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»> PROBLEMS - CHAPTER 7

p Problem 7.1

Find the velocity profile for laminar flow in a round pipe with given
fluid and pressure drop Ap/L.

p Problem 7.2

Using the answer from Problem 7.1, find the shear stress on the wall
and the volume flow rate.

» Problem 7.5

Consider the annulus formed between a rod of radius ro and a tube of
radius ry. Find the velocity profile for Couette flow where the inner rod is
rotated with speed Q. Neglect gravity. Do not assume that the gap is small
compared to the radius.

» Problem 7.6
For the same geometry as in Problem 7.5, but Q =0, find the velocity

profile if the rod is being pulled in the axial direction at a speed v, = V,.
Neglect gravity and any pressure gradient.

L6\

» Problem 7.7

For the same geometry as in Problem 7.5, but Q =0, find the velocity
profile if a pressure gradient AP/L is applied in the direction of the rod axis.
Neglect gravity.
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» Problem 7.9

A vertical pipe of radius ro has a film of liquid flowing downward on the
outside. Find the velocity profile for a given film thickness and find an
expression for the flow rate Q.

Fluid
flow

p Problem 7.11

A horizontal channel of height H has two fluids of different viscosities
and densities flowing because of a pressure gradient. Find the velocity
profiles if the height of the interface is h,.

A /\

» Problem 7.14

Consider the Rayleigh problem, but allow the plate velocity to be a
function of time, V,(t). By differentiation show that the shear stress t =
uou/dy obeys the same diffusion equation that the velocity does. Suppose
that the plate is moved in such a way as to produce a constant surface shear
stress. What are the velocity profile and the surface velocity for this motion?

» Problem 7.18

Oil, with specific gravity = 0.9, used in a viscous coupling has a
kinematic viscosity of 30 centistokes (cSt) (10 m2/s =1 ¢St). If the coupling
has a 5-cm radius and 1-mm gap width, what difference in rotary speeds is
needed to transmit a torque of 50 N-m? Is the same power produced by both
the input and output shafts?

PROBLEMS - CHAPTER 8
p Problem 8.1

Rework the pump analysis using F,M, L, T as primary dimensions.

» Problem 8.2
Rework the pump analysis using M, S {(speed), and T as primary
variables.

» Problem 8.3

A list of variables for a problem has only one variable with the
dimension of mass. In what two possible ways could the list be in error?

» Problem 8.6

The speed of a surface water (liquid) wave is
thought to depend on the wave height, the
wavelength, the depth of the water, and the
acceleration of gravity. What would happen if
density was also proposed to be an important
parameter? Find a nondimensional form of the
answer.
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» Problem 8.8
A windmill is designed to operate at 20 rpm in a 15-
mph wind and produce 300 kW of power. The blades are 175
ftin diameter. A model 1.75 ft in diameter is to be tested at
90-mph wind velocity. What rotor speed should be used, and .
what power should be expected?

p Problem 8.9

A propeller is placed in a tank of chemicals to mix them together. The
diameter is D, the rotation speed is N, and the power to turn the propelleris P.
The fluid density is p and the viscosity is . Tests in water (p = 1000 kg/m?3, u =
1.01x1073 Pa-s) show that a propeller D =225 mm rotating at 23 rev/s requires a
driving power of 159 N-m/s. Calculate the speed and torque required to drive a
dynamically similar propeller, 675 mm in diameter in air (p = 1.2 kg/m3, u =
1.86x107 Pa-s).

» Problem 8.11

The pressure at the end of a round pipep;is a
function of the initial pressure p;, the density p, the
average velocity V, the viscosity u, the size of the wall
roughness ¢ (length), the length of the pipeL, and the
diameter d. By making several assumptions, find the
simplest nondimensional relation that governs the
pressure in incompressible flow.

» Problem 8.13

Consider the flow into and out of a stationary shock wave in a perfect
gas (specified heat capacity ratio y). The pressure p, downstream of a shock
wave depends on the thermodynamic state ahead of the shock, p1, T1, and the
initial flow velocity v;. Find the nondimensional relation for the pressure p»
using M, L, T, and degree as primary dimensions.

PROBLEMS - CHAPTER II

» Problem 11.1

The cross-section of a tube is an equilateral triangle with sides of
length £ and a horizontal base. Flow in the tube is produced by an imposed
pressure gradient dp/dz. Check that the velocity profile is given by

w(xy) =ﬁ[—%)(y—§f}(3xz -y?)

where the coordinate origin is at the apex of the triangle with y bisecting the
angle and positive downward, and x is horizontal. Check that the flow rate is

SR

320 u\ dz

» Problem 11.2

Waves in shallow water induce an oscillatory motion that extends to
the bottom. The motion is parallel to the bottom and sinusoidal. Estimate the
thickness of the viscous effect caused by the no-slip condition at the bottom
when the wave period is 5 s.
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» Problem 11.12

Find the exact relations for the maximum velocity and its position (the
core radius) as functions of time for the Oseen vortex.
» Problem 11.14

Air flows around a cylinder of 5-cm radius at 15 cm/s (the Reynolds
number is 1000), with the free-stream velocity perpendicular to the axis. Find
the dimensionalu and v components of the velocity at a point 0.15 cm away
from the surface and 0.5 cm away from the symmetry plane on the upwind
side of the cylinder. Find the shear stress on the wall at a point 0.5 cm away
from the symmetry plane.

» Problem 11.16

Integrate Eq. 11.8.8 once to find f’, then again by parts to find Eq.
11.8.10.
» Problem 11.21

Write a computer program to evaluate the velocity patternin a
rectangular tube, Eq. 11.2.8. For a tube with aspect ratio a = 0.4 plot velocity
profiles at appropriate x cross-sections. Make a contour plot of the velocity in
the cross-section. How many terms in the summation of Eq. 11.2.8, for a = 0.5,
are needed to obtain five decimal point accuracy in the velocity profile?

PROBLEMS - CHAPTER 12

p» Problem 12.1

Find the streamfunction for the ideal flow toward a plane stagnation
point. The velocity components are u = ax and v = -ay. Plot several streamlines
using equal increments in .
» Problem 12.4

Consider a uniform stream from left to right with a speed U. Find the
streamfunction for this flow in all four coordinate systems of Appendix D.
» Problem 12.13

The streamfunction for flow over a circular cylinder is

: Iy
w =Ursin 9(1—%}

Find the pressure distribution on the surface.

PROBLEMS - CHAPTER 13

» Problem 13.1

A disk of radius R is spinning about its axis at a speed Q. What is the
vorticity of the particles atr=0,r=R/2,andr=R?
» Problem 13.2

A Burgers vortex in cylindrical coordinates has the velocity components
v, =—ar, v, = 2az, and vy = (['/2nr)[1 - exp(-ar?/2v)]. What is the vorticity field
for this flow?
» Problem13.3

Compute the vorticity for the von Karman pump problem. Leave your
answer in terms of the functions F, G, and their derivatives. What relations of
F and G determined the fluid vorticity at the wall? Contrast with Problem 13.1.
» Problem 13.6

Find the equation of the “cross curve” that marks the path of two
counterrotating line vortices as they approach a wall in an inviscid flow.
» Problem 13.12

Stuart (1967) vortices are an infinite row of vortices that undergo
inviscid motion. Because the motion is inviscid, w, = F(). Show that if F(y) =
exp(—21) the inviscid equation V2 = -w is satisfied by

w=In (C cosh y ++/C? —1cos x)

Here 1 < C < . Find the velocity components. With the use of a
computer plot the streamlines for C = 2.
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» Problem 13.13

Show that in Problem 13.12 the limit C =1 gives the uniform shear layer
u=ay/dy =tanhy.
» Problem 13.15

Sullivan’s vortex is an example where flow has a two-cell structure. The

velocity profiles are
_KH<772)_ , ar’
vg—? H(oo) ; where n° =
6
v, =-—ar +TU[1—exp(—772)]

v, =2az [l—3exp(—772)]

20

and

H (%)= I:Z exp[-t +3j: (1-€7°)s ds]at

with H(oo) = 37.905. Sketch the velocity profiles and the streamlines in the r-z
plane. Use nondimensional variables.

PROBLEMS - CHAPTER 18

p Problem 18.2

For the stagnation point flow F = Uz?, find the streamlines, potential
lines, and the equations for the velocity components u, v.
» Problem 18.4

Verify that the streamlines from a doublet are given by Eq. 18.5.3. Find
the velocity components v, and vy for this flow.
» Problem 18.6

Find the streamline equations for a line source superimposed with a
line vortex both located at the origin. Determine the pressure as a function of
distance from the origin.

p Problem 18.7

A line source of strength m is parallel to a wall at a distance h. Find the
pressure distribution on the wall where po is the pressure at the stagnation
point.

