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Quiz MST03 
Reviewed Solutions to Polymer 

Science and Technology, 3rd Ed., 
by J.R. Fried 

 

 

Lucas Monteiro Nogueira 
 

Problem Distribution 
Chapter Problems Covered 

1 1.1, 1.2, 1.4 
2 2.1, 2.2, 2.5, 2.6, 2.9 
3 3.3, 3.5, 3.7, 3.9 
4 4.2, 4.3, 4.4, 4.7, 4.8, 4.9, 4.10 
5 5.1, 5.2, 5.8, 5.9, 5.10, 5.11, 5.12 

11 11.1, 11.2, 11.3, 11.4, 11.5 
 

Problems 
◼ Chapter 1 – Introduction to Polymer Science 
Problem 1.1 
A polymer sample combines five different molecular-weight fractions of equal 
weight. The molecular weights of these fractions increase from 20,000 to 100,000 
in increments of 20,000. Calculate the number-average molecular weight 𝑀𝑀�𝑛𝑛, the 
weight-average molecular weight 𝑀𝑀�𝑤𝑤, and the z-average molecular weight 𝑀𝑀�𝑧𝑧. 
Based upon these results, comment on whether this sample has a broad or narrow 
molecular-weight distribution compared to typical commercial polymer samples. 

Problem 1.2 
A 50-g polymer sample was fractioned into six samples of different weights given 
in the table below. The viscosity-average molecular weight, 𝑀𝑀�𝑣𝑣, of each was 
determined and is included in the table. Estimate the number-average and weight-
average molecular weights of the original sample. For these calculations, assume 
that the molecular-weight distribution of each fraction is extremely narrow and 
can be considered to be monodisperse. Would you classify the molecular-weight 
distribution of the original sample as narrow or broad?  

Fraction Weight (g) 𝑴𝑴�𝒗𝒗 
1 1.0 1500 
2 5.0 35,000 
3 21.0 75,000 
4 15.0 150,000 
5 6.5 400,000 
6 1.5 850,000 

Problem 1.4 
The following requested calculations refer to Examples 1.1, 1.2, and 1.3 in the 
text:  
(a) Calculate the z-average molecular weight, 𝑀𝑀�𝑧𝑧, of the discrete molecular weight 
distribution described in Example 1.1.  
(b) Calculate the z-average molecular weight, 𝑀𝑀�𝑧𝑧, of the continuous molecular 
weight distribution shown in Example 1.2.  
(c) Obtain an expression for the z-average degree of polymerization, 𝑋𝑋�𝑧𝑧, for the 
Flory distribution described in Example 1.3. 
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◼ Chapter 2 – Polymer Synthesis 
Problem 2.1 
If the half-life time, t1/2, of the initiator AIBN in an unknown solvent is 22.6 h at 
60oC, calculate its dissociation rate constant, kd, in units of reciprocal seconds. 

Problem 2.2 
Styrene is polymerized by free-radical mechanism in solution. The initial monomer 
and initiator concentrations are 1 M (molar) and 0.001 M, respectively. At the 
polymerization temperature of 60oC, the initiator efficiency is 0.30. The rate 
constants at the polymerization temperature are as follows:  

Dissociation rate constant, kd = 1.2×10‒5 s‒1 
Propagation rate constant, kp = 176 M‒1s‒1 
Termination rate constant, kt = 7.2×107 M‒1s‒1 

 

Given this information, determine the following:  
(a) Rate of initiation at 1 min and at 16.6 h.  
(b) Steady-state free-radical concentration at 1 min.  
(c) Rate of polymerization at 1 min.  
(d) Average free-radical lifetime, 𝜏𝜏, at 1 min, where 𝜏𝜏 is defined as the radical 
concentration by the rate of termination.  
(e) Number-average degree of polymerization at 1 min.  

Problem 2.5 
If the number-average degree of polymerization for polystyrene obtained by the 
bulk polymerization of styrene at 60oC is 1000, what would be the number-
average degree of polymerization if the polymerization were conducted in a 10% 
solution in toluene (900 g of toluene per 100 g of styrene) under otherwise 
identical conditions? The molecular weights of styrene and toluene are 104.12 and 
92.15, respectively. State any assumptions that are needed. 

Problem 2.6 
Assume that a polyesterification is conducted in the absence of solvent or catalyst 
and that the monomers are present in stoichiometric ratios. Calculate the time 
(min) required to obtain a number-average degree of polymerization of 50 given 
that the initial dicarboxylic acid concentration is 3 mol L‒1 and that the 
polymerization rate constant is 10‒2 L mol‒1 s‒1. 

Problem 2.9 
Find the azeotropic composition for the free-radical copolymerization of styrene 
and acrylonitrile. 

◼ Chapter 3 – Conformation, Solutions, and Molecular Weight 
Problem 3.3 
(a) What is the osmotic pressure (units of atm) of a 0.5 wt% solution of 
poly(methylmethacrylate) (𝑀𝑀� = 100,000) in acetonitrile (density, 0.7857 g∙cm‒3) at 
45oC for which [𝜂𝜂] = 4.8×10‒3 M0.5?  
(b) What is the osmotic head in units of cm?  
(c) Estimate the Flory interaction parameter for polysulfone in methylene chloride.  
(d) Based upon your answer above, would you expect methylene chloride to be a 
good or poor solvent for polysulfone?  

Problem 3.5 
The following viscosity data were obtained for solutions of polystyrene (PS) in 
toluene at 30oC.  

 
 
 
 
 
 
Using this information: 
(a) Plot the reduced viscosity as a function of concentration.  
(b) Determine the intrinsic viscosity and the value of the Huggins constant, kH.  
(c) Calculate the molecular weight of PS using Mark-Houwink parameters of a = 
0.725 and K = 1.1×10‒4 dL g‒1. 
 
 
 
 
 
 

c (g∙dL‒1) t (s) 
0 65.8 

0.54 101.2 
1.08 144.3 
1.62 194.6 
2.16 257.0 
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Problem 3.7 
The use of universal calibration curves in GPC is based upon the principle that the 
product [𝜂𝜂]M, the hydrodynamic volume, is the same for all polymers at equal 
elution volumes. If the retention volume for a monodisperse polystyrene (PS) 
sample of 50,000 molecular weight is 100 mL in toluene at 25oC, what is the 
molecular weight of a fraction of poly(methyl methacrylate) (PMMA) at the same 
elution volume in toluene at 25OC? The Mark-Houwink parameters, K and a, for PS 
are given as 7.54×10‒3 mL∙g‒1 and 0.783, respectively; the corresponding values 
for PMMA are 8.12×10‒3 mL∙g‒1 and 0.71.  

