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 Quiz EL107 
Power System Stability 

 

 

Lucas Monteiro Nogueira 
 
 

A PROBLEMS 

B Problem 1 (Saadat, 1999, w/ permission)  

A four-pole, 60-Hz synchronous generator has a rating of 200 MVA, 
0.8 power factor lagging. The moment of inertia of the rotor is 45,100 kg∙m2. 
Determine the inertia constants M and H.  

B Problem 2 (Nasar, 1990, w/ permission)   

Problem 2.1: A 60-Hz, four-pole turbogenerator rated 500 MVA, 22 kV 
has an inertia constant of H = 7.5 MJ/MVA. Find the kinetic energy stored in 
the rotor at synchronous speed and the angular acceleration if the electrical 
power developed is 400 MW when the input less the rotational losses is 
740,000 hp. 

Problem 2.2: The generator of Problem 2.1 is delivering rated 
megavolt-amperes at 0.8 power factor lag when a fault reduces the electric 
power output by 40%. Determine the accelerating torque in newton-meters 
at the time the fault occurs. Neglect losses and assume constant power 
input to the shaft.  

B Problem 3 (Saadat, 1999, w/ permission)   

Problem 3.1: The swing equations of two interconnected synchronous 
machines are written as 
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Denote the relative power angle between the two machines by 𝛿𝛿 = 𝛿𝛿1 
- 𝛿𝛿2. Obtain a swing equation equivalent to that of a single machine in terms 
of 𝛿𝛿, and show that 
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‘ Problem 3.2: Two synchronous generators represented by a constant 
voltage behind transient reactance are connected by a pure reactance X = 0.3 
per unit, as shown in the following figure. The generator inertia constants 
are 𝐻𝐻1 = 4.0 MJ/MVA and 𝐻𝐻2 = 6.0 MJ/MVA, and the transient reactances are 
𝑋𝑋1′  = 0.16 and 𝑋𝑋2′  = 0.20 per unit. The system is operating in the steady state 
with 𝐸𝐸1′  = 1.2, 𝑃𝑃𝑚𝑚,1 = 1.5 and 𝐸𝐸2′  = 1.1, 𝑃𝑃𝑚𝑚,2 = 1.0 per unit. Denote the relative 
power angle between the two machines by 𝛿𝛿 = 𝛿𝛿1 − 𝛿𝛿2. Referring to Problem 
3.1, reduce the two-machine system to an equivalent one-machine against 
an infinite bus. Find the inertia constant of the equivalent machine, the 
mechanical input power, and the amplitude of its power angle curve, and 
obtain the equivalent swing equation in terms of 𝛿𝛿. 
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B Problem 4 (Saadat, 1999, w/ permission)  

Problem 4.1: A 60-Hz synchronous generator has a transient 
reactance of 0.2 per unit and an inertia constant of 5.66 MJ/MVA. The 
generator is connected to an infinite bus through a transformer and a double 
circuit transmission line, as shown below. Resistances are neglected and 
reactances are expressed on a common MVA base and are marked on the 
diagram. The generator is delivering a real power of 0.77 per unit to bus bar 1. 
Voltage magnitude at bus 1 is 1.1. The infinite bus voltage V = 1.0∠0o per unit. 
Determine the generator excitation voltage and obtain the swing equation. 

 

Problem 4.2: The machine in the power system of Problem 4.1 has a 
per unit damping coefficient of D = 0.15. The generator excitation voltage is 
E’ = 1.25 per unit and the generator is delivering a real power of 0.77 per unit 
to the infinite bus at a voltage of V = 1.0 per unit. Write the linearized swing 
equation for this power system. Use equations 2 and 3 in the Additional 
Information section to find the expressions describing the motion of the 
rotor angle and the generator frequency for a small disturbance of Δ𝛿𝛿 = 15o. 
Use MATLAB to obtain plots of rotor angle and frequency.  

Problem 4.3: The generator of Problem 4.1 is operating in the steady 
state at 𝛿𝛿0 when the input power is increased by a small amount Δ𝑃𝑃 = 0.15 per 
unit. The generator excitation and the infinite bus voltage are the same as 
before. Use equations 4 and 5 to establish the motion of the rotor angle and 
the generator frequency for a small disturbance of Δ𝑃𝑃 = 0.15 per unit. Use 
MATLAB to obtain the plots of rotor angle and frequency. 

Problem 4.4: The machine of Problem 4.1 is delivering a real power 
input of 0.77 per unit to the infinite bus at a voltage of 1.0 per unit. The 
generator excitation voltage is E’ = 1.25 per unit. Use eacpower(Pm , E, V, X) 
(download the .m file in our website) to find the maximum power input that 
can be added without loss of synchronism. Repeat the calculation with zero 
initial power input, assuming the generator internal voltage remains 
constant at the value computed in the first situation.  

B Problem 5 (Kothari and Nagrath, 2003, w/ permission)   

A synchronous motor is drawing 30% of the maximum steady state 
power from an infinite bus bar. If the load on motor is suddenly increased by 
100 percent, would the synchronism be lost? If not, what is the maximum 
excursion of torque angle about the new steady state rotor position? Use the 
equal area criterion. 