» Problem 18.10

Consider an elliptic cylinder of length five times the thickness. Find the
complex potential and complex velocity for streaming flow without
circulation past this object.

p Problem 18.11

Determine the pressure distribution over the surface in Problem 18.10
as a function of distance S from the stagnation point.

SOLUTIONS
P.7.1=) solution

The problem essentially asks us to derive the Hagen-Poiseuille
velocity paraboloid. We begin with the simplified Navier-Stokes equation for
momentum in the z- (axial) direction:

_Op_ (d’u 1du
dz H dr’® rdr

The pressure gradient is assumed constant and equal to Ap/L; we
shall denote this ratio as —k:

k— @+ld_u
H dr? rdr

Dividing through by viscosity:

d’u 1du k d°u 1du
K=yl —S+-—|>—=—F+-—
dr® rdr u dre ordr
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The expression above can be restated as

d?u 1du d( duj k
—t-—=—|r—|=
dr* rdr dr dr

U

so that, integrating once:

du_1k A
da 2u r

where A is an integration constant. Integrating a second time gives

u(r)=%%r2+Aln(r)+B (1

where B is an integration constant. One of the boundary conditions is that
the velocity at the center of the tube must be finite, that is:

u(r=0)#w

This condition requires that A be equal to zero, otherwise the
logarithm that multiplies this constant will tend to (negative) infinity and the
velocity at the centerline will be unbounded. The other boundary condition
is the no-slip condition, thatis, u(r = R) = 0. Substituting in (1),

u(r=R)=%%R2+Oxln(R)+B=O
.'.B:—EKR2
4u
Then, replacing B in {l) brings to
=—— 0xI1 -——R
u(r) 4'ur +0xIn(r) »
k
.'.u(r):a(rz—Rz)

The expression above is the velocity profile for Hagen-Poiseuille flow.

P.7.2 =) solution

To find the wall shear, we evoke the shear stress-strain rate

relationship
du kR
] XX(&J
: ApR
=50

To find the flow rate, we integrate the velocity profile radially from the
centerline to the wall:

Q=.|‘udA:J.OR4L(r2 —R2)27zrdr
i

.'.Q=27r><4Lx.|‘0R(r2 —Rz)rdr

i
.~ KR, 2
..Q_Z O(r ~R?)rdr
7k 3 2
Q:Z 0( -R r)dr
o[ R
sl
2u 4 2 |,
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4
~Q =lx(—&jx _R
2u L 4
_ ApR*
8ulL

This is the famous Poiseuille equation for flow in a cylindrical tube.

P.7.5 =) Solution

The momentum equation for the system at hand is

0|10
e ot o

Integrating with respect tor,

where C; is an integration constant. Separating variables and integrating a
second time,

%%(rve):cl —0(rv,)=Cyror

.’.ja(rv9)=clj ror

2

.-.rvgzcl%w2
r C

SV, =C —+—%
o

where Czis another integration constant. The boundary conditions are vg(r =
ro) = roQ and vg(r = r1) = 0. Applying the latter BC, we get

vg(r:rl):C1£+%:O
1

r2
~C,=-C, L (I
,=-Co ()
Substituting (1) in the expression for vy,

2 2
RATA :C1£+&:Cl£—cli:& r_i
2 r 2 2r 2 r

Cr(r r
TV, =—L ——L | (Il
) Z[rl rj()

Applying the remaining BC, in turn,

Vy(r= ro):%(%—%jz r,Q
1 0

2r,Q2
1
b

Substituting Cy in () yields the velocity distribution we're looking for:

Ly 2GR n) o n 2Q T on
'92r1r2r(r0rljrlr
o b

C, =

b

ror

‘. vg(r):roQ—r1 .
L _h

(E roj
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P.7.6 =) Solution

In this case, we are concerned with the z-momentum equation, not
the 8-momentum equation. Accordingly, we write

1000
ror or
Integrating once brings to

av

=C
8r !

where C; is an integration constant. Separating variables and integrating a

second time,

—=C, > ov, :Cllar
or r

1
~ oy, =C1jFar
=V, =C/Inr+C, (1)

where Czis another integration constant. The boundary conditions are v, (r =
ro) = Vo and v,(r = r1) = 0. Applying the latter BC yields
v,=C,In+C, =0
~.C,=-C/Inr,
so that, substituting in (1),
v,=C/Inr+C,=C,Inr-C,Inr,
=V, =C,In(r/r;) (1)
Applying the remaining BC, in turn, we obtain
v,(r=r)=CIn(r/r)=V,
V,
G =—0
In(r,/%)

so that, substituting in (I},

v, =C,In(r/r)=V, n((rr//r;))
That is,
In(r/n)
)
P.7.7 =) Solution

The formulation is similar to that of Problem 7.5, but a pressure
gradient term, dp/dz, is added to the equation:

ﬁi(r%j_@
ror\ or dz
Integrating once:
2
r%:i%r_+cl
or udz 2

(Note that the pressure gradient dp/dz = Ap/L is constant.) Dividing
through by r and integrating again:

2
r%zlﬁr__FCl_)%:l%L_F&
or udz 2 or udz2 r

S
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1 dp r?
v, =———+C,In(r)+C, (I
z ,U dZ 4 1 ( ) 2 ( )
The available boundary conditions are no-slipatr =rpand r = r1.
Applying the former, it follows that

1d r
V,(r=r,)= a

a4 2 +C,In(ry)+C, =0

so that, substituting in (1):

2
v, :id—pr—+Clln(r)+ ————— C,In(r,)

udz 4 udz 4

1.dp

v r‘'—r;)+C.In(r/ry) (Il
2= a8 )FGIN(/G) ()
Resorting to the second boundary condition:

v,(r=n)= 41 gS(r ~13)+C,In(r,/r,) =0

1 dp (r12 _roz)

T 4u dz In(r/1,)

Substituting in (Il) and manipulating:

v, = 41/1 3S(r —r )+C In(r/ry)
:i@(rZ_rz) 1 dp( 2)|n(r/r)

oV 4y dz °)" 4u dz In(r /)

1 d 22y In(r/1)
vz(r)—4ﬂ di{(r —12)=(x; —ro)m}

P.7.9 =) Solution

Let z denote the downward direction. We assume that velocity
component v, is a function of radial distance r only, while components v,
and vy are both assumed to be zero. The pertaining momentum equation is

li rdl + g 0
H rdri dr
where p is the density of the fluid and g is gravitational acceleration.
Integrating once, we obtain:

ﬂli(rdl)wg 0—>ﬂd( dVZ)=—pgr
rdr\ dr dr\ dr

rdvZ __p9r

dr u 2

Dividing through by r:

Integrating a second time:
jdvz :—jp—gidchlldr
U 2 r
.'.VZ:—'O—ngJrClInr+C2 ()
Au

The first BC is no-slip at the surface of the pipe, thatis, v,(r = ro) = 0.
Substituting in (I) and solving for constant Co, we have
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v,(r=n)= 'Zg r?+C,Inr,+C, =0
7

~C,= +'j—2 7 —C,Inr,

Replacing Czin (1):

v =—’0—gr2+Cllnr+'Z—gr02—Clln I

T Au i
SV = ’Z/i(r —17)+C,In(r/r,) (1)

z

The other BC is that there is no shear at the surface of the liquid film
(r = ry); that is,

I/ IR (ng cj =0
drfr—p, 2u r =,
P9 te o
2p n
C pg 2
Zﬂ

Lastly, we substitute Cyin (ll) to obtain

vz(r):—’o—g(r2 —r ) > PO In(r/r,)

du

To compute the flow rate, we integrate the velocity profile from the
inner radius ro at the bottom of the film to the outer radius r; at the surface
of the film:

Q= J.rz,l I:VZ (Z)] x 2zrrdr

To speed things up, we set up this integral in Mathematica:

In[1238]:=
P * p*
vz[r_ ] :=- g*(rz_raz)+_§*r12*l_og[r/r9];
4pu 2pu
In[1237]:=
Integrate[vz[r] *2*Pi*r, {r, ro, r1}, Assumptions-rl> re > @]
Out[1237]=

gro(re* 4re’r1? 3rl® 4rl®log| ")
B 8l
(Note the tiny negative sign at the beginning of output [1237].)
Rearranging the expression above such that ri/ro = B, we have

s 2 4 4
oo 9|1 1f5) 35} 15} rn
8u |8 2\ 8\ 1 21 r, A

P.7.11 =) Solution

Let A denote the upper fluid and B denote the lower fluid. Before
attempting to solve the Navier-Stokes equations for this pair of fluids, we will
specify the pertinent boundary conditions. Firstly, flow velocity of fluid A at
the free surface should equal zero:

v,(y=H)=0; (BC))

Secondly, the flow velocities of fluids A and B should be equal at the
interface:

S |H

VA(y:ha):VB(y:ha) ; (BC2)

10
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Thirdly, the shear stresses should also match at the interface:

dv, dv,
A dy (y a) B dy (y a) ( )