Problem 3.9 
The (reduced or excess) Rayleigh ratio (𝑅𝑅𝜃𝜃) of cellulose acetate (CA) in dioxane was 
determined as a function of concentration by low-angle laser light-scattering 
measurements. Data are given in the following table. If the refractive index (no) of 
dioxane is 1.4199, the refractive-index increment (dn/dc) for CA in dioxane is 
6.297×10‒2 cm3g‒1, and the wavelength 𝜆𝜆 of the light is 6328 Å, calculate the 
weight-average molecular weight of CA and the second virial coefficient (A2). 

c × 103 
(g∙mL‒1) 

R(𝜽𝜽) 
(cm‒1) 

0.5034 0.239 
1.0068 0.440 
1.5102 0.606 
2.0136 0.790 
2.517 0.902 

 

◼ Chapter 4 – Solid-State Properties 
Problem 4.2 
A tensile strip of polystyrene that is 10 cm in length, 5 cm in width, and 2 cm in 
thickness is stretched to a length of 10.5 cm. Assuming that the sample is 
isotropic and deforms uniformly, calculate the resulting width and the percent 
volume change after deformation. 

Problem 4.3 
A polymer has a crystalline growth parameter (n) of 2 and a rate constant (k) of 
10‒2 s‒2 at 100oC. The polymer is melted and then quenched to 100oC and allowed 
to crystallize isothermally. After 10 s, what is the percent crystallinity of the 
sample? 

Problem 4.4 
What is the % volume change that is expected at 100% elongation of natural 
rubber, assuming that no crystallization occurs during deformation?  

Problem 4.7 
Polytetrafluoroethylene has been reported to exhibit a negative Poisson ratio. 
Explain why this polymer exhibits this unusual behavior. 

Problem 4.8 
A sample of poly(ethylene terephthalate) is reported to be 20% crystalline.  
(a) What is the expected density of this sample?  
(b) What is the expected specific heat increment of this semicrystalline sample?  
(c) What is the expected heat of fusion of this sample?  

Problem 4.9 
Twenty wt% of a styrene oligomer having a number-average degree of 
polymerization of 7 is mixed with a commercial polystyrene sample having a 
number-average molecular weight of 100,000.  
(a) What is the Tg(K) of the styrene oligomer?  
(b) What is the Tg(K) of the polystyrerene mixture?  

Problem 4.10 
The 1% secant modulus of a polystyrene sample is 3 GPa.  
(a) What is the nominal stress (MPa) of this sample at a nominal strain of 0.01?  
(b) What is the true stress (MPa) of this sample at a nominal strain of 0.01?  
(c) What is the percent change in volume of this sample at the nominal strain of 
0.01?  
 
 
 
 
 



4 
© 2023 Montogue Quiz 

◼ Chapter 5 – Viscoelasticity and Rubber Elasticity 
Problem 5.1 
Show that |𝐸𝐸⋆| = 𝜎𝜎𝑜𝑜/𝜀𝜀𝑜𝑜 and |𝐷𝐷⋆| = 1/𝐸𝐸⋆.  
Problem 5.2 
Show that the work per cycle per unit volume during dynamic tensile oscillation of 
a viscoelastic solid may be given as 𝜋𝜋𝜎𝜎𝑜𝑜𝜀𝜀𝑜𝑜 sin𝛿𝛿 (eq. (5.30)).  

Problem 5.8 
If the maximum in the 𝛼𝛼-loss modulus of polystyrene at 1 Hz occurs at 373 K, at 
what temperature would the maximum occur at 110 Hz if the activation energy 
for this relaxation is 840 kJ∙mol‒1? 

Problem 5.9 
(a) Calculate the relaxation modulus, in SI units of GPa, at 10 seconds after a 
stress has been applied to three Maxwell elements linked in parallel using the 
following model parameters:  

E1 = 0.1 GPa; 𝜏𝜏1 = 10 s 
E2 = 1.0 GPa; 𝜏𝜏2 = 20 s 
E3 = 10 GPa; 𝜏𝜏3 = 30 s 

(b) Does this model give a realistic representation of stress relaxation behavior of 
a real polymer? Explain.  

Problem 5.10 
An elastomeric cube, 2 cm on a side, is compressed to 95% of its original length by 
applying a mass of 5 kg. What force is required to stretch a strip of the same 
elastomer by 50%? The initial length of the strip is 2 cm and its original cross-
sectional area is 1 cm2.  

Problem 5.11 
If the stress at 23oC of an ideal rubber is 100 psi when stretched to twice its 
original length, what would be the stress at a 50% extension?  

Problem 5.12 
The length of an ideal rubber band is increased 100% to 12.0 cm at 23oC. Stress on 
this rubber band increases by 0.2 MPa when it is heated to 30oC at 100% 
elongation. What is its tensile modulus in MPa at 23oC when it is stretched 2%?  

◼ Chapter 11 – Polymer Processing and Rheology 
Problem 11.1 
Poly(vinyl acetate) (PVAc) is extruded at 180oC at constant temperature through 
capillary rheometer having a ram (reservoir) diameter of 0.375 in. and a capillary 
with an inside diameter of 0.041 in. and length of 0.622 in. The data provided give 
the efflux time to extrude 0.0737 in.3 at different ram loads. Using the following 
data:  

Ram load (lbf) Efflux time (min) 
97.5 5.32 
145 1.58 
217 0.31 
250 0.17 

(a) Determine the power-law parameters n and m for PVAc and state all 
assumptions used to obtain your results.  
(b) Plot the apparent viscosity, 𝜂𝜂, in units of Pa∙s versus the nominal shear rate at 
the wall, 𝛾̇𝛾𝑤𝑤 (s‒1), using logarithmic coordinates.  

Problem 11.2 
Plot the dimensionless velocity profile for polystyrene flowing in a capillary at 483 K.  

Problem 11.3 
As illustrated, two capillaries of identical length are 
connected to the same liquid reservoir in which a power-
law fluid is held. The tubes differ in radii by a factor of 2. 
When a pressure is applied to the reservoir, the 
volumetric flow rates from the two tubes differ by a 
factor of 40. What is the value of exponent n? How 
different are the nominal shear rates in the two cases?  

 

 
 



5 
© 2023 Montogue Quiz 

Problem 11.4 
Molten polystyrene flows through a circular tube at 210oC under a pressure drop 
of 1000 psi. Given that the inside diameter of the tube is 0.25 in. and that the tube 
is 3 in. in length, calculate the following:  
(a) The (nominal) shear stress at the wall in units of N m‒2.  
(b) The (nominal) shear rate at the wall in s‒1.  
(c) The volumetric flow rate in cm3∙s‒1.  
Assume that flow is isothermal, steady, and fully developed.  