 

B Problem 6 (Grainger and Stevenson Jr., 1994)  
A generator having H = 6.0 MJ/MVA is delivering power of 1.0 per unit 

to an infinite bus through a purely reactive network when the occurrence of 
a fault reduces the generator output power to zero. The maximum power 
that could be delivered is 2.5 per unit. When the fault is cleared the original 
network conditions again exist. Using equations 6 and 7 in the Additional 
Information section, determine the critical clearing angle and critical 
clearing time. 

B Problem 7 (Kothari and Nagrath, 2003, w/ permission) 
A synchronous generator is feeding 250 MW to a large 50 Hz network 

over a double circuit transmission line. The maximum steady-state power 
that can be transmitted over the line with both circuits in operation is 500 
MW or 350 MW with any one of the circuits. A solid three-phase fault 
occurring at the network-end of one of the lines causes it to trip. Estimate 
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the critical clearing angle in which the circuit breakers must trip. Estimate 
the critical clearing angle in which the circuit breakers must trip so that 
synchronism is not lost. What further information is needed to estimate the 
critical clearing time?  

 

B Problem 8 (Kothari and Nagrath, 2003, w/ permission) 
The transfer reactances between a generator and an infinite bus bar 

operating at 200 kV under various conditions on the interconnector are: 

 

 

If the fault is cleared when the rotor has advanced 60 degrees 
electrical from its prefault position, determine the maximum load that could 
be transferred without loss of stability. Try solving the problem without 
equation 8 in the Additional Information section.  

 

B Problem 9 (Kothari and Nagrath, 2003, w/ permission) 
A 60-Hz generator is supplying 60% of Pmax to an infinite bus through 

a reactive network. A fault occurs which increases the reactance of the 
network between the generator internal voltage and the infinite bus by 
400%. When the fault is cleared the maximum power that can be delivered is 
80% of the original maximum value. Determine the critical clearing angle for 
the condition described. Use equation 8 in the Additional Information 
section.  

B Problem 10 (Nasar, 1990, w/ permission) 
Problem 10.1: The kinetic energy stored in the rotor of a 50-MVA, six-

pole, 60-Hz synchronous machine is 200 MJ. The input to the machine is 25 
MW at a developed power of 22.5 MW. Calculate the accelerating power and 
the acceleration. 

Problem 10.2: If the acceleration of the machine of Problem 10.1 
remains constant for ten cycles, what is the power angle at the end of the 
ten cycles? 

Problem 10.3: The generator of Problem 10.1 has an internal voltage of 
1.2 pu and is connected to an infinite bus operating at a voltage of 1.0 pu 
through a 0.3-pu reactance. A three-phase short circuit flows on the line. 
Subsequently, circuit breakers operate and the reactance between the 
generator and the bus becomes 0.4 pu. Calculate the critical clearing angle.  

Problem 10.4: Plot the swing curve for the machine considered in 
Problems 10.1 to 10.3. 

Problem 10.5: From the results of Problems 10.3 and 10.4, find the 
critical clearing time in cycles for an appropriately set circuit breaker. 

A ADDITIONAL INFORMATION 
Equations 
1  Linearized swing equation 

2
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+ + ∆ =  

where Δ𝛿𝛿 is a small disturbance in power angle, t is time, 𝜁𝜁 is damping ratio, 
and 𝜔𝜔𝑛𝑛 is the angular frequency of oscillation.  
2  Motion of a rotor relative to a synchronously revolving field – small 
disturbances in power angle 
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where 𝛿𝛿0 is initial power angle, Δ𝛿𝛿0 is the (small) deviation in power angle, 𝜁𝜁 is 
the damping ratio, 𝜔𝜔𝑛𝑛 is the angular frequency of oscillation, 𝜔𝜔𝑑𝑑 is the 
damped frequency of oscillation, t is time, and 𝜃𝜃 = cos-1 𝜁𝜁.  
3  Angular frequency of a rotor relative to a synchronously revolving field – 
small disturbances in power angle 
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where 𝜔𝜔0 is the initial angular frequency of oscillation and other variables 
are as defined in equation 2.  

Pre-fault: 150 Ω per phase 
During fault: 400 Ω per phase 

Post-fault: 200 Ω per phase 
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4  Motion  of a rotor relative to a synchronously revolving field – small 
disturbances in power input 

( )0
0 2 2

11 sin
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tf P
e t
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δ δ ω θ
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=
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= + − + 
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where Δ𝑃𝑃 is the disturbance in power input, 𝑓𝑓0 is the initial linear frequency, 
H is the per unit inertia constant, and other variables are as defined for 
equation 2.  
5  Angular frequency of a rotor relative to a synchronously revolving field – 
small disturbances in power angle 
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where variables are as defined for equations 3 and 4.  
6  Critical clearing angle (radians) 

( )1
cr 0 0cos 2 cosδ π δ δ−= − −    

where 𝛿𝛿0 is the initial power angle.  
7  Critical clearing time 

( )cr 0
cr

4

s m

H
t

P
δ δ
ω

−
=  

where 𝐻𝐻 is the per-unit inertia constant, 𝛿𝛿cr is the critical clearing angle 
determined from equation 6, 𝛿𝛿0 is the initial power angle, 𝜔𝜔𝑠𝑠 is the angular 
synchronous speed, and Pm is mechanical input power.  
8  Critical clearing angle for fault clearing 