Lastly, we employ a no-slip condition with respect to the surface
beneath fluid B:

Vg (y=0)=0; (BC4)
We can now write the momentum equation for fluid A:
d?v, _dp
Ady?  dx
Integrating once and noting that the pressure gradient dp/dx is
assumed constant, we get:

dv, _dp
—= +C, (I
Ha dy ~dx y (1
Proceeding similarly with fluid B:
dvg _dp
— +C, (I
Hg dy ~dx y )

Now, (BC3) can be used to equate (I) and (ll) at the interface:

+C, = +C
e 3¢ o
-G =C,

Let us denote C; or Cs as K. Integrating (I) a second time brings to

dpy
L,V + K +C Il
AYA — dx 2 y ( )

Integrating (Il) a second time, in turn, we obtain

_dpy®
\Y; +Ky+C, (IV
HgVg = ax 2 y (V)

Now, substituting (BC1) into (lll),

2

dp H
V,=——+KH+C,=0
HaVa dx 2 3

2
LY
dx 2

so that, replacing Cs in (Il1),

dp y° dp H?
MW:EL+W ;2 —KH

dx 2
1dp
HpV :E&(YZ—HZ)Jr K(y-H) (V)

Then, substituting (BC4) into (IV),

dp 0
Vg =——+Kx0+C,=0
HgVg dx 2 o 4
=0

~.C,=0
Thus, we can restate (IV) as

dp y*

+Ky+C,
dx 2 d

=0

MHpVg =

dp y?
- Ky (VI
HgVg = dX2+y()

From (V) and (VI), in conjunction with the remaining boundary
condition (BC3), we have
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1dp(o e CH)=Ha[ Ry
20|X(y H?)+K (y H)_yB(dx2+Ky

which can be solved for the remaining constant K,

H? —[1—“/*}13
__1d e
2 dx
Hg
Thus, the velocity profile for fluid A is given by (V):

(HH

The velocity profile for fluid B, in turn, is given by (VI):

ez
1 dp 2 ILIB :

T Y

Hg

P.7.14 =) Solution

We manipulate the diffusion equation as follows,

vy, 0%, a(avxj & [avxj
= >—| =2 |=o—|—=—=1|()
oy

ot oy atloy ) oy
Then, noting that from the shear stress-strain rate relationship,
ov
T=pu—>*
oy

we may restate (I) as

Qeﬁ}wﬁ{@qﬁlﬁupigan

ot oy oy*\ay ) uat
o0t 0t

—=0—

ot oy’

Thus, the shear 7 follows the same diffusion law that applies to
velocity. Accordingly, we can cast equation (7.7.13) in terms of shear:

r=[1-erf(n)|(-7,)
PR R

Separating variables and integrating,

OVy 7y ( y j 4 [ y jd
—X —_Oerfc — |ovy, =——|erfc
il g I K Bl i v rd o

y
. 7y y y
sy =—— | erfc d x 2+Jut
X #i (Nutj [Nut]

Let y/(2+/vt) = &, so the expression above can be rewritten as

g
—Mjerfc(f)dg

X:
H %

The integral above can be evaluated with Mathematica:

© 2022 Montogue Quiz
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In[1245]:=
Integrate[Erfc[&], {&, », £}, Assumptions - § > 9]

Out[1245]=
2

e

+ EErfc&]

AT
That is,
exp(—fz)
Jr

Replacing ¢ and transferring the "-" sign to the expression in square

brackets:
2
vX:Z\/ET0 _Y erfc( y j+ L exp X
U 2ut 2ot ) r 4ot

Substituting y = 0 gives an expression for the surface velocity:

¢
Vy :_2\/&7" jerfc(f)dé =—@ erfc(&) -
7R 7

2
VOIZ\/ETOX _0 erfc[ 0 + L exp _o
1 2dut  \2dut) \x 4ot
20 T
-y, =20 [t
u\r
P.7.18 =) solution

Let the difference in rotary speeds we aim for be denoted as AQ. From

Eg. (7.6.3),

Vy = rQ%

The shear stress component gy, is, in turn,
ov 1

T,, = u—2=uAQ =
0: = M5 THEY

The torque T is computed next:
_ (R 24, _ 2HUAQ (R
T _Io rc,, 2zr dr_TIO redr

T mAQR?
B 2h

Solving for AQ and substituting the pertaining values, we obtain

4
T _ muAOR S AO - 2hT4
2h muR

.0x107*)x50
21019 )0 _ g0 |

B ﬁx[QOOx(SOxlO’6)]><O.054

S AQ

or, equivalently, 30.1 kHz. Note that the product in square brackets is u = pv
(dynamic viscosity = density X kinematic viscosity).

P.8.1 =) Solution
The functional relationship that describes the pump problem is

Ap=f(Q p.d,Q,9)

The dimensional matrix, with F (force), M (mass), L (length), and T
(time) as primary dimensions, is shown next. Note that g¢ is a "dimensional
unifier” akin to the one introduced in Section 8.5 of the textbook.

Fl 1 0 0 0 0 -1
M| O 0 1 0 0 1
L] -2 3 =3 1 0 1
T|] 0O -1 0 0 -1 | -2

13
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The rank of the dimensional matrix is 4 and the number of variables is
6; accordingly, we shall use 6 — 4 = 2 dimensionless parameters. Let Ap and
Q be the dependent variables, and p, d, Q, and g be the repeating variables.
We begin by building a parameter I1; on the basis of Ap:

I, = App*d"Qy!
w1, =(FE2) (ML) (L) (1) (FMLT )
‘TL = Fl—d M a+d L—2—3a+b+d-|-—c—2d
-,

1-d=0 (1)
a+d=0 ()
—-2-3a+b+d =0 (1)
—c—-2d =0 (IV)
From (1), itis easy to see that d = 1. From (ll), we get a = —1. From (IV),

we get ¢ = —2d = —2. Lastly, we substitute the available results into (lll) to
obtain b:

—2-3a+b+d :0—>—2—3x(—1)+b+1=0

S.—2+3+b+1=0
b=-2

Accordingly, the parameter we seek is given by

Apd?
pQid* /g,

Next, we produce a parameter II, on the basis of Q:

I1, = App 'd 207 gl =

I, =Qp°d bQng
- T, = (BT (M) (L) (1) (FMLT )
‘T = F—dMa+d L3—3a+b+d-|-—1—c—2d
1,
~d=0 (1)
a+d=0 (Il)

3-3a+b+d =0 (Il
~1-c-2d =0 (IV)

Referring to equation (l), we clearly have d = 0. Likewise, substituting
dinto (I} yields a = 0. Then, substituting d into (IV) and solving for c,

-1-c-2d =0—>-1-c-2x0=0
sc=-1
We substitute into (lll) to obtain the remaining exponent, b:
3-3a+b+d=0—>3-3x0+b+0=0
~b=-3
Therefore, parameter I1, is such that
11, =Qp’d 00 = 3

We conclude the analysis by stating the dimensionless relation

)
pQPd* /g, Qd?
P.8.2 =) Solution

We must first restate the variables with speed as one of the
dimensions:

14
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== = T2 =S
Q T T3
L L T3 L 3
d=L —LXT =ST
T
Q=T"
The dimensional matrix is shown next.
Ap Q p d Q
Ml 1 0 1 0 0
S| -1 3 -3 1 0
T | -3 2 -3 1 -1

This matrix has rank 3 and the number of variables involved is 5,
hence we need to construct 5 — 3 = 2 dimensionless groups. As before, we
take Ap and Q as the dependent variables. Parameter I1, is constructed as

follows.
C

I, = App°d®Q° = (MS 1) (Ms T )" (sT)" (T )

Hl =M l+a S —1—3a+b-|- -3-3a+b—c

1+a=0 ()
-1-3a+b=0 (Il)
—3-3a+b-c=0 (Il

From (I), we clearly have a = —1. Substituting a in (ll) and solving for b,

we get
—-1-3a+b=0—>-1-3x(-1)+b=0
Sb=-2

Substituting a and b in (lll), we obtain
—3-3a+b-c=0—>-3-3x(-2)-4-c=0
5. —3+6-4-c=0
sc=-1
Thus, parameter I1; is given by

Ap
pd?*Q

I, =App 'd?Q " =

We now turn to parameter II,, which is constructed as follows:

c

IT, = Qp3d°Q° = (S°T2) (MS T )" (ST)°(T)
Hz -M a83—3a+b-|- 2-3a+b—c
a=0 ()
3-3a+b=0 ()
2—3a+b-c=0 ()
Equation (I} is trivial. Substituting a into (ll) and solving for b,
3-3a+b=0—-3-3x0+b=0
b=-3

Lastly, we substitute a and b into (lll) to obtain the remaining

exponent:
2-3a+b-c=0—-52-3x0-3-c=0
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s.c=-1

ST =0p%d 3= R
2 =Qp Qd®

Gleaning our results, we write

Ap Q
I, = f (I1,) > 0 f(QdB)

P.8.3 =) Solution

One possibility is that the variable containing mass is not actually a
variable of the function and should be dropped. A second possibility is that
another variable containing mass is missing from the list of variables.

