≈ × × × × − = × 
 

 

, The correct answer is B. 
Part 2: After equilibrium is reached, the activity of a nuclide, and hence 

the number of nuclei, remain constant. This is the maximum amount of 198Au 
that can be produced. As dN2/dt = 0, we have 

( )2 1 1 0N IN INλ σ σ= ≈  
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Solving for N2 brings to 

( ) ( )1
2 1 2

0
0

IN
N IN N

σ
λ σ

λ
= → =  

( ) ( )10 21
17 2

2 6

1.83 10 1.77 10
1.09 10 cm

2.97 10
N

−
−

−

× × ×
∴ = = ×

×
 

Part 3: Simply set 𝐴𝐴 = (2/3)𝐴𝐴max and solve for time, 

( )( ) ( )
max

max 1
1

22 10 1 ln 1
3 3 0

t A
A A IN e t

IN
λσ

λ σ
−  

= ≈ − → = − −  
 

 

6
1 2ln 1 370,000s 4.28 days

2.97 10 3
t −

 ∴ = − × − = = ×  
 

P.33 c Solution 

Let the 7Li and 8Li populations be N1(t) and N2(t), respectively. Initially, 
the number of 7Li nuclei is 

( ) 23 21
1

0.080 6.02 10 6.88 10
7

N = × × = ×  

Further, N2(0) = 0. During neutron irradiation, N1(t) changes according to 

1
1

dN N
dt

σφ= −  

where 𝜎𝜎 is the neutron capture cross-section and 𝜙𝜙 is the neutron flux, or 

( ) ( )1 1 0 tN t N e σφ−=  

N2(t) changes according to 

( ) ( ) ( )2 1
2 1 20 tdN dN N t N e N t

dt dt
σφλ σφ λ−= − − = −  

where 𝜆𝜆 is the 𝛽𝛽-decay constant of 8Li. Integrating, we obtain 

( ) ( ) ( )2 1 0t tN t e e Nσφ λσφ
λ σφ

− −= −
−

 

At equilibrium, dN2/dt = 0, which gives the time t it takes to reach 
equilibrium, 

( )ln
t

λ σφ
λ σφ
  =
−

 

In the present case, 𝜆𝜆 = ln 2/0.85 = 0.815 s-1 and 𝜎𝜎𝜎𝜎 = (3.7×10-26) × (4×1012) 
= 1.48×10-13 s-1, giving 

( ) ( )13

eq

ln 0.815 1.48 10ln
36.0 s

0.815
t

λ σφ
λ

− ×    ≈ = =  

It remains to determine the equilibrium activity Amax, 

( ) ( ) ( )1
eq 2 1

0
0

N
A N t N

λσφ
λ σφ

λ σφ
= ≈ ≈

−
 

( ) ( )13 21 9
eq 1.48 10 6.88 10 1.02 10 Bq 27.7 mCiA −∴ ≈ × × × = × =  

, The correct answer is C. 

P.34 c Solution 

Let the number of target nuclei be 𝑁𝑁(t), and that of the unstable nuclei 
resulting from neutron irradiation be 𝑁𝑁𝛽𝛽(t). The thickness of the target can be 
considered thin so that 
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( ) ( )dN t
N t

dt
σφ= −  

where 𝜙𝜙 is the neutron flux and 𝜎𝜎 is the total neutron capture cross-section of 
the target nuclei. Integration gives N(t) = N(0)𝑒𝑒−𝜎𝜎𝜎𝜎𝜎𝜎. As 𝜎𝜎𝜎𝜎 = 10-24 × (2×108) = 
2×10-16 s-1, the product 𝜎𝜎𝜎𝜎𝜎𝜎 = 2×10-14 ≪ 1 and we can take N(t) ≈ N(0), so that 

( )0dN N
dt

σφ≈ −  

That is, the rate of production is approximately constant. Consider the 
unstable nuclide. In this case, we write 

( ) ( ) ( )0
dN t

N N t
dt
β

βσφ λ≈ −  

where 𝜆𝜆 is the 𝛽𝛽 decay constant. Integrating,  

( ) ( ) ( )0
1 tN

N t eβ
λσφ

λ
−= −  

and hence 

( ) ( )( )0 1 tA N t N eβ
λλ σφ −= = −  

Noting that 𝛽𝛽 decay constant 𝜆𝜆 = 1/104 = 10-4 s-1, the activity at the end of 
120 sec of neutron irradiation is calculated to be 

( )( )10 tA N e λσφ −= −  

( ) ( ) ( )416 22 10 12010 2 0.012 1 1 8 B8 59 q0A e
−− − ×∴ = × × − =× ××  

, The correct answer is A. 

A ANSWER SUMMARY 
 

Problem 1 T/F 

Problem 2 
2.1 Open-ended pb.  
2.2 Open-ended pb.  

Problem 3 C 

Problem 4 
4.1 B 
4.2 Open-ended pb.  

Problem 5 A 
Problem 6 T/F 
Problem 7 T/F 
Problem 8 Open-ended pb.  
Problem 9 C 

Problem 10 
10.1 

Open-ended pbs.  10.2 
10.3 

Problem 11 Open-ended pb.  
Problem 12 C 
Problem 13 A 

Problem 14 

14.1 D 
14.2 D 
14.3 B 
14.4 C 
14.5 B 

Problem 15 
15.1 A 
15.2 B 
15.3 Open-ended pb.  

Problem 16 

16.1 B 
16.2 B 
16.3 A 
16.4 B 
16.5 C 

Problem 17 
17.1 C 
17.2 C 

Problem 18 B 
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Problem 19 
19.1 Open-ended pb.  
19.2 Open-ended pb.  

Problem 20 
20.1 Open-ended pb.  
20.2 D 

Problem 21 
21.1 A 
21.2 B 
21.3 A 

Problem 22 
22.1 C 
22.2 Open-ended pb.  
22.3 Open-ended pb.  

Problem 23 
23.1 B 
23.2 D 
23.3 A 

Problem 24 D 
Problem 25 D 

Problem 26 
26.1 Open-ended pb.  
26.2 B 
26.3 B 

Problem 27 

27.1 

Open-ended pbs.  
27.2 
27.3 
27.4 
27.5 

Problem 28 

28.1 Open-ended pb.  
28.2 B 
28.3 C 
28.4 Open-ended pb.  

Problem 29 

29.1 

Open-ended pbs. 
29.2 
29.3 
29.4 
29.5 D 

Problem 30 C 
Problem 31 C 

Problem 32 
32.1 B 
32.2 Open-ended pb.  
32.3 Open-ended pb.  

Problem 33 C 
Problem 34 A 
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Got any questions related to this quiz? We can help!  
Send a message to contact@montogue.com and we’ll 

answer your question as soon as possible. 
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