Problem 11.5 
(a) Given that tensile (Trouton’s) viscosity is defined as  
 

T
ση
ε

=


 

where 𝜎𝜎 and 𝜀𝜀 are the true tensile stress and true strain, respectively, show that 

( ) ( )0
1ln ln
T

L t Lσ
η
 

= + 
 

 

when viscosity is independent of 𝜀𝜀̇ and L0 is the initial length of the sample.  
(b) A strip of polyisobutylene (800,000 molecular weight) is subjected to a fixed 
tensile load at ambient conditions. Initially, the sample is 0.699 cm wide, 6.0 cm 
long, and 0.155 cm thick. The strip is hung vertically and a mass of 75 g is attached 
to the bottom of the strip. The sample length is then recorded as a function of 
time with the following measurements:  

Time 
(min) 

1 2 3 6 12 15 18 21 24 

Length 
(cm) 

6.90 7.00 7.10 7.25 7.48 7.60 7.69 7.79 7.90 
 

Plot the data given in the form of ln(L) versus 𝜎𝜎t and determine the value of 
tensile viscosity 𝜂𝜂𝑇𝑇 in SI units. Comment on the probable phenomenological 
significance of the plot obtained by extrapolating the linear portion of the data. 

Solutions 
◼ P1.1 
The calculations are tabulated below.  

 
 

To compute the number-average molecular weight, we write 

5

1
5 4

1

5 43,800
1.142 10

i
i

n

i
i

W
M

N

=
−

=

= = =
×

∑

∑
 

To compute the weight-average molecular weight, we write  

5

1
5

1

300,000 60,000
5

i i
i

n

i
i

W M
M

W

=

=

= = =
∑

∑
 

To compute the z-average molecular weight, we write 

2 2 25
2

2 2
1

5

1

1 20,000 1 40,000 1 60,000

1 80,000 1 100,000
73,300

300,000

i i
i

z

i i
i

W M
M

W M

=

=

 × + × + ×
 

+ × + ×  = = =
∑

∑
 

Fraction No. M i W i N i = W i /M i

1 2.00E+04 1 5.000E-05
2 4.00E+04 1 2.500E-05
3 6.00E+04 1 1.667E-05
4 8.00E+04 1 1.250E-05
5 1.00E+05 1 1.000E-05

Total 3.00E+05 5 1.142E-04
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The polydispersity index is  

60,000 1.37
43,800

w

n

MPDI
M

= = =  

which indicates a fairly narrow distribution.  
◼ P1.2 
The key here is to assume that Mi ≈ Mv. The pertaining calculations are listed 
below.  

 

The number-average molecular weight is calculated as 

6

1
6 3

1

50 41,400
1.208 10

i
i

n

i
i

W
M

N

=
−

=

= = =
×

∑

∑
 

In turn, the weight-average molecular weight is 

6

6
1
6

1

7.877 10 158,000
50

i i
i

w

i
i

W M
M

W

=

=

×
= = =
∑

∑
 

The polydispersity index is  

158,000 3.82
41,400

w

n

MPDI
M

= = =  

Since the PDI is substantially greater than 1, we surmise that the polymer sample 
has a broad molecular weight distribution. 
◼ P1.4 
Part (a): The polystyrene sample introduced in Example 1.1 had the following 
molecular weight distribution.  
 

Mass Molecular Wt.  
1 g 10,000 
2 g 50,000 
2 g 100,000 

 

The z-average molecular weight is given by equation (1.1) with 𝛼𝛼 = 3:  

3
2

1
3

1

i i
i

z

i i
i

W M
M

W M

=

=

=
∑

∑
 

2 2 21 10,000 2 50,000 2 100,000 81,000
1 10,000 2 50,000 2 100,000zM × + × + ×

∴ = =
× + × + ×

 

 

Part (b): The polymer sample introduced in Example 1.2 had the continuous 
molecular weight distribution illustrated on the next page.  

Fraction W i  (g)

1 1.0 1500 6.667E-04 1500
2 5 35000 1.429E-04 175000
3 21 75000 2.800E-04 1575000
4 15 150000 1.000E-04 2250000
5 6.5 400000 1.625E-05 2600000
6 1.5 850000 1.765E-06 1275000

Total 50.0 1.208E-03 7.877E+06

𝑀𝑀𝑖𝑖 𝑁𝑖𝑖 = 𝑊𝑖𝑖 𝑀𝑀𝑖𝑖⁄ 𝑊𝑖𝑖𝑀𝑀𝑖𝑖
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To find the z-average molecular weight, we evaluate the ratio of integrals  

( ) ( )
( ) ( )

5

3

5

3

10
52 3 310 5 33
310 10
5 2 210 10 5 32
310

10

1 10 103 3
1 10 102 2

z

M dM
M

M
MMdM

 −      = = =
 −      

∫

∫
 

66,670zM∴ =  

Part (c): The z-average degree of polymerization for a Flory-Schulz distribution is 
given by the following ratio, which is analogous to equation (1.1) for discrete 
molecular weight distributions, 

( )

( )

2 3 1

1 1

2 1

1 1

(I)

X

X
z

X

X

X W X X p
X

XW X X p

∞ ∞
−

=
∞ ∞

−

=

= =
∑ ∑

∑ ∑
 

Using Mathematica, it can be shown that the denominator is such that 

 

( ) ( )
2 1

3 3
1

1 1
1 1

X

X

p pX p
p p

∞
−

=

+ +
∴ = − =

− + −
∑  

Similarly, the numerator is  

 

( ) ( )

2 2
3 1

4 4
1

1 4 1 4
1 1

X

X

p p p pX p
p p

∞
−

=

+ + + +
∴ = =

− + −
∑  

Substituting in (I) and simplifying,  

( )
( )

3 1
32

1
4

2 1

1

11 4
11

X

X
z

X

X

X p
pp pX
ppX p

∞
−

=
∞

−

=

−+ +
= = ×

+−

∑

∑
 

( )( )
21 4

1 1z
p pX

p p
+ +

∴ =
− +

 

2

2 2
1 4

1z
p pX

p
+ +

∴ =
−

 

2

2
1 4

1z
p pX

p
+ +

∴ =
−
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◼ P2.1 
The concentration of AIBN varies according to the exponential law 

[ ] [ ] ( )0 exp dI I k t= −  

Setting [𝐼𝐼]/[𝐼𝐼]0 and solving for dissociation constant kd, we obtain 

[ ] [ ] ( ) [ ]
[ ] ( )

0
0 exp expd d

I
I I k t k t

I
= − → = −  

( )1 2
1 exp
2 dk t∴ = −  

1 2
1ln
2 dk t ∴ = − 

 
 

1 20.693 dk t∴− = −  

1 20.693 dk t∴ =  

6 1

1 2

0.693 0.693 8.52 10 s
22.6 3600dk

t
− −∴ = = = ×

×
 

◼ P2.2 
Part (a): Firstly, we write the rate of initiation as given by equation (2.21),  
 
 

[ ] ( )[ ] [ ]5 62 I 2 0.30 1.2 10 7.2 10 (I)i dR f k I I− −= = × × × = ×  
 

 