 

( )( )max max 0 2 max 1 0
cr

2 1

cos cos
cos mP P r r

r r
δ δ δ δ

δ
− + −

=
−

 

 

where 𝑃𝑃𝑚𝑚 is mechanical input power, Pmax is maximum power, 𝛿𝛿max is the 
angle indicated below, and 𝛿𝛿0 is the initial clearing angle. Further, r1 is a 
coefficient in r1Pmaxsin 𝛿𝛿, the power that can be transmitted during fault, and 
r2 is a coefficient in r2Pmaxsin 𝛿𝛿, the power that can be transmitted after the 
fault is cleared by switching at the instant when 𝛿𝛿 = 𝛿𝛿cr.  
 

 
Appendix – Step-by-step solution of the swing equation 

The swing equation may be solved iteratively with the step-by-step 
procedure illustrated in the next figure. In the solution, it is assumed that 
the accelerating power Pa and the relative rotor angular frequency 𝜔𝜔𝑟𝑟 are 
constant within each of a succession of intervals (top and middle graphs); 
their values are used to find the change in 𝛿𝛿 during each interval.  

To begin the iterations, we need 𝑃𝑃𝑎𝑎(0+), which we evaluate as 

( ) ( )0 0a i eP P P+ = − +  

Then, the swing equation may be written  

( ) ( )2

2

0
0 aPd

dt M
δ α

+
= + =  

and the change in 𝜔𝜔𝑟𝑟 is given by 

( )0r tω α∆ = + ∆  

Then, 

( )0 0 0r r tω ω ω ω α= + ∆ = + + ∆  
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Similarly, the change in power angle for the first interval is 

1 r tδ ω∆ = ∆ ∆  

and so 

( )( )2
1 0 1 0 0 (I)tδ δ δ δ α= + ∆ = + + ∆  

 Evaluation of Pa. If there is no discontinuity in the swing curve during 
an iteration interval, then Pa(0+) is equal to half of Pa immediately after the 
fault. If there is a discontinuity at the beginning of the i-th interval, then 

( ) ( ) ( )( )1 1 1
1
2a i a i a iP P P− − −− += +  

where 𝑃𝑃𝑎𝑎(𝑖𝑖−1)− and 𝑃𝑃𝑎𝑎(𝑖𝑖−1)+ are, respectively, the accelerating power 
immediately before and immediately after the fault is cleared.  
 If the discontinuity occurs at the middle of an interval, then for that 
interval 

 

output during the faulta iP P= −  
 

 For this case, at the beginning of the interval immediately following 
the clearing of the fault, Pa is given by 

 

output after the fault is cleareda iP P= −  
 

 Finally, if the discontinuity occurs neither at the beginning nor at the 
middle of an interval, Pa may still be evaluated from the three preceding 
equations.  
 Algorithm for the iterations. Returning now to (I), we see that 𝛿𝛿1 gives 
one point on the swing curve. The algorithm for the iterative process is as 
follows: 

( ) ( )1 1ia n e nP P P− −= −  

( ) ( )1 1sine n n

E V
P

X
δ− −=  
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( ) ( )1r n n tω α −∆ = ∆  

( ) ( ) ( )1 1r n r n n tω ω α− −= + ∆  

( ) ( )
( ) ( )21

1
a n

n n

P
t

M
δ δ −

−∆ = ∆ + ∆  

( ) ( ) ( )1n n nδ δ δ−= + ∆  
 

A SOLUTIONS 

P.1 c Solution 
Given 𝑓𝑓0 = 60 Hz and the number of poles P = 4, we first convert the 

generator operating frequency as 

0120 120 60 1800rpm
4s

fn
P

×
= = =  

The corresponding angular velocity is 

2 2 1800 188 rad/s
60 60

s
sm

nπ πω ×
= = =  

Given the mass moment of inertia J = 45,100 kg∙m2, the kinetic energy 
of the rotor is found as 

2 21 1 45,100 188 797 MJ
2 2k smW Jω= = × × =  

The inertia constant M is obtained by dividing 2𝑊𝑊𝑘𝑘 by the rotor 
angular velocity; in mathematical terms, 

2 2 797 8.48 8.5MJ sec
188

k

sm

W
M

ω
×

= = = ≈ ⋅  

The H constant, in turn, is obtained by dividing kinetic energy by the 
machine rating in MVA, 

797 3.99 4.0 MJ/MVA
200

k

B

W
H

S
= = = ≈  

P.2 c Solution 
Problem 2.1: The kinetic energy is given by the product of generator 

rating and inertia constant H, 

500 7.5 3750MJkW = × =  

Converting the input power to MW,  

( )6Input power 740,000 746 10 552MW−= × × =  

Appealing to the swing equation, 

2

2
0

Input power Rotational lossH d
f dt

δ
π

= −  

2

2

7.5 552 400
60 500

d
dt
δ

π
−

∴ =
×

 

