Montogue

Power System Stability

D> PROBLEMS

H Problem 1 (Saadat, 1999, w/ permission)

A four-pole, 60-Hz synchronous generator has a rating of 200 MVA,
0.8 power factor lagging. The moment of inertia of the rotor is 45,100 kg-m?.
Determine the inertia constants M and H.

H Problem 2 (Nasar, 1990, w/ permission)

Problem 2.1: A 60-Hz, four-pole turbogenerator rated 500 MVA, 22 kV
has an inertia constant of H =7.5 MJ/MVA. Find the kinetic energy stored in
the rotor at synchronous speed and the angular acceleration if the electrical
power developed is 400 MW when the input less the rotational losses is
740,000 hp.

Problem 2.2: The generator of Problem 2.1 is delivering rated
megavolt-amperes at 0.8 power factor lag when a fault reduces the electric
power output by 40%. Determine the accelerating torque in newton-meters
at the time the fault occurs. Neglect losses and assume constant power
input to the shaft.

p| Problem 3 (Saadat, 1999, w/ permission)

Problem 3.1: The swing equations of two interconnected synchronous
machines are written as

H 2
1 d fl :Pml_Pel
f, dt ’ ’

and

H, d°6
2 22: mZ_PeZ
f, dt ’ ’

Denote the relative power angle between the two machines by § = §;
- §,. Obtain a swing equation equivalent to that of a single machine in terms
of §, and show that

H Ao,
rf, dt " ¢

where

. H1H2 . p = HZPm,l _HIPm,Z . p = Hzpe,l _Hlpe,z
H+H, " H+H, ¢ H, +H,

¢ Problem 3.2: Two synchronous generators represented by a constant
voltage behind transient reactance are connected by a pure reactance X =0.3
per unit, as shown in the following figure. The generator inertia constants
are H; =4.0 MJ/MVA and H, = 6.0 MJ/MVA, and the transient reactances are
X1 =0.16 and X3 = 0.20 per unit. The system is operating in the steady state
with Ef =1.2, P, ; =1.5and E; = 1.1, P, , = 1.0 per unit. Denote the relative
power angle between the two machines by § = §; - §,. Referring to Problem
3.1, reduce the two-machine system to an equivalent one-machine against
an infinite bus. Find the inertia constant of the equivalent machine, the
mechanical input power, and the amplitude of its power angle curve, and
obtain the equivalent swing equation in terms of §.
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H Problem LI' (Saadat, 1999, w/ permission)

Problem 4.1: A 60-Hz synchronous generator has a transient
reactance of 0.2 per unit and an inertia constant of 5.66 MJ/MVA. The
generator is connected to an infinite bus through a transformer and a double
circuit transmission line, as shown below. Resistances are neglected and
reactances are expressed on a common MVA base and are marked on the
diagram. The generator is delivering a real power of 0.77 per unit to bus bar 1.
Voltage magnitude at bus 1is 1.1. The infinite bus voltage V =1.0£0° per unit.
Determine the generator excitation voltage and obtain the swing equation.

1 2
oy Xp=0.158 X11=0.8
B V=100
O3 Vi=1.1
X4=0.2 X12=0.8

Problem 4.2: The machine in the power system of Problem 4.1 has a
per unit damping coefficient of D = 0.15. The generator excitation voltage is
E’=1.25 per unit and the generator is delivering a real power of 0.77 per unit
to the infinite bus at a voltage of V = 1.0 per unit. Write the linearized swing
equation for this power system. Use equations 2 and 3 in the Additional
Information section to find the expressions describing the motion of the
rotor angle and the generator frequency for a small disturbance of A§ = 15°.
Use MATLAB to obtain plots of rotor angle and frequency.

Problem 4.3: The generator of Problem 4.1is operating in the steady
state at §, when the input power is increased by a small amount AP = 0.15 per
unit. The generator excitation and the infinite bus voltage are the same as
before. Use equations 4 and 5 to establish the motion of the rotor angle and
the generator frequency for a small disturbance of AP = 0.15 per unit. Use
MATLAB to obtain the plots of rotor angle and frequency.

Problem 4.4: The machine of Problem 4.1 is delivering a real power
input of 0.77 per unit to the infinite bus at a voltage of 1.0 per unit. The
generator excitation voltage is E’ = 1.25 per unit. Use eacpower(Pm, E, V, X)
(download the .m file in our website) to find the maximum power input that
can be added without loss of synchronism. Repeat the calculation with zero
initial power input, assuming the generator internal voltage remains
constant at the value computed in the first situation.

p| Problem 5 (Kothari and Nagrath, 2003, w/ permission)

A synchronous motor is drawing 30% of the maximum steady state
power from an infinite bus bar. If the load on motor is suddenly increased by
100 percent, would the synchronism be lost? If not, what is the maximum
excursion of torque angle about the new steady state rotor position? Use the
equal area criterion.