At 1 min., the concentration of initiator is 

[ ] [ ] ( ) ( )5
0 exp 0.001 exp 1.2 10 60dI I k t − = − = × − × ×   

[ ] 0.00099928 MI∴ =  

so that, substituting in (I),  

( )6 9 17.2 10 0.00099928 7.195 10 M siR − − −= × × = × ⋅  

Similarly, the concentration of initiator at t = 16.6 h is 

[ ] [ ] ( ) ( ) ( )5
0 exp 0.001 exp 1.2 10 16.6 3600dI I k t − = − = × − × × ×   

[ ] 0.00048816 MI∴ =  

so that, substituting in (I),  

( )6 9 17.2 10 0.00048816 3.515 10 M siR − − −= × × = × ⋅  

Part (b): The free-radical concentration in question is given by equation (2.24):  

[ ] [ ]
( )

( )
1
2

1
1 5 2
2 1 2 9

7

0.3 1.2 10
IM I 0.00099928 7.069 10 M

7.2 10
d

x
t

f k
k

−
−

 × ×   = = × = ×   ×   

 

 

Part (c): The rate of chain propagation is given by equation (2.18),  
 

[ ][ ]IM M (II)o p xR k= ⋅  

where the monomer concentration [M] after 1 min is determined as 

[ ] [ ] [ ]( ) ( )9
0 exp IM 1.0 exp 176 7.069 10 60p xM M k t − = − ⋅ = × − × × ×   

[ ] 0.999925 MM∴ =  

so that, substituting in (II),  

( )9 6 1176 7.069 10 0.999925 1.244 10 M soR − − −= × × × = × ⋅  
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Part (d): The rate of termination is given by (2.23). Therefore, the average free-
radical lifetime 𝜏𝜏 may be written as 
 

[ ] [ ]
[ ] [ ]2

IM IM 1
2 IM2 IM

x x

t t xt xR kk
τ

⋅ ⋅
= = =

⋅⋅
 

( ) ( )7 9
1 0.982 s 982 ms

2 7.2 10 7.069 10
τ

−
∴ = = =

× × × ×
 

Part (e): The N-A average degree of polymerization can be obtained by taking the 
ratio of the rate of polymerization, which we’ve calculated in part (c), and the rate 
of termination, which is given by equation (2.23):  
 

[ ] ( ) ( )
6

2 27 9

1.244 10 173
2 IM 2 7.2 10 7.07 10

p p
n

t t x

R R
X

R k

−

−

×
= = = =

⋅ × × × ×
 

◼ P2.5 
With reference to Table 2.4, we read a chain-transfer constant C = 0.125×10‒4 for 
styrene monomer with toluene as the chain-transfer agent. Accordingly,  

[ ] 100M 0.9604
104.12

= =  

The concentration of chain-transfer agent (toluene) is  

[ ] 900SH 9.767
92.15

= =  

Further, the initial degree of polymerization is (𝑋𝑋�𝑛𝑛)0 = 1000. Using equation (2.30), 
we find that 

( )
[ ]
[ ]0

SH1 1
Mn n

C
X X

= +  

( )4 31 1 9.7670.125 10 1.127 10
1000 0.9604nX

− −∴ = + × × = ×  

( ) 131.127 10 887.3nX
−−∴ = × =  

◼ P2.6 
The kinetic equation to use in this case is (2.9), namely 

[ ]0 1nX A A kt= − +  

Solving for time, 

[ ] [ ]0
0

11 n
n

XX A A kt t
A A k

−
= − + → =

−
 

2
50 1 1630 s 27.2 min

3 10
t −

−
∴ = = =

×
 

◼ P2.9 
Setting f1 = F1 and f2 = 1 – f1, we substitute in equation (2.48) to obtain  

2
1 1 1 2

1 2 2
1 1 1 2 2 22

r f f fF
r f f f r f

+
=

+ +
 

( )
( ) ( )

2
1 1 1 1

1 22
1 1 1 1 2 1

1

2 1 1

r f f f
f

r f f f r f

+ × −
∴ =

+ × − + × −
 

Referring to Table 2.6, we see that the reactivity ratios for styrene/acetonitrile 
copolymerization are r1 = 0.29 and r2 = 0.02; therefore,  
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( )
( ) ( )

2
1 1 1

1 22
1 1 1 1

0.29 1

0.29 2 1 0.02 1

f f f
f

f f f f

+ −
=

+ − + −
 

We can solve this equation for f1 using MATLAB’s fsolve command,  

>> copol = @(f1) f1 - (0.29*f1^2 + f1*(1 - f1))/(0.29*f1^2 + 2*f1*(1 
- f1) + 0.02*(1-f1)^2); 
x0 = 0.1; 
fsolve(copol,x0) 

ans = 
    0.5799 

As shown, F1 = f1 = 0.580.  
◼ P3.3 
Part (a): The form of the Mark-Houwink-Sakurata equation provided in the 
problem statement is such that a = 0.5 in equation (3.101). As noted on page 140, 
this indicates that the solvent at hand is a 𝜃𝜃 solvent and hence the second or 
greater virial coefficients in equation (3.85) all equal zero:  
 

2
2 3

1 ...
n

RTc A c A c
M

Π = + + +
 
 
 

 

n

RTc
M

∴Π =  

Substituting the given data into this expression yields the osmotic pressure Π:  

( ) 382.06 318 0.5 100
1.305 10 atm

100,000
−× ×

Π = = ×  

Part (b): Here, all we have to do is solve hydrostatic equilibrium equation (3.88) 
for ℎ, 

gh h
g

ρ
ρ
Π

Π = → =  

( )31.305 10 1,013,250
1.7155 cm

0.7857 981
h

−× ×
∴ = =

×
 

Note that we have used the conversion 1 atm = 1,013,250 dyn/cm2.  
Part (c): This is a simple exercise. Referring to Table 3.3, we read a solubility 
parameter 𝛿𝛿 = 9.92 (cal∙cm‒3)1/2 for polysulfone and 𝛿𝛿 = 9.92 (cal∙cm‒3)1/2 for 
methylene chloride. The Flory interaction parameter is proportional to the 
difference between solubility parameters of polymer and solvent; since these are 
equal in the case at hand, we conclude that 𝜒𝜒12 = 0.  
Part (d): Since the solubility parameters are similar (identical, in fact), we surmise 
that methylene chloride is a good solvent for polysulfone.   
◼ P3.5 
Part (a): The viscosity can be written on the basis of time data:  

s s
i

s s

t t
t

η ηη
η
− −

= ≈  

Using ts = 65.8 s as the reference time (since this is the time for which c = 0), we 
have 

65.8
65.8i

tη −
≈  

Then, we divide this expression by 
concentration c to obtain the 
reduced viscosity. The calculations 
are summarized to the side. The 
viscosity plot is also shown next.   