2
2

2 438mech. degrees/sd
dt
δ

∴ =  

For a four-pole machine, 

2
2

2

438 219mech. degres/s
2

d
dt
δ
= =  

Converting to rpm/s2, 
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2
2

2

60219 36.5rpm/s
360

d
dt
δ
= × =  

Problem 2.2: The power Pa developed by the generator at the time of 
fault is calculated as 

( )1.0 0.6 0.8 500 160MWa m aP Tω= = − × × =  

where  

2 2 60 189mech. radians/s
2 2m

fπ πω ×
= = =  

so that 

a
a m a a

m

P
P T Tω

ω
= → =  

6160 10 847,000 N-m
189aT ×

∴ = =  

P.3 c Solution 
Problem 3.1: We restate the two swing equations provided as follows, 

2 2
,1 ,1! 1 1

,1 ,12 2
0 0 ! 1

1 m e
m e

P PH d dP P
f dt f dt H H

δ δ
π π

= − → = −  

2 2
,2 ,22 2 2

,2 ,22 2
0 0 2 2

1 m e
m e

P PH d dP P
f dt f dt H H

δ δ
π π

= − → = −  

 

Then, we subtract the second equation from the first, 

2 2
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f dt f dt H H H H
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,1 ,2 ,1 ,21 2
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π
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2 ,1 1 ,2 2 ,1 1 ,21 2

2
0 1 2 1 2

1 m m e eH P H P H P H Pd
f dt H H H H

δ δ
π

− −−    
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   
 

 

 

Multiplying both sides by 𝐻𝐻1𝐻𝐻2/(𝐻𝐻1 + 𝐻𝐻2) and using the definitions 
provided in the problem statement, 

2
1 2

2 ,1 1 ,2 2 ,1 1 ,21 2
2
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=
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2

2
0

m e
H d P P
f dt

δ
π

∴ = −  

as we intended to show.  
Problem 3.2: Using the formulas developed in Problem 3.1, the 

equivalent parameters are calculated to be 

1 2

1 2

4.0 6.0 2.4MJ/MVA
4.0 6.0

H HH
H H

×
= = =

+ +
 

2 ,1 1 ,2

1 2

6.0 1.5 4.0 1.0 0.5pu
4.0 6.0

m m
m

H P H P
P

H H
− × − ×

= = =
+ +

 

( ) ( )
1 2

,1 1 2

1.2 1.1
sin sin 2.0sin

0.16 0.30 0.20e

E E
P

X
δ δ δ δ

×
= − = × =

+ +
 

Since Pe,2 = −Pe,1, we may write 
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( ) ( )2 ,1 1 ,2

1 2

6.0 2.0sin 4.0 2.0sin 12.0sin 8.0sin 2sin
4.0 6.0 10.0

e e
e

H P H P
P

H H
δ δ δ δ δ

− × − × − +
= = = =

+ +
 

Therefore, the equivalent swing equation is 

2 2

2 2
0

2.4 0.5 2sin
180º 60m e

H d dP P
f dt dt

δ δ δ
π

= − → = −
×

 

2

20.000222 0.5 2sind
dt
δ δ∴ = −  

( )
2

2 4500 0.5 2sin , where is in degreesd
dt
δ δ δ∴ = −  

P.4 c Solution 
Problem 4.1: We have the voltage magnitude at bus 1, but the phase 

angle is missing. Noting that the two 0.8-pu reactances can be reduced to a 
single 0.8/2 = 0.4 pu line, we may write 

1 2
1 1

1.1 1.0
sin 0.77 sin

0.4L

V V
P

X
δ δ

×
= → =  

1sin 0.280δ∴ =  

1 16.3ºδ∴ =  

so that 

1 2 1.1 16.3º 1.0 0º 0.772 0.140 0.784 10.2º pu
0.4L

V VI j
jX j
− ∠ − ∠

= = = − = ∠−  

The total reactance is X = 0.2 + 0.158 + 0.4 = 0.758, and the generator 
excitation voltage is 

( )1.0 0.758 0.784 10.2º 1.25 27.9º puE j′ = + × ∠− = ∠  

Finally, the swing equation with 𝛿𝛿 in radians is 

2 2

max2 2
0

5.66 1.25 1.0sin 0.77 sin
60 0.758m

H d dP P
f dt dt

δ δδ δ
π π

×
= − → = −

×
 

2

20.030 0.77 1.65sind
dt
δ δ∴ = −  

Problem 4.2: The linearized swing equation is given by 

2
2

2 2 0n n
d d
dt dt

δ δζω ω δ∆ ∆
+ + ∆ =  

where 𝜔𝜔𝑛𝑛 is the angular frequency of oscillation and 𝜁𝜁 is the damping ratio. 
The former is given by 

0
n s

f
P

H
π

ω =  

where f0 is the linear frequency, H is inertia constant, and Ps is the 
synchronizing power coefficient. The damping ratio, in turn, is given by 

0

2 s

fD
HP
π

ζ =  

where D is the per-unit damping coefficient. Using the given data, we first 
determine the initial power angle 