P.8.6 =) Solution

Refer to the following dimensional matrix.

ST A 21 n g
M| 0| 0 0 0 0
L] 1] 1 1 1 1
T -1] 0 0 0 | -2

As can be seen, if density were included it would be the only variable
with mass as part of its decomposition, and hence could not be
nondimensionalized. We can expedite the dimensional analysis procedure
with the method of scales. We posit a dimensionless group for wave
amplitude A by normalizing it with respect to the wave height h:

Likewise, we normalize the wavelength A with respect to the wave
height h:

A reasonable quantity to nondimensionalize velocity in wave
problems is the factor \/gh. Accordingly, we write

oS

Jon

Thus, we arrive at the dimensionless form

I, = f (I1,,I,)

P.8.8 =) Solution
Refer to the following dimensional matrix.
P d p % Q
M| 1 0 1 0 0
L| 2 1 -3 1 0
T| -3 0 0 -1 -1

The matrix rank is equal to 3; the number of physical parameters is 5;
accordingly, the windmill can be modelled with 5 — 3 = 2 dimensionless
groups. We take d, V, and Q as the repeating variables, while power and
linear velocity are chosen as dependent variables. Denoting the
dimensionless group that contains power as I1,, we proceed to write

I, = Pd?pPQ°
Cc

L= (MUT (1) (M (1)

Hl — M 1+b L2+a—3b-|- -3

16
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1+b=0 (I)
2+a-3b=0 (I)
~3-c=0 (Il

From equations (I) and (lll), we find that b = -1 and c = -3,
respectively. Substituting b in (ll) and solving for the remaining exponent, we
get:

2+a—3=0—>2+a-3x(-1)=0

s.a=-5
Thus, dimensionless parameter I1; is expressed as
5 1 P
M, =Pd°p Q% =——
pQ°d

Now, we turn to the parameter that contains velocity:
I1, =Vd?p"Q°
b
T, = (LT )< (L) < (ML®) (T )
‘TL =M bL1+a—3b-|-—1—c
S =
b=0 (I)

1+a-3b=0 (I)
~1-c=0 (Il

C

Equation (I} is trivial and gives b = 0. Substituting b in (Il) and solving
for a gives a = —1. Lastly, solving (lll) for ¢ yields ¢ = —1. Therefore,
dimensionless parameter I1, is given by

4041V
I, =vd 1p’0?t = —
2 Y od

Thus, the dimensionless relationship for the system at hand is

_P (Lj
pQ3d5 Qd

For dynamic similarity between full-scale device and model, we must

(Lj _(Lj
Qd full-scale Qd

V,, d
...Qm:\/_md_s fs
fs ¥'m

90 175
Q. =—x——x20=|12,000rpm
m 15 X175 X

This angular speed corresponds to a power P such that

pd5Q3 full-scale pdsgs

d V(oY
..‘ Pm ) (_m) _mJ Pfs
dfs Qfs

5 3
P :(1'75] {12’000) %300 = [6.48KW

175 20

have

model

model

The model should be supplied with approximately 6.5 kilowatts of
power.

P.8.9 =) Solution

The dimensionless relationship in this case reads

17
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P=f(D,N,p,u)

The dimensional matrix is shown next.

Pl D | N | p | u
M 1] o 0 1 1
L] 2 1 0 | =3 | -1
T =3 0 | =1 o | -1

The number of variables is 5 and the rank of the matrix is shown to be
3, hence the number of dimensionless parameters we will be working with is
5 -3 = 2. We shall take power P and viscosity u as dependent variables, and

D, N, p as repeating variables. Let us first obtain parameter I1; on the basis of
power P:

Hl — PDaNbpc
= (M) () ()

Hl =M 1+c L2+a—3c-|- -3-b

1+c=0 ()
2+a-3c=0 (I
-3—-b=0 ()

Referring to (l), it is immediately apparent that ¢ = —1. From (lll), we
see that b = —3. Substituting c in (ll) brings to
2+a-3c=0—>2+a—-3x(-1)=0
Sa=-95
Substituting the exponents in the definition of I1;, we have

P

I, =PD°N3pt= _
1 '0 pN3D5

Next, we turn to parameter II,, which is based on the dynamic
viscosity u:

H2 :‘uDaNbpc
b
LT, = (MU ) (L) (T7) (ML)
. 1+ —l+a-3cT—1-b
~ I, =M S Il
1+c=0 ()
-1+a-3c=0 (I
=1-b=0 (Il
As in the derivation of the previous parameter, ¢ = —1. From (lll), we
likewise get b = —1. Lastly, we substitute c into (Il) to obtain
-1+a—-3c=0—>-1+a—3x(-1)=0
s.—1+a+3=0

sa=-2
so that

IL = uD2N"1p = H

Notice that this is essentially a reciprocal Reynolds number for
rotational flow. For similarity to hold, I1, must be the same for the two
scenarios. Denoting conditions in water and air with subscripts ‘w"and ‘a’,
respectively, we can equate parameters II, and solve for the speed N,

2
() () ﬁNﬁ&(&j&
pND® ), { pND" J, Hy\D. ) pa

18
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1.86x10° (225)% 1000
N = x x——x23=[30.21ps]
* 1.01x10°° (675) 1.2 P

Likewise, we can equate power coefficients I1; and solve for power:

3 5
P P Pa Na Da
), ), >m ) 3
p w p a IOW w w
12 (39.2) (675)
" Pa:lOIOOX( 2'3 j x(225] x159 =230 N-m/s

P.8.11 =) Solution

The flow must be fully developed. The pressure drop is assumed to be
constant and equal to the ratio of pressure at the initial point, ps, and
pressure at the final point, p2, divided by the length L that separates the two
points; in mathematical terms, Ap = (p> — pi1)/L. Since we are including the
roughness height, the pipe wall needs not be smooth. The dimensional
matrix is shown next.

Ap/L| p % U 3 d
M| 1 1 0 1 0 0
L] =2 -3 1 -1 1 1
T| -2 0 -1 | -1 0 0

The number of variables is 6 and the rank of the dimensional matrix is
3, hence we shall work with 6 — 3 = 3 dimensionless groups. Let us take
Ap/L, u, and ¢ as the dependent variables. We first formulate a parameter I1,
on the basis of pressure drop:
Ap

I, :TpaVde
ST = (MU 2) (ML) (LT (L)
Hl -M 1+a L—2—3a+b+c-|- —2-b

1+a=0 (I)

—2-3a+b+c=0 (Il)

—2—-b=0 ()

From (I) and (ll1), it is easy to see thata = =1 and b = —2, respectively.
It remains to substitute these into (Il) and establish the value of c:
—2-3a+b+c=0—->-2-3x(-1)-2+c=0

s.c=1

Thus, parameter I1, is given by

Ap 3,21 Ap/L
I, =—"pv2dt=
A pV2/d

We now turn to parameter I1,, which is based on the dynamic
viscosity u:
I1, =,upaVde
-1, :(|\/||:1T-1)(|\/||_-3)""(|_T-l)b(|_)C
H2 -M l+a L—1—3a+b+c-|- -1-b

1+a=0 ()
-1-3a+b+c=0 (Il)
—1-b=0 (Il
From (I) and (ll1), it is easy to see that a = b = —1. Substituting in (l1), it

follows that
—1-3a+b+c= 0—)—1—3(—1)—1+C =0
sc=-1

Thus, parameter I1, is found to be
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M, =up v i t=t
2 THP d

which is essentially the reciprocal Reynolds number with tube diameter as
the reference length. We now turn to parameter Il5, which is based on the
roughness height e:

I, = o2V Pd°
T, = (L) (ML) (LT ) (L)
. H _ MaL1—3a+b+ch
T, =

We needn’t even write the system of equations to notice thata = b =
0. Substituting in the exponent for L brings to

1-3a+b+c=0—->1-3x0+0+cC
s.c=-1

so that
11, = 2o ot =

This is essentially a nondimensionalized roughness height. Finally, the
dimensionless relationship we seek is

Ap/L JT
Il = f(IT,,I1 =f ,—
= T TL) =T (de dj

P.8.13 =) Solution

This one is a little less boring than previous ones because it involves a
fourth primary dimension, namely, the temperature 6.The relationship we
aim for can be written as

P, = f (pl'vl'Tl’ R’Cv)

Where R is the universal gas constant and ¢, is specific heat capacity
at constant volume. The corresponding dimensional matrix is shown next.

b2 P1 Vi 11 R Cy
M| 1 1 0 0 0 0
L -1 -1 1 0 2 2
T|-2| -2 -1 0 -2 -2
60| 0 0 0 1 -1 -1