 

0 65.8 0.000
0.54 101.2 0.538 0.996
1.08 144.3 1.193 1.105
1.62 194.6 1.957 1.208
2.16 257 2.906 1.345

c (g/dL) t (s) 𝜼𝒊 𝜼𝒊/c 
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Part (b): The reduced viscosity 𝜂𝜂𝑖𝑖/c and the concentration c are related by  
 

[ ] [ ]2i
Hk c

c
η η η= +  

Clearly, the line described by the equation above has vertical intercept equal to 
the intrinsic viscosity [𝜂𝜂]; since the line obtained in the previous part has intercept 
equal to 0.876, it immediately follows that  

[ ] 10.876 dL gη −= ⋅  

In turn, the slope of the line equals kH[𝜂𝜂]2, so that  

[ ]2 0.2131Hk η =  

[ ]2 2
0.2131 0.2131 0.278

0.876Hk
η

∴ = = =  

Part (c): All we have to do is substitute the pertaining data into the MHS equation 
and solve for molecular weight 𝑀𝑀�𝑣𝑣:  
 

[ ] ( )4 0.7250.876 1.1 10a
v vKM Mη −= → = × ×  

1
0.725

4
0.876 240,000

1.1 10vM −
 ∴ = = × 

 

◼ P3.7 
Evoking the MHS equation, the so-called hydrodynamic volume [𝜂𝜂] × M can be 
restated as 

[ ] 1a a
v v v vM KM M KMη += × =  

If this product is to be conserved, we may write 

( ) ( )1 1
PS PMMA

a a
v vKM KM+ +=  

( ) ( ) ( )1 0.7833 4 3 1 0.717.54 10 5 10 8.12 10 vM
+− − +∴ × × × = × ×  

( )6 3 1.711.80 10 8.12 10 vM−∴ × = × ×  

1
6 1.71

3
1.80 10 76,000
8.12 10vM −

 ×
∴ = =  × 

 

◼ P3.9 
The first step is to compute coefficient K, which is given by equation (3.92):  

22 2
0
4

2

A

n dnK
dcN

π
λ

 =  
 

 

( ) ( )
( )

2 2 22 8
423 8

2 1.4199 6.297 10 1.635 10
6.02 10 6328 10

K π − −

−

×
∴ = × × = ×

× × ×
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The data are processed and plotted below.  

 

 

Referring to equation (3.100), we see that the molecular weight can be 
determined from the intercept of the linear fit, which is 3.199×10‒6, hence, 

6
6

1 13.199 10
3.199 10n

n
M

M
−

−= × → =
×

 

313,000nM∴ =  

In turn, the second virial coefficient follows from the slope of the linear fit:  

4
4

2 2
5.291 102 5.291 10

2
A A

−
− ×

= × → =  

4 2
2 2.65 10 mL mol gA − −∴ = × ⋅ ⋅  

◼ P4.2 
The initial volume of the strip is 10 × 5 × 2 = 100 cm3. The true strain in the 
longitudinal direction is  

10.5ln ln 0.0488
10L

o

L
L

ε
   = = =   

  
 

Assuming that the material is isotropic and taking a Poisson ratio v = 0.35 from 
Table 4.13, we may write, for the transverse strain,  

0 0
ln ln 0.35 0.0488 0.0171T L

W T
W T

ε νε
   

= = = − = − × = −   
   

 

so that the final dimensions are 

0.0171 0.0171
0 5 4.915 cmW W e e− −= × = × =  

0.0171 0.0171
0 2 1.966 cmT T e e− −= × = × =  

and the final volume is 

310.5 4.915 1.966 101.46 cmV = × × =  

This corresponds to a change in volume of 1.46%.  

◼ P4.3 
Assuming that Avrami kinetics apply, the percent crystallinity after 10 s is 
calculated to be  

5.03E-04 2.39E-06 3.44E-06
1.01E-03 4.40E-06 3.74E-06
1.51E-03 6.06E-06 4.07E-06
2.01E-03 7.90E-06 4.17E-06
2.52E-03 9.02E-06 4.56E-06

c (g/mL) R(𝜃𝜃) (cm-1) Kc/R(𝜃𝜃)
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( ) ( )21 exp 1 exp 0.01 10 0.632 63.2%nktφ = − − = − − × = =  

◼ P4.4 
At 100% deformation, the longitudinal strain is 

( ) ( ) ( )0 0 0ln ln 2 ln 2 0.693L L L Lε = = = =  

Taking a Poisson ratio 𝜈𝜈 = 0.49 for natural rubber (Table 4.13), the volumetric 
strain may be obtained with equation (4.45),  

( ) ( )
0

1 2 1 2 0.49 0.693 0.0139 1.39%V
V

ν ε∆
= − = − × × = =  

◼ P4.7 
Teflon thickens upon elongation due to a rotation of crystals perpendicular to the 
draw direction.  
◼ P4.8 
Part (a): Solving equation (4.6) for 𝜌𝜌 and taking densities 𝜌𝜌𝑎𝑎 = 1.335 g/cm3 and 𝜌𝜌𝑐𝑐 
= 1.515 g/cm3 from Table 4.5, we may write 

( )a
C a a

C a

ρ ρφ ρ φ ρ ρ ρ
ρ ρ
−

= → = − +
−

 

( ) 30.2 1.515 1.335 1.335 1.371 g/cmρ∴ = × − + =  

Part (b): The specific heat increment can be obtained by solving equation (4.26) 
for ΔCp:  

( ) ( )( )am
am

1 1 (I)p
p p

p

C
C C

C
φ φ

∆
= − → ∆ = − ∆

∆
 

But ΔCp × Tg = 115 J∙g‒1 (page 175) and Tg = 69oC = 342 K (Table 4.3), so that 

( ) ( )am am

115115p g p
g

C T C
T

∆ × = → ∆ =  

( ) 1 1
am

115 0.336 J g K
342pC − −∴ ∆ = = ⋅ ⋅  

Substituting in (I) brings to 

( )( ) ( ) 1 1
am

1 1 0.2 0.336 0.269 J g Kp pC Cφ − −∆ = − ∆ = − × = ⋅ ⋅  

0.269 JpC∴∆ = 1 1 1 calg K
4.18 J

− −⋅ ⋅ × 1 10.0644 cal g K− −= ⋅ ⋅  

Part (c): We can determine the heat of fusion ΔQ of a semicrystalline polymer 
using equation (4.25):  

(II)f
f

Q Q H
H

φ φ∆
= → ∆ = ×∆
∆

 

Referring to Table 4.4, the enthalpy of fusion for a repeating unit in poly(ethylene 
terephthalate) is 6.431 kcal∙mol‒1. Substituting in (II) brings to 

10.2 6.431 1.286 kcal molQ −∆ = × = ⋅  

1.286 kcalQ∴∆ = 1 kJmol 4.18
kcal

−⋅ × 15.375 kJ mol−= ⋅  

◼ P4.9 
Part (a): Noting that the degree of polymerization is 7 and a styrene oligomer has 
molar mass of 104, we may write 
 