0 0
1.25 1.00.77 sin sin 0.467

0.758
δ δ×

= → =  

0 27.8ºδ∴ =  

Then, the synchronizing power coefficient is 



9 
© 2021 Montogue Quiz 

max 0
1.25 1.0cos cos 27.8º 1.46

0.758sP P δ ×
= = =  

We proceed to determine 𝜔𝜔𝑛𝑛 and 𝜁𝜁, 

0 60 1.46 6.97 rad/s
5.66n s

f
P

H
π πω ×

= = × =  

0 0.15 60 0.358
2 2 5.66 1.46s

fD
HP
π πζ ×

= = × =
×

 

It follows that the linearized force-free equation that determines the 
mode of oscillation is, with 𝛿𝛿 in radians, 

2
2

2 2 0n n
d d
dt dt

δ δζω ω δ∆ ∆
+ + ∆ =  

2
2

2 2 0.358 6.97 6.97 0d d
dt dt

δ δ δ∆ ∆
∴ + × × + ∆ =  

2

2 4.99 48.6 0d d
dt dt

δ δ δ∆ ∆
∴ + + ∆ =  

The damped circular frequency of oscillation is 

2 21 6.97 1 0.358 6.51rad/sd nω ω ζ= − = × − =  

and corresponds to a linear frequency such that 

1.04Hz
2

d
df

ω
π

= =  

Also, 𝜃𝜃 = cos-1 𝜁𝜁 = cos-1 0.358 = 69.0o. Now, the motion of the rotor 
relative to the synchronously revolving field is described by the equation 

( )0
0 2

sin (I)
1

n
d

te tζωδ
δ δ ω θ

ζ
−∆

= + +
−

 

Also, the rotor angular frequency is given by 

0
0 2

sin
1

nn
d

te tζωω δ
ω ω ω

ζ
−∆

= −
−

 

which can be normalized to yield 

0
0 2

sin (II)
1

nn
d

tf
f f e tζωδ

ω
ζ

−∆
= −

−
 

Here, in addition to familiar variables, we were given Δ𝛿𝛿0 = 15o. 
Substituting in equations (I) and (II) brings to 

( )
2

0.358 6.9715º27.8º sin 6.51 69.0º
1 0.358

te tδ − × ×= + +
−

 

( )2.5027.8º 16.1 sin 6.51 69.0ºte tδ −∴ = + +  

( )2.5060 0.311 sin 6.51tf e t−= −  

The remaining step is to plot rotor angle and frequency. For t ∈ (0, 3) s, 
using MATLAB, 

t = 0:.01:3; 
d = 27.8 + 16.1*exp(-2.50*t).*sin(6.51*t + 69.0*pi/180); 
f = 60 - 0.311*exp(-2.50*t).*sin(6.51*t); 
figure(1), plot(t,d), grid 
xlabel('t, sec.'), ylabel('Delta, degree') 
figure(2), plot(t,f), grid 
xlabel('t, sec.'), ylabel('f, Hz') 

The resulting graphs are shown below.  
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Problem 4.3: The equation that describes the motion of the rotor is, in 
the case at hand, 

( )0
0 2 2

11 sin
1

n
d

n

tf P
e t

H
ζωπ

δ δ ω θ
ω ζ

=
 ∆

= + − + 
 − 

 

while the rotor angular frequency is given by 

0
0 2

sin
1

n
d

n

tf P
e t

H
ζωπ

ω ω ω
ω ζ

=∆
= +

−
 

or, equivalently, 

0
0 2

sin
2 1

n
d

n

tf P
f f e t

H
ζω ω

ω ζ
−∆

= +
−

 

Substituting our data in the equation for 𝛿𝛿, we get  

( )0.358 6.97
2 2

180 60 0.15 127.8º 1 sin 6.51 69.0º
5.66 6.97 1 0.358

te tδ − × × × ×
= + × − × + × − 

 

( )2.5027.8º 5.89 1 1.07 sin 6.97 69.0ºte tδ − ∴ = + − +   

Likewise for f, 

2.5060 0.122 sin 6.51tf e t−= +  

To plot these expressions, write the MATLAB code 

t = 0:.01:3; 
d = 27.8 + 5.89*(1-1.07*exp(-2.5*t).*sin(6.97*t+69)); 
f = 60 + 0.122*exp(-2.5*t).*sin(6.51*t); 
figure(1), plot(t,d), grid 
xlabel('t, sec.'), ylabel('Delta, degree') 
figure(2), plot(t,f), grid 
xlabel('t, sec.'), ylabel('f, Hz') 
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The outputs are shown below. 