H Problem 6 (Grainger and Stevenson Jr., 1994)

A generator having H = 6.0 MJ/MVA is delivering power of 1.0 per unit
to aninfinite bus through a purely reactive network when the occurrence of
a fault reduces the generator output power to zero. The maximum power
that could be delivered is 2.5 per unit. When the fault is cleared the original
network conditions again exist. Using equations 6 and 7 in the Additional
Information section, determine the critical clearing angle and critical
clearing time.

p| Problem 7 (Kothari and Nagrath, 2003, w/ permission)

A synchronous generator is feeding 250 MW to a large 50 Hz network
over a double circuit transmission line. The maximum steady-state power
that can be transmitted over the line with both circuits in operation is 500
MW or 350 MW with any one of the circuits. A solid three-phase fault
occurring at the network-end of one of the lines causes it to trip. Estimate

2
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the critical clearing angle in which the circuit breakers must trip. Estimate
the critical clearing angle in which the circuit breakers must trip so that
synchronism is not lost. What further information is needed to estimate the
critical clearing time?

p| Problem 8 (Kothari and Nagrath, 2003, w/ permission)

The transfer reactances between a generator and an infinite bus bar
operating at 200 kV under various conditions on the interconnector are:

Pre-fault: 150 Q per phase
During fault: 400 Q per phase
Post-fault: 200 Q per phase

If the fault is cleared when the rotor has advanced 60 degrees
electrical from its prefault position, determine the maximum load that could
be transferred without loss of stability. Try solving the problem without
equation 8 in the Additional Information section.

H Problem 9 (Kothari and Nagrath, 2003, w/ permission)

A 60-Hz generator is supplying 60% of Pmax to an infinite bus through
a reactive network. A fault occurs which increases the reactance of the
network between the generator internal voltage and the infinite bus by
400%. When the fault is cleared the maximum power that can be delivered is
80% of the original maximum value. Determine the critical clearing angle for
the condition described. Use equation 8 in the Additional Information
section.

Pl Problem 1 O (Nasar, 1990, w/ permission)

Problem 10.1: The kinetic energy stored in the rotor of a 50-MVA, six-
pole, 60-Hz synchronous machine is 200 MJ. The input to the machine is 25
MW at a developed power of 22.5 MW. Calculate the accelerating power and
the acceleration.

Problem 10.2: If the acceleration of the machine of Problem 10.1
remains constant for ten cycles, what is the power angle at the end of the
ten cycles?

Problem 10.3: The generator of Problem 10.1 has an internal voltage of
1.2 pu and is connected to an infinite bus operating at a voltage of 1.0 pu
through a 0.3-pu reactance. A three-phase short circuit flows on the line.
Subsequently, circuit breakers operate and the reactance between the
generator and the bus becomes 0.4 pu. Calculate the critical clearing angle.

Problem 10.4: Plot the swing curve for the machine considered in
Problems 10.1to 10.3.

Problem 10.5: From the results of Problems 10.3 and 10.4, find the
critical clearing time in cycles for an appropriately set circuit breaker.

D> ADDITIONAL INFORMATION

Equations
1-> Linearized swing equation
d’AS dAS
—+200, ——+ ;A5 =0
dt dt

where A§ is a small disturbance in power angle, t is time, { is damping ratio,
and w, is the angular frequency of oscillation.

2 > Motion of a rotor relative to a synchronously revolving field - small
disturbances in power angle

A
5=25, +—B% o sin (e, +6)

J1-¢2
where §, is initial power angle, A8, is the (small) deviation in power angle, ¢ is
the damping ratio, w, is the angular frequency of oscillation, w, is the
damped frequency of oscillation, t is time, and 6 =cos™' .
3 > Angular frequency of a rotor relative to a synchronously revolving field -
small disturbances in power angle

®, A0,

Ji-¢

where w, is the initial angular frequency of oscillation and other variables
are as defined in equation 2.

— t .
®=w,— e 5! sin o, t
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4 > Motion of a rotor relative to a synchronously revolving field - small
disturbances in power input

AP 1 _ :
5=05,+ PIAPY ™" sin(w,t+0)

Ho, | [1-¢°

where AP is the disturbance in power input, f; is the initial linear frequency,
H is the per unit inertia constant, and other variables are as defined for
equation 2.

5 > Angular frequency of a rotor relative to a synchronously revolving field -
small disturbances in power angle

7Z'j[0AP e:é’wnt
Hao\J1-¢7

®=w,+ sin @, t

where variables are as defined for equations 3 and 4.
6 - Critical clearing angle (radians)

8, =cos ™[ (7 —26,)—cos3, |

where § is the initial power angle.
7 - Critical clearing time

4H (65, —-6,)

o, P,

[ =

cr

where H is the per-unit inertia constant, d, is the critical clearing angle
determined from equation 6, §, is the initial power angle, w; is the angular
synchronous speed, and P is mechanical input power.