7 104 728nM = × =  

The glass-transition temperature can be estimated with equation (4.27); 
parameters 𝑇𝑇𝑔𝑔∞ = 373 K and K = 1.2×105 are read from Table 4.11. Thus,  
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,1
120,000373 208 K

728g g
n

KT T
M

∞= − = − =  

Part (b): We first estimate the glass transition temperature of the polystyrene 
sample:  

,2
120,000373 372 K
100,000g g

n

KT T
M

∞= − = − =  

Since Tg,1 and Tg,2 are spaced far apart, we can use equation (4.34) to estimate the 
glass-transition temperature of the polystyrene mixture:  

( )
( )
2 ,2 ,1

,1 1 ,2 ,1 2

ln
ln g gg

g g g

W T TT
T W T T W

 
=   + 

 

( )
( )

0.8 ln 372 208
ln 0.402

208 0.2 372 208 0.8
gT  ×

∴ = =  × + 
 

0.402

208
gT

e∴ =  

0.402208 311 KgT e∴ = × =  

◼ P4.10 
Part (a): The nominal stress can be found with Hooke’s law:  

( )9 73 10 0.01 3 10 Pa 30 MPaEσ ε= = × × = × =  

Part (b): The true stress is  
 

( ) ( )1 30 1 0.01 30.3 MPaTσ σ ε= + = × + =  

Part (c): The change in volume can be determined with equation (4.45),  

( ) ( )0
0

1 1 (I)TVV V
V

ν ε ν ε∆
∆ = − 2 → = − 2  

The true strain is 

1.01ln 0.00995
1.0

Tε  = = 
 

 

Also, the Poisson ratio for polystyrene may be taken as 0.35 (Table 4.13). 
Substituting in (I) brings to 

( )
0

1 0.35 0.00995 0.00299 0.3%V
V
∆

= − 2× × = ≈  

◼ P5.1 
The absolute value of the complex modulus 𝐸𝐸⋆ is given by 

( ) ( )2 2E E E∗ ′ ′′= +  

Replacing the storage modulus with equation (5.14) and the loss modulus with 
equation (5.15), we obtain 

2 2

cos sin
o o

o oE σ σδ δ
ε ε

∗       
= +                  

 

2 2

1
cos sin

o

oE σ δ δ
ε

∗

=

 
∴ = × +  

 
  

o

oE σ
ε

∗  
∴ =   

 
 

Proceeding similarly with the dynamic tensile compliance, we may write 

2*D D D∗ ∗× =  
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where 𝐷𝐷∗ = 𝐷𝐷′ ‒ 𝑖𝑖𝑖𝑖′′ and 𝐷𝐷�⋆ = 𝐷𝐷′ + 𝑖𝑖𝑖𝑖′′, so that  

( ) ( )
2* 2 2 2" " "D D iD D D D i D′ ′ ′= − × + = −  

2* 2 2" (I)D D D′∴ = +  

The storage compliance is given by equation (5.20),  

cos
o

oD ε δ
σ

 
′ =   

 
 

while the loss compliance is given by equation (5.21),  

" sin
o

oD ε δ
σ

 
=   
 

 

Substituting in (I) brings to 

* 2 2"D D D′= +  

( )
2

* 2 2

1

sin cos
o o

o oD ε εδ δ
σ σ

=

 
∴ = + =  

  
 

* 1D
E∗

∴ =  

◼ P5.2 
The work W may be obtained by integrating the dynamic stress 𝜎𝜎⋆ over a full cycle 
(i.e., from 0 to 2𝜋𝜋):  

2

0
W d

π
σ ε∗ ∗= ∫  

But 𝜎𝜎⋆ = 𝜎𝜎𝑜𝑜sin(𝜔𝜔t + 𝛿𝛿) and 𝜀𝜀⋆ = 𝜀𝜀𝑜𝑜sin(𝜔𝜔t), giving d𝜀𝜀⋆ = 𝜀𝜀𝑜𝑜cos(𝜔𝜔t)d(𝜔𝜔t). Substituting 
above,  

( ) ( ) ( )2

0
sin coso oW t t d t

π
σ ε ω δ ω ω= +∫  

Using the trigonometric identity 

( ) ( ) ( ) ( ) ( )sin sin cos cos sint t tω δ ω δ ω δ+ ≡ +  

we obtain 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2
0 0

cos sin cos sin cos (I)o o
W t t d t t d t

π π
δ ω ω ω δ ω ω

σ ε
= +∫ ∫  

Evaluating the first integral in (I),  

( ) ( ) ( ) ( )22

0

2

0

cos 2
sin cos

2

t

t

t
t t d t

π
ω π

ω

ω
ω ω ω

=

=

= −∫  

( ) ( ) ( ) ( ) ( ) ( )2 22

0

cos 4 cos 0
sin cos 0

2 2
t t d t d t

π π
ω ω ω ω

 
= − − = 

  
∫  

To evaluate the second integral in (I), note first that  

( ) ( )2cos 2 2cos 1θ θ≡ −  

or 

( ) ( )2 cos 2 1cos
2 2
θ

θ = +  

which leads to the tabulated integral 
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( ) ( )2 sin 2
cos

4 2
d

θ θθ θ = +∫  

In the case at hand,  

( ) ( ) ( ) 2
2 2
0

0

sin 2
cos

4 2

t

t

t tt d t
ω π

π

ω

ω ωω ω
=

=

 
= + 
 

∫  

( ) ( ) ( ) ( )2 2
0

sin 4 sin 02 0cos
4 2 4 2

t d t
π π πω ω π

   
∴ = + − + =   

   
∫  

Gleaning our results in (I),  

( ) ( )cos 0 sino o
W δ δ π

σ ε
= × + ×  

( )sino oW πσ ε δ∴ =  

as we intended to show. 

◼ P5.8 
This is a straightforward application of equation (5.37), which can be restated as 

1

2 1 2

1 1ln aEf
f R T T

    = − −    
    

 

so that  

2

1 840,000 1 1ln
110 8.314 373 T

    ∴ = − −    
    

 

2

101,0344.70 270.87
T

∴− = − +  

2
101,034 379.6 K

270.87 4.70
T∴ = =

−
 

◼ P5.9 
Part (a): The relaxation modulus is given by the summation  
 

( ) ( )
3

1
expi i

i
E t E t τ

=
= −∑  

( ) 10 10 100.1 exp 1.0 exp 10 exp
10 20 30

E t      ∴ = × − + × − + × −     
     

 

( ) 7.809 GPaE t∴ =  

 

Part (b): The value is a bit high. In general, the Maxwell-Wichert model is a good 
representation of the behavior of stress relaxation modulus, particularly as the 
number of Maxwell elements increases. 