 

 

Problem 4.4: The real power input is P0 = 0.77 pu; the generator 
excitation voltage is E’ = 1.25 pu; the voltage of the machine is V = 1.0 pu; the 
transfer reactance is X = 0.758 pu. Appealing to eacpower, we apply the code 

disp('(a) Initial real power PO = 0.77') 
P0 = 0.77; E = 1.25; V = 1.0; X = 0.758; 
h=figure; 
eacpower(P0,E,V,X) 
h=figure; 
disp('(b) Zero initial power') 
P0 = 0; 
eacpower(P0,E,V,X) 
 

Running this piece of code yields 

(a) Initial real power PO = 0.77 
Initial power                      =  0.770 p.u. 
Initial power angle                = 27.835 degrees  
Sudden additional power            =  0.649 p.u. 
Total power for critical stability =  1.419 p.u. 
Maximum angle swing                =120.617 degrees  
New operating angle                = 59.383 degrees  
 
Current plot held 
(b) Zero initial power 
Initial power                      =  0.000 p.u. 
Initial power angle                =  0.000 degrees  
Sudden additional power            =  1.195 p.u. 
Total power for critical stability =  1.195 p.u. 
Maximum angle swing                =133.563 degrees  
New operating angle                = 46.437 degrees 
 

P.5 c Solution 
Refer to the following graph. 
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Initially, 

0 10.3 siniP δ= =  

1 17.5ºδ∴ =  
 

After the load is doubled, 

1 20.6 siniP δ= =  

2 36.9ºδ∴ =  

Area A1 is given by 

( ) 2

1
1 2 10.6 sin 0.049A d

δ

δ
δ δ δ δ= − − =∫  

Likewise, area A2 is  

( )3

2
2 3 2sin 0.6A d

δ

δ
δ δ δ δ= − −∫  

Subtracting A2 from A1, 

( )3

1
2 1 3 1sin 0.6 0A A d

δ

δ
δ δ δ δ− = − − =∫  

3 3cos 0.6 1.14δ δ∴ + =  
 

This transcendental equation can be easily solved with Mathematica’s 
FindRoot command, 

 

That is, 𝛿𝛿3 = 1.00 rad = 57.4o. Synchronism will not be lost. Angle 𝛿𝛿max 
is obtained by symmetry, 

max 2180º 180º 36.9º 143ºδ δ= − = − =  

Area A2,max is to be compared to A1 to ascertain system stability, 

( ) ( )max max

22
2,max max 2 max 2sin 0.6 cos 0.6A d

δ δ

δδ
δ δ δ δ δ δ δ= − − = − − −∫  

( )2,max cos143º cos36.9º 0.6 143º 36.9º 0.487A∴ = − + − × − =  

Since A2,max > A1, the system is stable. The maximum excursion angle Δ 
about the new rotor position that can be attained while still retaining 
synchronism is 

3 2 57.4º 36.9º 20.5ºδ δ∆ = − = − =  

P.6 c Solution 
We first determine power angle 𝛿𝛿0, 

0 0
1.02.5sin 1.0 arcsin
2.5

δ δ  = → =  
 

 

0 23.6º 0.412 radδ∴ = =  

The critical angle can be computed with equation 6, 

( ) ( )1 1
cr 0 0 0cos 2 sin cos cos 2 0.412 sin 23.6º cos 23.6ºδ π δ δ δ π− −= − − = − × × −        
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cr 1.56 rad 89.4ºδ∴ = =  

The critical clearing time is given by equation 7, 

( ) ( )
( )

cr 0
cr

4 4 6 1.56 0.412
0.270s

2 60 1.0s m

H
t

P
δ δ
ω π

− × × −
= = =

× ×
 

P.7 c Solution 
Refer to the following graph. 

 

1
1

250sin 30º
500

δ −= =  

1
2

350sin 45.6º
500

δ −= =  

From symmetry of the lower curve, 𝛿𝛿𝑚𝑚 = 180o – 𝛿𝛿2 = 134o. Let 𝛿𝛿𝑐𝑐 denote 
the critical clearing angle. Rectangular area A1 is given by 

( )1 30º 250 4.36 131
180 c cA π δ δ= × − × = −  

Area A2 is, in turn, 

( )2 350sin 250 350cos 250 342m

c
c cA d

δ

δ
δ δ δ δ= − = + −∫  

Expressing the term in the middle in degrees for homogeneity,  

2 350cos 250 342 350cos 4.36 342
180c c c cA πδ δ δ δ= + × − = + −  

Equating A1 and A2 and solving for 𝛿𝛿𝑐𝑐, 

4.36 cδ 131 350cos 4.36c cδ δ− = + 342−  

131 350cos 342cδ∴− = −  

cos 0.603cδ∴ =  

53.0ºcδ∴ =  

Writing the swing equation up to the critical angle and integrating 
twice, 

( )
2

2
12

250 250 125d d t t t
dt M dt M M
δ δ δ δ= → = → = +  

where we have used zero initial velocity and initial power angle = 𝛿𝛿1 as 
boundary conditions. Evaluating the resulting function at the critical clearing 
time, 

( ) 2
1

125
c c ct t

M
δ δ δ= = +  

2
1

125
c ctM

δ δ∴ − =  

( ) 212553.0º 30º
180 ctM
π

∴ − × =  
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21250.401 rad ctM
∴ =  

1 20.00321 0.0567 sct M M∴ = =  

        To determine the critical clearing time, we need the inertia constant M.  

P.8 c Solution 
Three pertaining power versus clearing angle plots are shown below. 