This formulation can be simplified if we seek the pressure ratio p2/p1
instead of the individual pressures themselves; the updated functional form
is then

Pt (v, TuRC,)

Py
po/pr| Vi | Th R Cy
M 0 0 0 0 0
L 0 1 0 2 2
T 0 -1 0 -2 -2
0 0 0 1 -1 -1

Even greater simplification can be achieved if we replace temperature
T1 with the product RT;. Likewise, we may nondimensionalize specific heat
by dividing it by the gas constant. What's more, we can exclude mass from
our solution because none of the variables in the dimensional matrix above
include M. The updated functional form then becomes

Pa _ f(vl,RTl,&]
Py R
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pZ/pl Vi RT; CU/R
L 0 1 2 0
T| O -1 ] =2 0
0 0 0 -1 0

Thus, the following dimensionless groups become apparent. We first
have the pressure ratio

P,
I, =2
Y op

We also have the ratio of constant-volume specific heat to gas
constant,

But, recalling that ¢, = ¢v + R, where ¢, is the constant-pressure
specific heat capacity, and y = cp/cy, we may restate I1, as

1
I, =—
y—1
which is likewise dimensionless. The third and final dimensionless group is
VZ
H3 -1
RT,
which, including the specific-heat ratio y in the denominator (which is
reasonable because y is itself dimensionless), becomes

2
I, ~ Vi
yRT,

This, in turn, is the square of the ratio of flow speed to the speed of
sound; in other words, the expression above is the squared Mach number:

2
V,
I, ~ L =Ma’®
s (J;/RTJ

In summary:
C
I, = f (IT,,I1,) > |22 = f (—V,Maj
Py R
P.11.1 =) Solution
The triangular cross-section and an alternative view are shown below.
y ¢
V3
¢ St
or \_S—\)y :%xnﬁx
Vo
y

We were asked to check that the velocity w(x,y) can be described by

the expression
—dp/dz( 3 2 2
w(X,y)= —— 1 |(3x°—

For the moment, let us employ the simplified notation

. —dp/dz
2\/§,u€

SO w(x,y) can be rewritten as
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w(x,y) =¢(Y—§6J(3x2 -y?)

In order to ascertain the velocity profile in question, we may check
whether it satisfies the Navier-Stokes equations. One form that would be
pertinent for steady flow in a duct is:

o'W o*w

x oy
Obtaining the second-order partials of w(x,y) is a simple calculus
exercise; let's speed things up with Mathematica:

V3

2

_1dp
===

In[1003]= W= =% |y-

*L]*{3x2-y2:]_;

inf1006]= partialwx2 = Simplify[D[w, {x, 2}]1]

out(1006= -3 V3 Lo +6y o

In[1007]= partialwy2 = Simplify[D[w, {v, 2}11]

ouioo7= (3 L-6y) ¢

In[1010;= Simplify [partialwx2 + partialwy2]

ourioto= -2 3 Lo
That is, the software says that

o’w  o°w

erW:—zJéw

or, replacing ¢,

o’'w  o°w dp/dz ) 1dp
S e = 23| —— = |==-F
ot oy’ ( 23yl ) dz

which is identical to the NS equation (l); this indicates that the velocity
profile for the equilateral-triangle cross-section is indeed valid. To complete
our solution, we integrate over the cross-section to obtain the flow rate:

Q= win=2["" [ “waiay

3 2 2 .
infi015/= flowRate = 2+ Integrate [Integr‘ate [‘jz* ¥ - 5 *L| = (3)( -y ), {x, e, y/ ‘\,/;}, Assumptions >y > @|,

{y, e, 3xL/ 2}, Assumptions - L > 0]

IL%0
160

Out[1015]=

The result afforded by the program is

3%

Q=160

Replacing ¢ as before, we obtain:

)

C2But ) 320 1\ dz

Interestingly, the flow rate in an equilateral-triangle cross-section is
proportional to the fourth power of the triangle’s edge, much like Poiseuille
flow in a cylindrical tube is proportional to the fourth power of the radius.
Panton notes that similar flow rate-pressure relationships occur for all cross-
sectional geometries.
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P.11.2 =) Solution

The wave motion oscillates at a frequency Q such that

S 2T 2T 4 265
T 50

so that, taking v = 1.14x107% m?/s as the kinematic viscosity of water,

12
Y2 2x(1.14x10°
5:4.5(2j —45x ( )
Q 1.26

=6.05x107°m

10 =6.05mm

P.11.12 =) Solution

The Oseen vortex has a velocity field given by

Vv L 1-exp _r_2
° 2nr 4ot

Differentiating with respect to r, we get

r2

el ]) o 0]

FullSimpli-Fy[D[

2xT%xIN

[ _ r‘z ‘ 2 ..Il
;\72+@4t¥[2+3ﬁ
\ tu |

4512

2 2
Ny _ 1“2 —2-+exp LI | L
or dnxr 4ot ot

Setting the term in square brackets to zero gives

That is,

2 2

S exp L 2+r_ =2
4ot ot
2 2

S exp L 1+r— =1
4ot 2t
2 2

CLexp _ 1+2L]=1
4ot ot

Setting the term in red to a new variable &, we write
exp(—¢)(1+28) =1

The relationship above is a transcendental equation in &. One
immediately apparent solution is & = O, which is trivial. To look for a different
solution, we solve the equation numerically with Mathematica's FindRoot

command:
In[1147]:=

FindRoot [Exp[-&] = (1 +2*&) -1, {&, 1}]]
Out[1147}=
{£-1.25643}

That is, £ = 1.26. Substituting in the definition of &, we obtain

2

§=%=1.26—>r:1/4(§ut

U
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S r=+4x1.26xut
| =2.25\ut

To obtain the corresponding velocity, we substitute # into the
expression for vy, namely

In[1150]:=

P2
Fullsimplify[[ *[1-Exp[- ]]] /.r>2.25 \/u*t]
2xmwxrr druxt
Oul[1150]=
9.08507837 1
That is,
T
Vv ~0.0508 —
6, max \/_
ut

In summary, the maximum circumferential velocity of the Oseen
vortex decreases with the square root of time, while the radial position at
which this velocity is attained increases with the square root of time.

P.11.14 =) Solution

Noting that the Reynolds number is 1000; we can estimate the
kinematic viscosity of the air surrounding the cylinder:

VD VD
Re=-—" >p=-—"
v Re
L= 15x10 _ 0.15cm?/s
1000

The constant a is related to other parameters by Eq. (11.9.4),

_al,
IFO

where a is a constant that depends on the shape of the cylinder; for a
circular cylinder, we have a = 2. Thus,

2x15
a:
5

=6.0s"

Now, noting that variable n is given by one of Egs. (11.9.14), we
rearrange as follows:

y _ Y y
1y

y
77: = =
Jv/a fi c [ v rJRe
U °y\aur,
.'.77=rlx/Re
0

Since we're interested in conditions 0.15 cm away from the surface,
we substitute above to obtain

n= %x JI000 = 0.949

Entering this value of n into the chart in Fig. 11.10, we read F(0.949) =

0.40 and F'(0.949) = 0.75. Solving Egs. (11.9.14) for velocity components u
and v brings to

F=— —v=—Fva

\/ua
v=-0.40x+/0.15% 6.0 =|—0.379cm/s

u
F'=——>u=Fax
ax

~U=0.75x6.0x05=
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Lastly, we appeal to the shear stress-strain rate relation and write

u 0 . on o1
M (axxF) Y = L x =R
|z ,uay ,uan(aXx )ay Lax xro e

At the wall, n = O. Further, F"(n = 0) = 1.2. Then, the only missing

quantity in the relation above is the dynamic viscosity of air, which we may
take as 1.81x107° Pa-s. Thus,

7| =(1.81x10)x6.0x 0.005x1.2x

t - « 1000 =[4.21x10 N/m?