◼ P5.10 
The first step is to estimate the bulk modulus K, namely 

0

pK
V V
∆

=
∆

 

Here, the hydrostatic pressure is, in CGS units,  

( )
2 2

2 2

cm5000 g 981
s 204,000 dyn/cm

6 2 cm
p

×
∆ = =

×
 

(Note that a factor of 6 was included because the cube has 6 faces of 22 cm2 area 
each.) The initial volume is Vo = 23 = 8 cm3 and the final volume as the cube is 
deformed to 95% of its length is 0.953 × 23 = 6.86 cm3. The variation in volume 
then becomes ΔV = 8 – 6.86 = 1.14 cm2 and the bulk modulus is determined as  
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( )
6 2

0

204,000 1.43 10 dyn/cm
1.14 8.0

pK
V V
∆

= = = ×
∆

 

With reference to Table 4.13, the Poisson ratio for natural rubber may be taken as 
0.49. Combining equations (4.54) and (4.56), we can relate the bulk and shear 
moduli:  

( )

( )

( )
( )

2 1
2 1
3 1 2

3 1 2

E G
G

KEK

ν
ν
ν

ν

 = +
+ → = = − −

 

( )
( )

3 1 2
2 1

K
G

ν
ν

−
∴ =

+
 

( ) ( )
( )

6
2

3 1 2 0.49 1.43 10
28,800 dyn/cm

2 1 0.49
G

× − × × ×
∴ = =

× +
 

With an extension ratio 𝜆𝜆 = 1.5, the nominal stress is given by equation (5.157),  

2
2 2

1 128,800 1.5 30,400 dyn/cm
1.5of G λ

λ
∗    = − = × − =   

   
 

If the cross-sectional area of the elastomer equals 1 cm2, the corresponding force 
is 30,400 × 1.0 = 30,400 dyn = 0.304 N.  
◼ P5.11 
With 𝜆𝜆 = 2 (i.e., with the rubber specimen stretched to twice its original length), 
we can use equation (5.157) to estimate the shear modulus Go,  

2 2
1

1o o
ff G Gλ

λ λ λ

∗
∗  = − → =  − 

 

2
100 57.1 psi

2 1 2oG∴ = =
−

 

Accordingly, with 𝜆𝜆 = 1.5 (i.e., with 50% extension), the corresponding stress is 

2
157.1 1.5 60.3 psi

1.5
f ∗  = × − = 

 
 

◼ P5.12 
Let 𝜎𝜎1 denote the stress of the rubber band at 100% extension and 23oC; in turn, 
let 𝜎𝜎2 denote the stress of the rubber band at 100% extension and 30oC. From the 
problem statement, 𝜎𝜎2 = 𝜎𝜎1 + 0.2, so that  

( )1 2 1
296 296 0.2
303 303

σ σ σ   = = × +   
   

 

1 10.977 0.195σ σ∴ = +  

10.023 0.195σ∴ =  

1
0.195 8.48 MPa
0.023

σ∴ = =  

We can substitute this stress value and the extension ratio 𝜆𝜆 = 2 into equation 
(5.157) and solve for the shear modulus:  

2 2
1

1o o
ff G Gλ

λ λ λ

∗
∗  = − → =  − 

 

2
8.48 4.85 MPa

2 1 2oG∴ = =
−

 

Therefore, for an extension of 2%, the stress 𝜎𝜎3 is  

3 2
14.85 1.02 0.285 MPa

1.02
σ  = × − = 

 
 

and the tensile modulus is estimated to be 
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3 0.285 14.3 MPa
0.02

E σ
ε

= = =  

◼ P11.1 
Part (a): Firstly, the ram area is 𝜋𝜋 × 0.3752/4 = 0.110 in.2. The pressure drop can be 
found by dividing the ram load P by the ram area,  

0.110
Pp∆ =  

The wall shear in the capillary is given by 

( )0.041 2
0.0165

2 2 0.622w
pR p p

L
τ

×∆∆
= = = ∆

×
 

The flow rate is obtained by dividing the extrusion volume (= 0.0737 in.3) by the 
efflux time Δt,  

 30.0737 0.0737 in /min
Efflux time

Q
t

 = =  ∆
 

We also need the apparent shear rate 𝜙𝜙, namely 

( )3 3
4 4 148,000

0.041 2
Q Q Q
R

φ
π π

×
= = =

×
 

A plot of log(𝜏𝜏𝑤𝑤)  versus log(𝜙𝜙) will yield a straight line with n as the slope and 
log(m’) as the intercept, where  

4 (I)
3 1

nnm m
n

 ′=  + 
 

The data are processed and plotted below.  

 

 

The slope of the linear fit is n = 0.271 and the intercept is log10 m’ = 0.281, so that 
m’ = 100.281 = 1.909. Substituting in (I) brings to 

0.271
0.2714 0.2711.909 1.661 psi-min

3 0.271 1
m × = × = × + 

 

0.271 0.271
0.271 0.271

0.271
1 MPa 60 sec1.661 psi-min 0.0347 MPa-s

145.038 psi 1 min
m∴ = × × =  

The usual assumptions are fully-developed, isothermal, laminar, steady-state, and 
incompressible flow; negligible body forces, no slip at the wall, no viscous heating, 
and a running fluid with viscosity that is independent of pressure.  

97.5 5.32 886.36 14.63 1.17 0.0139 2050.301 3.312
145 1.58 1318.18 21.75 1.34 0.0466 6903.544 3.839
217 0.31 1972.73 32.55 1.51 0.2377 35185.806 4.546
250 0.17 2272.73 37.50 1.57 0.4335 64162.353 4.807

Ram load 
(lb)

Efflux time 
(min) 𝜟𝒑 (psi) 𝝉𝒘 (psi) log(𝝉𝒘) 𝝓 (min-1) log(𝝓)𝑸 ( in³ min-1)
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Part (b): The shear rate at the wall, 𝛾̇𝛾𝑤𝑤, is related to the apparent shear rate, 𝜙𝜙, by 
equation (11.40),  

3 1
4w
n

n
γ φ+

=  

Using n = 0.271 as determined in part (a), we obtain 

3 0.271 1 1.673
4 0.271wγ φ φ× +

= =
×

  

Then, the apparent viscosity 𝜂𝜂 can be obtained by dividing the wall shear by the 
shear rate, 

1.673
w w

w

τ τη
γ φ

= =


 

 

 

With reference to equation (11.14), the apparent viscosity varies with shear rate 
according to 

( )1
10 10 10log 1 log lognm n mη γ η γ−= → = − +   

This means that a plot of log10 𝜂𝜂 versus log10 𝛾̇𝛾 yields a straight line. The pertaining 
logarithms have been computed in the previous table; we proceed to plot these 
data, as shown below. The pertaining linear fit is found to be 

10 10log 0.7294log 4.5399η γ= − +  

 

◼ P11.2 
The axial velocity profile for a non-Newtonian Poiseuille flow has the 
dimensionless form given in equation (11.27),  