 

Using the three reactance values in turn, we have 

( )
2

,
200pre-fault sin 267sin
150e IP δ δ= =  

( )
2

,
200during fault sin 100sin
400e IIP δ δ= =  

( )
2

,
200post-fault sin 200sin
200e IIIP δ δ= =  

Maximum load transfer corresponds to 𝐴𝐴1 = 𝐴𝐴2, so that 

( ) ( )1

1

60º

1 1 1 1100sin 60º 100 cos 60º cos
180iA P d P

δ

δ

πδ δ δ δ
+

= − = × × + × + −  ∫  

With PI = 267sin 𝛿𝛿1, 

( )1 1 1 1267 sin 100 cos 60º 100 cos (I)
3

A π δ δ δ= × × + × + − ×  

Now, with  

1 1
2 1

267180º sin 180º sin sin (i)
200 200

iP
δ δ− −   = − = −      

 

we have, for A2, 

( ) ( )2 2

11
2 2 1180º60º

200sin 200cos 60º 180i iA P d P
δ δ

δδ
δ δ δ δ δ π

++
= − = − − − − ×∫  

( )2

1
2 2 160º

200cos 60º 180iA Pδ

δ
δ δ δ π

+
∴ = − − + − ×  

( ) ( )2 2 1 2 1 1200cos 200cos 60º 4.65 60º sin (II)A δ δ δ δ δ∴ = − + + − − −  

Equating (I) and (II) brings to 

( )
( ) ( )

1 1 1

2 1 2 1 1

280sin 100cos 60º 100cos

200cos 200cos 60º 4.65 60º sin

δ δ δ

δ δ δ δ δ

+ + − =

− + + − − −
 

with 𝛿𝛿2 given by (i). This trigonometric equation can be easily solved with 
Mathematica’s FindRoot command, yielding 𝛿𝛿1 = 28.5o. The maximum load 
follows as 

( )max 267sin 28.5º 127 MWiP = =  
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P.9 c Solution 
We begin by determining 𝛿𝛿0, the phase angle before fault, 

max 0 max 0sin 0.6 arcsin 0.6 36.9º 0.644 radP Pδ δ= → = = =  

Since the fault causes the reactance between the generator internal 
voltage and the infinite bus to increase by 400%, r1 = 1/4.0 = 0.25. Further, 
because the maximum power that can be delivered is 80% of the original 
maximum, r2 = 0.8. This extreme state of operation corresponds to a phase 
angle 𝛿𝛿max such that 

( ) ( )2 max max max
max 2

1sin 180º sin 180º m
m

P
r P P

P r
δ δ− = → − = ×  

( )max
1sin 180º 0.6 0.75

0.8
δ∴ − = × =  

1
max180º sin 0.75 48.6ºδ −∴ − = =  

max 180º 48.6º 131º 2.29 radδ∴ = − = =  

Using equation 8 yields the critical angle  

( )( )max max 0 2 max 1 0
cr

2 1

cos cos
cos mP P r r

r r
δ δ δ δ

δ
− + −

=
−

 

( )
cr

0.6 2.29 0.644 0.8 cos 2.29 0.25 cos0.644
cos 0.474

0.8 0.25
δ

× − + × − ×
∴ = =

−
 

1
cr cos 0.474 61.7ºδ −= =  

P.10 c Solution 
Problem 10.1: The accelerating power is 

25 22.5 2.5MWa i eP P P= − = − =  

Inertia constant H is determined as 

200 4.0
50

k

B

W
H

S
= = =  

and can be used to determine M, 

0

50 4.0 0.0185 MJ s/degree 1.06MJ s/rad
180 60

BS HM
fπ

×
= = = ⋅ = ⋅

×
 

Lastly, dividing the accelerating power by inertia constant M gives the 
acceleration 

2 2

2 2
a

a
Pd dM P

dt dt M
δ δ
= → =  

2
2

2

2.5 2.36 rad/s
1.06

d
dt
δ

∴ = =  

Problem 10.2: Integrating 𝛿̈𝛿 = 2.36 with respect to t brings to 

2

12 2.36 2.36d d t C
dt dt
δ δ
= → = +  

Since 𝛿̇𝛿 = 0 at t = 0, constant C1 = 0. Integrating a second time yields 

2
22.36 1.18d t t C

dt
δ δ= → = +  

At t = 0, let 𝛿𝛿 = 𝛿𝛿0 (the initial power angle). It follows that 

( ) 2
01.18t tδ δ= +  

At 60 Hz, the time required for ten cycles is t = 10/60 = 0.167 s. For 
this value of t, 
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( ) 2
0 00.167 1.18 0.167 0.0329 radδ δ δ= × + = +  

Problem 10.3: The critical clearing angle can be determined from 
equation 8, which we restate as 