P.11.16 =) Solution

The differential equation at hand is

.'.Inf’:—%+lnn+lncl

Grouping the logarithms:

2

Inf’—lnn—InCl:—%

Exponentiating:

Isolating f":

2
~df =Cpn exp(—%) dn

Using integration by parts, the expression on the right-hand side can

be shown to yield
2 2
n n
exp| —— |dnp =-2exp| ——
[ p[ 4j n p[ 4]

n’ n’
df =C177€Xp(—7jdf7—> Jdf =] clnexp(—ﬂdn

2
- f=-2C exp(—%j+c2

so that

Constants C; and C» can be evaluated from the boundary conditions
f(0) = 0 and f(o) = 1. Applying the first BC, we get
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2

f(n=0)= —2C1exp(—%j+c2 =0
~.—2C,+C, =0
~.C,=2C, (I)

Applying the second BC, we get

002

f(nzoo)z—ZCleXp( 2 j+C2 =1

|
—0

~0+C, =1
~C,=1

Substituting Cz in (I), we obtain C; = 1/2. Therefore, the solution f(n) is
found to be
2 2

1
f :—2C1exp£—%j+c2 :—ZxEXeXp(—%jH

2

| (n) =1—exp[—%}

which is identical to Eq. (11.8.10).
P.11.21 =) Solution

The contours can be plotted with the following custom Mathematica
function, rectDuct, which is basically a ContourPlot call with some
adjustments:

rectDuct[a_,n_]:=ContourPlot[(a”2-y”2)/2+(2/a)*Sum[With[{a=(2k-1)
n/(2a)}, (-1)*k/a”3 Cos[a y] Cosh[a
x]/Cosh[a]],{k,1,n}]//Evaluate,{x,-1,1},{y,-a,a},AspectRatio-
>Automatic,ContourShading->None];

Entering rectDuct[0.4, 15], for example, plots contours for a
rectangular duct with aspect ratio a = 0.4 and 15 terms in the sum that
appears in the velocity distribution formula:

rectDuct[0.4,15]

0.4_—| I__
L1 [
[y ']

02F| ]
L1 (.
L1 1

0.0F 14
ri B
i ']

-02¢] .
M |
i ]

04Lt !
-1.0 —05 0.0 05 1.0

We could just as well plot contours for a section with aspect ratio
equal to, say, 0.8, and 25 terms in the summation (although using only about
5 or 6 terms is quite adequate for most purposes):

rectDuct[0.8,25]

0.5}F

0.0F

-05¢F
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P.12.1 =) Solution

Appealing to the definition of streamfunction for a two-dimensional
flow, we may write

%zUzax Q)
OV o
™ v=-ay (Il

Separating variables and integrating, we obtain

{w:axy+f(x) (from 1)
w=axy+g(y) (fromIl)

Comparing the two relations, f(x) = gly) = constant; let this constant
be denoted as Y, so that

l//(xi y):axy""//o

Take y, = 0, so that Y(x,y) = axy. Normalizing with respect to a gives
Yx,y)/a = xy. As asked in the problem statement, we set [i)(x,y)/a] to
incremental values — say, 1, 3, and 5 — and sketch the corresponding
streamlines. As the reader will surely recall, functions of the form y = C/x,
where C is a constant, are actually hyperbolae bounded by the first and third
quadrants of the Cartesian plane. The data are tabulated and plotted below.

Yxy)/a=1 Yix,y)/a=3 Y(xy)/a=5
X y X y X y
0.25 4.00 0.25 12.00 0.25 20.00
0.5 2.00 0.5 6.00 0.5 10.00
1 1.00 1 3.00 1 5.00
1.5 0.67 1.5 2.00 1.5 3.33
2 0.50 2 1.50 2 2.50
2.5 0.40 2.5 1.20 2.5 2.00
3 0.33 3 1.00 3 1.67
3.5 0.29 3.5 0.86 3.5 1.43
4 0.25 4 0.75 4 1.25
4.5 0.22 4.5 0.67 4.5 1.11
5 0.20 5 0.60 5 1.00
20
18
16 —.—psi/a =1
14 —e—psifa =3
12 psifa=5
> 10
8
6
4
2 \\
O - . -4 - 4
0 1 2 3 4 5
X
P.12.4 =) Solution
Consider first the system in Cartesian coordinates.
y
———-
u=U
—_—
v=0
—
>X
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Resorting to the relationship between the horizontal velocity
component and the streamfunction, we have:

u=U=%§-ﬁbw=IU@
Sy =Uy+f(x)

Likewise, for the vertical component:

0
VzOza—V;%w:f(X):%

where 1, is arbitrary. Thus, the streamfunction we aim for is

(% y)=Uy+y,

Consider now the same system in a cylindrical coordinate frame, as
illustrated below.

/\,9 ’

The velocity components may be described as

> X

v, =U cosezlﬁ—w
r 06

Vv, =-U sinez—a—l//
or

Integrating:
w:j%%d9+fu)

.'.W=UrIc050d9+ f(r)

sy =Ursin(8)+f (r) (1)
Proceeding similarly with dy/ar:

_(Oy ot
y/—jﬁdrjtg(ﬁ)—usm:9_[dr+g(t9)

~y=Ursind+g(0) (Il

Comparing (1) and (I1),

f(r)=9(9)=vq
where 1, is arbitrary. Accordingly, the streamfunction is

w(r,0)=Ursin(6)+y,

We now consider the same system in axisymmetric coordinates.

T U‘."'ZO

N

For a uniform stream moving from left to right, v, = 0 and v, = U.
Integrating v, brings to
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loy

v, =U =
g r or

— [y = [uror
.'.w:%rzu +y,

Likewise, we integrate v, to obtain

10
Vr=0:_Fa_l/Z/ f(Z):‘//o

where ), is arbitrary. Combining the two previous results, the
streamfunction is found to be

w(r.z) =%r2u +,

Finally, we turn to spherical coordinates.

/\,Q

The velocity components are given by the following expressions:

>

vy =Ucoso=—+ W
resin@ o6
vgz—UsinH:— 1 o
rsind o6

The streamfunction follows as

v=fon L[ Loy,

r s 0, ., )
.'.z//zj'o Ursin 6?dr+J.0 Ur”cosésin6do +y,

The first integral on the right-hand side should yield zero because in
it 8 is fixed at 0 and sin0 = 0. Noting that cosfsin8 = sin(26)/2 and

fog sin(20) df = sin? 8, we proceed to evaluate the second integral:

= jorUr sin”@dr +.[‘9Ur2 cos@sin0do +y,

0 )
l//z_[o Ur?cos@sin0dd+y,
1,0 .
= Ejo Ur?sin(20)d6+y,

Sy =%r2U sin® 0+,

P.12.13 =) Solution

Applying the usual streamfunction relations, we obtain
loy 1 r
v, = W= r 1--= |Ucoséd
rog r r
r2
~v, =U cos@(l—%]
r

2
v, ==Y _ _Usin 9[1+r—02J
or r

As the reader may note, this is actually the ideal solution, hence the
Bernoulli equation could be used. However, here we opt for the “long” route.
Integrating along the stagnation streamline, we write
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Q)

O=r

ro@
Po — P, :(L a_Edrj

with v, = —U(L - r¢/r?) and vy = 0. In order to obtain the pressure
distribution, we first appeal to the momentum equation

2 2210y )] L 200
or Par Marlrar T 00 v o0
Note that the term that multiplies the dynamic viscosity u should yield

zero, because the flow is inviscid. We are left with the term in blue, which
becomes

r

op ov. 2p0%7 (r*-17)
— T =py, L= :
or or r

Mathematica can be used to verify our calculations in this particular
passage:
92

-
Simplify[p*U* [1- —2] *D[U*
r

1-

rj], trs 11]]

2r0? (P2-ro?) P p

o

Then, we substitute dp/dr in equation (I) and carry out the integration:

b, =2p0%[*[ 1o by o2 B B 2
0 0 - r5 |"3 _4 _2

1 1) [pu?
.. — :2 2 —_—— =

fo

[ee}

This is the so-called dynamic pressure that appears in the Bernoulli
equation and is often used in dimensionless coefficients of aerodynamics
and naval architecture.

Now, on the surface of the cylinder, we have

p(6.1,)— P U SZdGJ

But, from the momentum equation,

1op _ v, 0y,
2% 4+ ux0
ro0 r oo M
2 2
.‘.lﬁz—pl -Using 1+r—°2 x| —U cos @ 1+r_02
r oo r r r
2
) 18‘3_—4’0U sin@cos @
r o6 r
. 18p 2'0U sin 260
‘rog r

where we have used the trig relationship sin (26)/2 = sinfcosé. Finally,

P— P =jf(—2puzsin 20)d6=|-2pU"sin’ 0

P.13.1 =) Solution

For the disk in question, the velocity components are vy = rQQ and v, =
v, = 0. It follows that vorticity components w, and wgy are both zero,
whereas the remaining component, w,, is calculated to be
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_1oyy21e _10 g1
wz_rar(rvg)_rﬁr(rxm) rar(rQ) x 2rQ)

r

Note that there is no r term in the result above; accordingly, the

vorticity of the particles at any distance from the center of the disk is
constant and equal to 2Q.

P.13.2 =) Solution
The vorticity components w, and wgy are easily shown to equal zero:
o L
rog oz
_ov v, _

w, =
© oz or

It remains to compute the z-component w,:

@,

LRI Y.
ror* % roo

10

=F§(We)—0

S

P.13.3 =) Solution
The von Karman viscous pump has velocity components given by
v, =rQG(z)
v, =rQF (2)
v, =VLQH (2)
Accordingly, we write the vorticity components

o, :1%—%:1x0—rQG’(z)
roé oz r
sy =—T1QG'(2)

v, v, ,
N _ Nz _ropr(2)-0
=% o " (2)
.'.a)gerF’(Z)
10

lov, 10 1
w, =F§(rvg)—?a—é=F§[rx(rQG(z))]—Fx0= 2rQG(z)

@, =20G(z)
At the wall, we have z = 0 and the vorticity components become

w, =-rQG'(0)
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w, = ZQG(O) =2Q
=1
The z-component of vorticity is found to have the same value as in

Problem 13.1. However, the other two components, which are both zero in
that problem, are not nil in the wall of a von Karman pump.