( )1

max 1
n n

z

z

u r
Ru

+
 = −  
 

 

57.17 1.76 100836 1763.8 3.25
192.49 2.28 149961 779.0 2.89
981.10 2.99 224424 228.7 2.36
1789.06 3.25 258554 144.5 2.16

𝛾̇𝛾𝑤𝑤  (s-1) 𝜏𝜏𝑤𝑤  (Pa) 𝜂𝜂 (Pa�s)log(𝛾̇𝛾𝑤𝑤) log(𝜂𝜂)
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For polystyrene at 210oC (= 483 K), an exponent n = 0.25 can be gleaned from 
Table 11.1, so that  

( )1 0.25 0.25

max 1z

z

u r
Ru

+
 = −  
 

 

5.0

max 1z

z

u r
Ru

 ∴ = −  
 

 

This velocity profile is plotted for r ∈ [0, 1] as the red curve below. The gray curve 
is the corresponding profile for a Hagen-Poiseuille (i.e., parabolic) flow.    

 

◼ P11.3 
The volumetric flow rate Q for flow of a power-law fluid in a capillary is given by 
equation (11.28),   

13

1 3 2

nn R R pQ
n mL

π  ∆ =    +   
 

Assuming that radius is the only parameter that changes from one capillary to 
another, we may write the ratio 

1313
22 22

13
1 11 1

n n

n
R RQ R

Q RR R

+
 

= =  
 

 

13
40 2 n

+
∴ =  

Applying logarithms and solving for n,  
13

ln 40 ln 2 n
+

=  

1ln 40 3 ln 2
n

 ∴ = + × 
 

 

1 ln 403
ln 2n

∴ + =  

1 ln 40 3
ln 2n

∴ = −  

1ln 40 3 0.431
ln 2

n
−

 ∴ = − = 
 

 

Now, the wall shear is given by equation (11.40),  

3
3 1 3 1 4

4 4w
n n Q

n n R
γ φ

π
+ +  = =  

 
  

Hence, we have the ratio 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

(r/R)

0
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1

u
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,1

,2

3 1
4w

w

n
nγ

γ

+

=




1
3
1

4

3 1
4

Q
R

n
n

π

 
 
 

+

3
2 1

1 22
3
2

4
R Q
R QQ

Rπ

   
=         

 
 

 

( )3,1

,2

12 0.2
40

w

w

γ
γ

 ∴ = × = 
 




 

The larger capillary has wall shear 5 five times greater than the smaller one.  

◼ P11.4 
Part (a): The first step is to convert the pressure drop from units of psi to pascals,  
 

1000 psip∆ =
6894.76 Pa

psi
× 66.90 10 Pa= ×  

Then, the wall shear stress is given by equation (11.38),  

( ) ( )60.25 2 6.90 10
144,000 Pa

2 2 3.0w
R p

L
τ

× ×∆
= = =

×
 

2144,000 N mwτ
−∴ = ⋅  

Part (b): For polystyrene at 210oC, we can refer to Table 11.1 and read parameters 
m = 2.38×104 and n = 0.25. Then, solving the shear stress-shear rate relationship 
for 𝛾̇𝛾𝑤𝑤, we obtain 

1
nn w

w w wm
m
ττ γ γ  = → =  
 

   

1
0.25 1144,000 1340 s

23,800wγ
− ∴ = = 

 
  

Part (c): Noting that R = 0.125 in. = 0.00318 m and L = 3 in. = 0.0762 m, we appeal 
to equation (11.28) and write 

( )
1

1 6 0.253 3 0.00318 6.90 100.25 0.00318
1 3 2 1 3 0.25 2 23,800 0.0762

nn R R pQ
n mL

π π  × ×∆ × ×   = = ×   + + × × × 
 

 

5 3 31.93 10 m /s 19.3 cm /sQ −∴ = × =  

◼ P11.5 
Part (a): We can write the tensile stress-tensile strain rate for a Troutonian 
polymer as 

T
d
dt
εσ η=  

Separating variables and noting that true tensile strain 𝜀𝜀 = ln(L/L0),  

T T
d dt d
dt
εσ η σ η ε= → =  

( )0lnTdt d L Lσ η  ∴ =    

Integrating,  

( )0lnTt L Lσ η=  

Adjusting,  

( )0ln
T

t L Lσ
η

=  
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( ) ( )0ln ln
T

t L Lσ
η

∴ = −  

( ) ( )0
1ln ln
T

L t Lσ
η
 

∴ = + 
 

 

as we intended to show.  
Part (b): The tensile stress is given by the ratio 𝜎𝜎 = F/A, where weight F = 75 g × 
981 cm/s2 = 73,600 dyn. The cross-sectional area A can be obtained by noting that 
the initial volume V = 6.0 × 0.699 × 0.155 = 0.650 cm3, so that A = 0.650/L at any 
point of the elongation process. The data are processed below.  

 

A quick visualization of the ln(L) versus 𝜎𝜎t data reveals that a linear trend only 
holds for the five or six lowermost points, which are highlighted in bold in the 
foregoing table. Accordingly, we proceed to plot and fit the six lowermost points; 
the line thus obtained is shown next.  

 

The line has slope equal to 8.556×10‒11, which, comparing to the linear equation 
derived in part (a), indicates that  

11
11

1 18.556 10
8.556 10T

T
η

η
−

−= × → =
×

 

10 1 11.17 10 g cm sTη
− −∴ = × ⋅ ⋅  

But 1 g∙cm‒1∙s-1 = 1 poise = 0.1 Pa∙s, so that  

10 91.17 10 P 1.17 10 Pa s 1.17 GPa sTη = × = × ⋅ = ⋅  

Note further that the intercept of the line is 1.959, which, comparing with the 
expression derived in part (a), indicates that 

( ) 1.959
0 0ln 1.959L L e= → =  

0 7.092 cmL∴ =  

This is substantially different from the actual L0 of 6.0 cm. The difference is due to 
initial elastic deformation (stretching of coiled chains) prior to viscous flow (i.e., 
chain slippage).  
 

 

Time (min) Length (cm) ln(L) A (cm²) σ (dyn/cm²) σt (g cm-1 s-1)
1 6.9 1.932 0.0942 7.813E+05 4.688E+07
2 7 1.946 0.0929 7.926E+05 9.511E+07
3 7.1 1.960 0.0915 8.039E+05 1.447E+08
6 7.25 1.981 0.0897 8.209E+05 2.955E+08
12 7.48 2.012 0.0869 8.470E+05 6.098E+08
15 7.6 2.028 0.0855 8.606E+05 7.745E+08
18 7.69 2.040 0.0845 8.707E+05 9.404E+08
21 7.79 2.053 0.0834 8.821E+05 1.111E+09
24 7.9 2.067 0.0823 8.945E+05 1.288E+09
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