( )max 0 0 2 max 1 0
cr

2 1

sin cos cos
cos

r r
r r

δ δ δ δ δ
δ

− + −
=

−
 

The maximum power before the fault is 

max
1.2 1.0 4.0pu

0.3
P ×

= =  

and can be used to determine the initial power angle 𝛿𝛿0, namely 

0 04.0sin 1.0 sin 0.25δ δ= → =  
1

0 sin 0.25 14.5º 0.253radδ −∴ = = =  

During the fault, 𝑃𝑃max,2 = 0 and r2 = 0. After the fault is cleared, the 
reactance between the generator and the bus becomes 0.4 pu and 𝑃𝑃max,3 is 
computed as 

max,3
1.2 1.0 3.0pu

0.4
P ×

= =  

Thus, r2 = 3.0/4.0 = 0.75. The last quantity we need is 𝛿𝛿max, 

( ) 1
max max

1 1sin 180º 180º sin 19.5º
3.0 3.0

δ δ −  − = → − = = 
 

 

max 180º 19.5º 161º 2.81radδ∴ = − = =  

Finally, the critical clearing angle is calculated to be 

( )
cr

2.81 0.253 sin 0.253 0.75 cos 2.81 0 cos0.253
cos 0.0921

0.75 0
δ

− + × − ×
= = −

−
 

1
cr cos 0.0921 95.3ºδ −∴ = − =  

Problem 10.4: The critical clearing angle can be determined from 
equation 8, which we restate as 

( )max 0 0 2 max 1 0
cr

2 1

sin cos cos
cos

r r
r r

δ δ δ δ δ
δ

− + −
=

−
 

The maximum power before the fault is 

max
1.2 1.0 4.0pu

0.3
P ×

= =  

and can be used to determine the initial power angle 𝛿𝛿0, namely 

0 04.0sin 1.0 sin 0.25δ δ= → =  

1
0 sin 0.25 14.5º 0.253radδ −∴ = = =  

During the fault, 𝑃𝑃max,2 = 0 and r2 = 0. After the fault is cleared, the 
reactance between the generator and the bus becomes 0.4 pu and 𝑃𝑃max,3 is 
computed as 

max,3
1.2 1.0 3.0pu

0.4
P ×

= =  

Thus, r2 = 3.0/4.0 = 0.75. The last quantity we need is 𝛿𝛿max, 

( ) 1
max max

1 1sin 180º 180º sin 19.5º
3.0 3.0

δ δ −  − = → − = = 
 

 

max 180º 19.5º 161º 2.81radδ∴ = − = =  

Finally, the critical clearing angle is calculated to be 
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( )
cr

2.81 0.253 sin 0.253 0.75 cos 2.81 0 cos0.253
cos 0.0921

0.75 0
δ

− + × − ×
= = −

−
 

1
cr cos 0.0921 95.3ºδ −∴ = − =  

 

The per-unit value of the angular momentum, based on the machine 
rating, is 

41.0 4 3.70 10 pu
180 60

M −×
= = ×

×
 

Following the algorithm outlined in the Appendix, we initially have, 
using Δ𝑡𝑡 = 0.05 s, 

( ) 1.0 0.00 0.5
2aP −

+ = =  

( ) ( )
4

0 0.50 1351º /s
3.7 10

aP
M

α −

+
+ = = =

×
 

( ) ( )1 0 1351 0.05 67.55º /sr tω α∆ = + ∆ = × =  

( ) ( ) ( )1 0 1 0 67.57 67.55º/sr r rω ω ω= + ∆ = + =  

( ) ( )1 1 67.55 0.05 3.379ºr tδ ω∆ = ∆ = × =  
 

Finally, with 𝛿𝛿0 = 14.5o determined in Problem 10.3, 

( ) ( ) ( )1 0 1 14.5º 3.379º 17.88ºδ δ δ= + ∆ = + =  

Proceeding similarly with the second interval, 

( )1 1.0 0.0 1.0aP = − =  

( )1 4

1.0 2703º /s
3.7 10

α −= =
×

 

( ) ( )2 1 2703 0.05 135.2º /sr tω α∆ = ∆ = × =  

( ) ( ) ( )2 1 2 67.55 135.2 202.8º /sr r rω ω ω= + ∆ = + =  

( ) ( )2 2 202.8 0.05 10.14ºr tδ ω∆ = ∆ = × =  

( ) ( ) ( )2 1 2 17.88º 10.14º 28.02ºδ δ δ= + ∆ = + =  

Calculations for other steps are tabulated below. 

 

The swing curve is obtained by plotting power angle (red column) 
versus time (blue column), as shown on the next page.  

0 0.5 1351 14.50
0.05 1.0 2703 67.55 67.55 3.378 17.88
0.1 1.0 2703 135.15 202.70 10.14 28.01

0.15 1.0 2703 135.15 337.85 16.89 44.91
0.2 1.0 2703 135.15 473.00 23.65 68.56

0.25 1.0 2703 135.15 608.15 30.41 98.96
0.3 1.0 2703 135.15 743.30 37.17 136.13

𝜔𝜔𝑟𝑟 𝛿𝛿𝛼 𝛥𝜔𝜔𝑟𝑟 𝛥𝛿𝛿𝑃𝑃𝑎𝑎𝑡𝑡
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Problem 10.5: In Problem 10.3 we established the critical clearing 
angle to be 95.3o. Entering this ordinate into the preceding graph, we read a 
time of 0.245 s. Hence the fault must be cleared within 60 × 0.245 = 14.7 
cycles. 
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Was this material helpful to you? If so, please consider donating a small 
amount to our project at www.montoguequiz.com/donate so we can keep 

posting free, high-quality materials like this one on a regular basis. 
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