P.13.6 =) solution

The system at hand is illustrated below.

Let Vac denote the velocity of A induced by C. With reference to the
figure, we may write

r
Vo=
AC 27 x AC
v I (2y)_ _ rzy
CASX 27xAC AC ZﬂX(A—C)Z
I'2x
Ny =——3
27z><(AC)

where AC = 4x° + 4y?. In turn, source B imparts an induced velocity with y-
component only, and is given by
r

_27r><2x

Vg =Vig, =

In a similar manner, source D imparts an induced velocity with x-
component only, namely

T
2 x2y

Vi =Vaoy

Adding velocities in the x-direction:

4% + 4
Vy, =Vie, + F{l 2y } r[HM}

-V 4V = | = -
ACX TRBX ol 2y AXP+4y? | 2rx 2y(4x2+4y2)

v = T 4x* T X2
A Ary (4x2+4y2) 47ry(x2+y2)

Similarly, we add velocities in the y-direction to obtain

T 2X 1 r -y?
Vay = Vaey *Vasy T ool oz o o0 Tl T
Ay — TACy " "ABY 27[{4X2+4y2 ZX} ZE[X(XZJFyZJ

Thus, the motion of vortex A is described by

dy Vay —y/x dy  dx

— 12
dx Vp, Xy oy X

Integrating and rearranging, we ultimately obtain

h? h?
—2+—2:1

Xy
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where h is the asymptote of the cross curve.
Now, to establish the corresponding streamfunction ¥, we write the
differential form

oy oy
dy = ——dx+—dy =-vdx+ud
4 ox 2y y y

which becomes

ri1 X r{1 y
dy=—|=— dxr—[ 1 d
v 471'[X x2+y2) X+47r(y x2+y2J y

.-.dwzi(%+ X Y dy}
Az X X4y y X +y

T4zl x y 2

ST |dx dy 1d(x*+y?)
dl// —[74' y 2—(X2+y2)

Then, we integrate to obtain

jdw=£[ %4%_1}@}

X y 2 (x2+y2)
r 1
sy =—o/\ Inx+Iny—=In(x* +y?
W 47{{ y-3 ( y)}
Multiplying through by 87 /T,
8r 1 2, .2
?w_[ZInXJrZIny—ZxEIn(x +y )}

.'.S%W:[In X2 +1Iny? —In(x2 + yz)}

8%1/ :[In x2y? —In(x2 + yz)]

2.,2
il =In ;( Y 2
r X +y
P.13.12 =) Solution
We are to verify if the inviscid Laplace equation,
Vi =—w (1)

is valid for the flow in question. Differentiating y twice with respect to x and
y, respectively, we get

nr10s4= dx = Simpli-Fy[D[Log[c*Cosh fy] + Ve -1 *Cos[x]], 0, 2}”

-1+c?+c/-1+c? Cos[x] Cosh[y]

Out{1084}= — — 2
[+-1+c? Cos[x] + cCosh[y]]

ni10es;= dy = Simplify [D[Log[c*Cosh [y] + Ve2 -1 *Cos[x]], v, 2}]]

clc+ \.""—1— c® Cos [x] Cosh[y] :|

Out[1085]=

|; 4/-1+¢c? Cos[x] +cCosh[y] :|2

Inf1086):= Simplify[dx + dy]

1
Out[1086]=

|: \J-1+c? Cos[x] + ¢ Cosh[y] :|2

Note that i, + 1y, is such that

2 2 -2
VZV/ _a_l//+a_l// :|:\’C2 —1COS(X)+CCOSh(y)]

- aXZ ayZ
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Compare this with w, = exp(—=2¥), that is,

0871 = Simplify [Exp [-2 «Log [c «Cosh[y] + Y2 -1 xCos [x] ] ]]

1

Out[1087]= 5
( -1+c? Cos[x] =+ -::Cosh[y])

but this is identical to the sum ¥, + ¥, we've obtained above. Accordingly,
the two sides of expression (I} are equal and the inviscid Laplace equation is
satisfied.

Finding the velocity components u and v is straightforward:

(1= &[x , ¥ 1 := Log[c*Cosh [v] + '\ch -1 *Cos[x]];
Inf1090:= Clear[u]

inf110z1= u=DId[x, v1, {y, 1}]
c Sinh[y]

4J-1+ c? Cos[x] +c Cosh[y]

out[1102)=

in[1102]= Clear[v]
inf1104)= v = =D[¥[x, y1, {x, 1}]
-1 +c?Ssin[x]

-1+ c? Cos [x] + ¢ Cosh[y]

As shown, the software returns

Csinh(y)

u(X,Y):\/CT_lcos(x)+CCOSh(y)

\/Cﬁsin(X)
JC? —1cos(x)+Ccosh(y)

It remains to visualize some streamlines for C = 2.0. We may use
Mathematica’s StreamPlot or ContourPlot commands; the latter is more
straightforward to use in the case at hand (even though the problem
statement asked for streamlines, not contours):

out[1104)=

v(xy)=

: ContourPlot[Log[z*Cosh[y] + 22 -1 «Cos [x]], {x, -15, 15}, {v, -5, 5}, ColorFunction - “Rainbow"]

-4

15 -10 -5 0 5 10 15

P.13.13 =) Solution
We saw in Prob. 13.12 that
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U(x,y)= Csinh(y)
’ JC? ~1cos(x)+Ccosh(y)
Setting C = 1 brings to
1.0xsinh(y) _ 10xsinh(y) nh (y)

u(xy)= — _
() V1.0° ~1xcos(x)+1.0xcosh(y) 1.0xcosh(y)
\__\/_J

=0

as we intended to show.

P.13.15 =) Solution

Note first that n can be stated as

Uz_arz et ’a
20 20
Noting that a has dimensions of reciprocal time, we can scale length

variables as ~ y/a/v and velocity variables as ~ vva. Accordingly, we proceed
to nondimensionalize v,:

v, = —ar+670[1—exp(—772)} :—arx\/%x \/%+ r GZa E[l—exp(—nzﬂ
19

v, = —~2van + 65208 | 1-exp )|
n

Lastly, we define v = v,./v/2va, so that

. ; 6
A :J;/E:—n+;[l—exp(—n2)] Q)

Now, let z* = & = z\/a/2v and v} = v,/ 2va. With these substitutions,
we can easily nondimensionalize velocity component v,:

v, =2az x\/%x\/%x[l—BeXp(_nz )J

w. vy = 24208 x| 1-3exp(—n?) |

vz

e 25[1—3exp(—772ﬂ

Sy = 25[1—3exp(—772)} )}

Equations (I) and (Il) are ready to be plotted in the r-z plane — or, in
view of our dimensionless variables, the n-¢ plane. One way to go is to use
Mathematica's StreamPlot command:

StreamPlot[{—n + s * (1 — Exp[-n?]),2 * € * (1 — 3 = Exp[—n%])}, {n, 0,20}, {£,0,20}]

207
Yhoyoh

A Vo AN \
Lot U \ x A\
EAULAL LR L W Y

EERISEEC R R RN

1y ) A Vo \
RITRHESARLR
LA VA

15+

wr 10+

(%]

R e
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Next, we plot the velocity profiles. Equation (I) can be readily plotted
as a function of n with Mathematica's Plot command:

n10221= vr[z ] i= -7+ E* (1- Exp[-zyz]);
7

Inf10261= Plot[vr[n], {n, @, 10}, Frame - True, GridLines -» Automatic, PlotStyle - Red]

T

Vr

Out[1027]=

Next, in order to plot v,, we first divide (I) through by ¢,

v; =2&[1-3exp(—" | ag =2[1-3exp(-r’) |

so that, defining a Mathematica function and applying Plot as before:

npioze= vz [z ] t= 2% (1- 3*Exp[—/72])_;
inf1030p= Plot[vz[nl, {n, @, 18}, Frame - True, GridlLines - Automatic, PlotStyle - Darker[Green]]

20-

Vz

1.6+

out[1031)=

n

It remains to plot velocity component vy,

H (7 2
ng (77 ) : where UZEﬂ
r H (oo) 2v
Since there is a r in the denominator and n « r, we may recast the
equation as:
v, _1H(7") 1H(r)
k T H(o) 7 H(xo)
where

H (%)= Ionz exp[-t + 3[: (1-€7°)s ds]at

The Mathematica code we need is reproduced below. We first
prepare a function v to evaluate function H(n?) shown above. Then, we
prepare a dataset sullivanSwirl to establish values for (1/n)(H(n?)/H() in the
range n € (1,20). We then prepend a 0 to the beginning of the ensuing
dataset (we did not do this in the Table command so as to avoid a division by
zero). Then, we transpose the dataset to create the array sullivanData. Lastly,
we plot this dataset with ListPlot, as shown in continuation.
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Inf1056]:= VO[77_] := NIntegrate[Exp[-t + 3*Integrate[(1- Exp[-5s]) * s‘i, {s, @, t}, Assumptions - t > 9]], {t, o, 72}];

ve[n]

Inf1066)= sullivanSwirl = Table [—
37.905xn

» {n, Range[1, 201}

In(1067)= PrependTo[sullivanSwirl, 0]

Inf1069)= sullivanData = Transpose@ {Range[©@, 20], sullivanSwirl}

outri069)= { {0, 0}, {1, 0.0624799}, {2, 0.305509}, {3, 0.327}, {4, 0.249975}, {5, 0.199997},
{6,0.166664}, {7, 0.142855}, {8, ©.124998}, {9, 0.111109}, {10, 0.0999983},
{11, ©.0909075}, {12, 0.0833319}, {13, 0.0769218}, {14, 0.0714273}, {15, 0.0666655} ,
{16, ©.0624989}, {17, 0.0588225}, {18, 0.0555546}, {19, 0.0526307}, {20, 0.0499991} }
In[1079)= ListPlot[sullivanData, PlotStyle -» Blue, Frame - True, GridLines - Automatic, Joined - True,
PlotMarkers - {Blue, Medium}]

030"

025/

020!

Vi

0.15}

0.10}

0.05/

000: n n n n I n n n n I n n n n I L n n n 17
0 5 10 15 20

n
Note that the list plot is a bit rough because we used the coarse

interval {0,1,2,3,...}. Using more closely spaced values should improve the
plot, especially in the interval n € (0;5).

P.18.2 =) solution

Expanding function F, we obtain
F =Uz? =U x(x+iy)* =U x(x? + 2ixy - y°)
F=U (x2 —y2)+2nyi

so that
p=(x"-y*)U
w =2xyU
Velocity component u can be obtained from ¢ or :
u=%=2Ux ; u=a—W=2Ux
28 oy

Likewise, v is such that

u=%=—2Uy ; u=—a—W=—2Uy
oy OX

Lastly, we determine the complex velocity w:

w=‘3j—'; :%(Uzz) = 2Uz = 2U (x+iy) = 2Ux+i2Uy
SLW=u—iv
P.18.4 =) solution

As mentioned in the textbook, the streamlines of a doublet are
supposedly represented by the circle equation

2 2
X2+ y+2 | =] A
2y 2y

The complex potential for a doublet is F = u/mz, which can be
manipulated to yield
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F =ix§=L)(x—iy)

7z 1 7r(x2 +y?

But F = ¢ + ip, with the result that

X o wy
N Pl Rl e Fo
or
x2+y2:—’u—y(l)
y

Expanding Eq. 18.5.3, we may write

2 2 2
iy =y | L] o A
2y ny \2my 2y

Notice that this is identical to (I); accordingly, the relationship has
been verified.

To find the velocity components, we differentiate the doublet
potential and manipulate:

F :ﬁz_l _)W:_ﬁ 2_2 :—Ex(r_ze_izg)
T T T

W= —#x(e_iw) _ _#(e—ia)eie

W= —Lz(cose—isin 0)e ™
zr

With reference to Eq. 18.1.13, we conclude that

H . H
——C0s0 ; vgz——zsme

Ve =
r r

P.18.6 =) Solution

The line source and vortex can have their potential functions added

to yield

Fe ™ hzoitmng
27 27

. 1
S~F=(m=ill)=—Inz (I
(m-ir);-inz (1)
Differentiating with respect to z,

dz 272

There corresponds a W to the W specified above such that

— . 1
W =(m+il')=—

27z
Multiplying W by W brings to
W = (m—iT)(m+il)——
ArzxZ
1

WV\_/ :(m2 —izrz)m

-~ WW :(m2+r2)?l2r2 ()
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Returning to (1),

F =(m—i1")2iln(z)=(m—ir)%ln(rei9)

T

~F =(m—il“)%[ln(r)+ In(eig)}

~F =%(m—ir)[ln(r)+i9]

- F =%[mln(r)+m9i ~TIn(r)i+To]

.'.F:2i min(r)+T0+| mé-TlIn(r)|i
V4 §

1 .
F :E(¢+"//)

The imaginary part of F yields the streamfunction vy,

m T
=—0-——1I
v 27 27 n(r)

Solving for a given y, gives the streamline equation r(6):

r(6)=exp [2?”(://0 —%Qﬂ

Using the Bernoulli equation and (Il), we can establish the pressure
distribution:

B+%\N\/\7=const.
0
2 2
.2 ”;ng; — const. = 2=
p  Ax’r p
L P.-p_m +1“2
Yo, Ar’r

P.18.7 =) solution

The system is described by the potential function

F ==%in(z—ih)+—=In(z+ih)

27 27

e J o)
:zﬂ[( z+|hﬂ

_ﬂ{z+)k(+z }
2

which can be derived to yield

—ih)(z+ih
m »
27r z +h2
Noting that z = x on the wall, we appeal h|
to the Bernoulli equation and write y
X
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2
PPy _ 145 M/ (x/h)

p 2 27° [(x/h)2+1T

At this point, we define a pressure coefficient Cp such that
p— po _ 1 X ?
2 272_2 2 2
p(m/h) (x?+1)
where X = x/h. We proceed to plot Cp with the following MATLAB code:

Cp =@(X) -(1/(2*pin2))*(X"2/(X"2+1)"2);
fplot(Cp, 'LineWidth',2.0)

x1lim([0© 10]);

ylim([-0.015 @]);

grid on

0

-0.005

-0.01 7

-0.015 ! ; ! :

P.18.10 =) Solution

We first write the semi-axes ratio

E—éf— R, +¢’/R, RZ+c? _c
b R,—C?/R, RZ-c’

Rearranging,

=5-— R +¢® =5R? -5¢°

_fee

-~ R
° 2

or, equivalently, ¢ = 2Ro/v/6. Now, for flow over a cylinder, we may write the
potential

Ro2
E —-U U-—2
(é’) ¢+ ‘

Further, coordinate z is related to the transformed coordinate ¢ by
the simple expression

2
C
I=(+—

Differentiating F with respect to ¢,

2
2
F-uc+uR L9y _y [&j
¢ dg

Similarly, we differentiate z with respect to ¢,
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Combining the two previous results, we obtain the potential velocity

w:
W _OF _(dF/dS) U [1—(&/4)2}
dz  (dz/d¢)  (g2-c?)/¢?
Simplifying:
=
{°—c

with ¢ = {(2).
P.18.11 =) Solution

Knowing that

z :§+i

we apply differentials to obtain

dz=d¢ +c°c?de

C2
dz=|1-—|d
: ( A >

Similarly, for the conjugate:

), =
dz= l—_—2 dg
o
It follows that
3 ézz_cz 52_(:2 _
dzxdz= — dZd
o (£

(¢2) —C(;_;ZC? +C 4cdZ ()

sdzxdzZ=

Further,
FP+¢% =Rje ™ +Rie™ =R; x2c0s(20)

Also, d = Roie?df and d = —iRoe~?d0, the product of these two
differentials is d{d{ = R2(d8)?. It follows that (I) can be restated as

dzxdz=(dc ) = R§—2c2R§|;:;s(20)+c4 R (do)’
(d¢Y’ Z{E_ZCZROZ cos(26?)+c_4
-~ R[R Ro Ry

1

2 412
Jde 1—2(1J cos(29)+[i do
R, Ry R,

Integrating on both sides,

N

Jiaoy

T4t 2 4 %
é: J; [12(%} cos(2«9)+(R£0]] de (I

The expression on the right-hand side is an elliptic integral and can
be evaluated with Mathematica. Now, from Prob. 18.10 we had

T S

:gz_cz ’ _472_(;2

so that
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— () -Z2-¢2+1
(4/47)2_(:2472_0242_‘_(:4

, 1-2cos(20)+1 _ 2[1-cos(20)]

= = i
1-2c*cos(20)+c* 1+c4—202005(20)( )

~q
The pressure coefficient Cp is given by
C,=1-¢° (IV)

The dynamic pressure q is, of course, the square root of (lll).

B 1-2cos(20)+1 v
a= 1-2¢? cos(26) +c*

We proceed to plot pressure coefficient (equation (IV)) versus
distance from stagnation point (eq. (I1)); we also prepare a plot of dynamic
pressure (equation (V)) versus s.

-
o

o
[3)

Dynamic p., g

o
—=

=== Pr. Coef,, C,

}
o
3

Dynamic pres., g, and pres. coefficient, C,

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Distance from stagnation point, s

_O_'
o
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