8 > Critical clearing angle for fault clearing

(Pm /P )(ém,ch —50)+r2 CoSO, . —7 COSJ,

max
n—h

COSO,, =

where P,, is mechanical input power, Pmax is maximum power, 8.4 is the
angle indicated below, and §, is the initial clearing angle. Further, riis a
coefficient in riPmaxsin 8, the power that can be transmitted during fault, and
r2 is a coefficient in r2Pmaxsin 8, the power that can be transmitted after the
fault is cleared by switching at the instant when § = §,.

o Py sind
72 Pz 5100
/ *\\\\\‘f‘.?% i

A

— 7 Pmaxsmh

da Ser brlnax
Appendix - Step-by-step solution of the swing equation

The swing equation may be solved iteratively with the step-by-step
procedure illustrated in the next figure. In the solution, it is assumed that
the accelerating power P, and the relative rotor angular frequency w, are
constant within each of a succession of intervals (top and middle graphs);
their values are used to find the change in § during each interval.

To begin the iterations, we need P,(0+), which we evaluate as

P,(0+)=F-P(0+)
Then, the swing equation may be written
d*s P (0+)
dr’
and the change in w, is given by

Aw, = a(0+)At

=a(0+)=

Then,
w, =0, + Ao, =, +a(0+)At
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Similarly, the change in power angle for the first interval is
AS, = Aw At
and so
8, =8, + A8, =8, +a(0+)(At)" (1)
Evaluation of P.. If there is no discontinuity in the swing curve during
an iteration interval, then P,(0+) is equal to half of P, immediately after the
fault. If there is a discontinuity at the beginning of the i-th interval, then

By = %(F;(fl)— FE )

where P,;_1)- and P,(;_1), are, respectively, the accelerating power
immediately before and immediately after the fault is cleared.

If the discontinuity occurs at the middle of an interval, then for that
interval

P = P —output during the fault

a

For this case, at the beginning of the interval immediately following
the clearing of the fault, Pa is given by

P = P —output after the fault is cleared

Finally, if the discontinuity occurs neither at the beginning nor at the
middle of an interval, P, may still be evaluated from the three preceding
equations.

Algorithm for the iterations. Returning now to (1), we see that &, gives

one point on the swing curve. The algorithm for the iterative process is as
follows:

I)a(nfl) =k _Pe(nfl)
L A
e(n-1) X (n-1)
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P> SOLUTIONS
Pis)

Given f; = 60 Hz and the number of poles P = 4, we first convert the
generator operating frequency as

12
- 0fy _ 12060 _ g0
J2 4

The corresponding angular velocity is

o - 27zn, 27w x1800
60 60

=188 rad/s

Given the mass moment of inertia/ = 45,100 kg-m?, the kinetic energy
of the rotor is found as

W, :%J@fm :%><45,100><1882 =797 MJ

The inertia constant M is obtained by dividing 2W,, by the rotor
angular velocity; in mathematical terms,
20, 2x797
@ 188

sm

M = =8.48 ~ |8.5M]J -sec

The H constant, in turn, is obtained by dividing kinetic energy by the
machine rating in MVA,

=2 7 _ 399 <[40 MIMVA
S, 200

P.2=)

Problem 2.1: The kinetic energy is given by the product of generator
rating and inertia constant H,

W, =500x7.5=3750MJ

Converting the input power to MW,
Input power = 740,000 (746x10° ) = 552 MW
Appealing to the swing equation,
H d’6
rf, dt’

= Input power — Rotational loss

. 7.5 d°S552-400
U x60 di* 500
d’5
dr?

For a four-pole machine,

2
d 25 _ 8 _ 219mech. degres/s’
dt 2

= 438 mech. degrees/s’

Converting to rpm/s?,
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2
d 25 = 219><ﬂ =
dt 360

36.5rpm/s’

Problem 2.2: The power P, developed by the generator at the time of
fault is calculated as

P =,T, =(1.0-0.6)x0.8x500 = 160 MW

where
2 27 x 60 )
@®, = Zf = 189 mech. radians/s
so that
P
P =w,T, —>T, ="
a)m
1 10°
L =100 e 000N
189
P3=)
Problem 3.1: We restate the two swing equations provided as follows,
i d251 = —P —> 1 d251 = Pm,l — ])e’l
af, d* "™ Y T afod  H, H,
£d2§2 — 1 d252 _ Pm,z Pe,z

= — —> =
af, d* "™ ¢ T gf o d* H, H,
Then, we subtract the second equation from the first,

L d’s 1cf@_(&J &U-(&J QJJ

xf, d* «xf, d° \H H ) \H, H,

1 d2(51_§2) (Pm,l Pm,2j_(Pe,l Pezj

rf, dar’ B

H1 B Hz Hl ) Hz
. 1 d2(51_52)_ HZPm,l_HIPm,Z _ Hzpe,l_Hlpe,z
Cxf, df HH, HH,

Multiplying both sides by H,H,/(H; + H,) and using the definitions
provided in the problem statement,

d*| -6,
1 Hle =0 _ HZPm,l_Han,2 _ H2Pe,1_H1Pe,2
rfy, H+H, di H +H, H +H,
NI A
=H =Py =k,
H d°5

° 72_](0 dt2 m e
as we intended to show.

Problem 3.2: Using the formulas developed in Problem 3.1, the
equivalent parameters are calculated to be

HH, 4.0x6.0
H +H, 40+6.0
p P —HEP, _60x1.5-40x1.0

H = =2.4MJ/MVA

- =0.5pu
H +H, 4.0+6.0
P - |E|IE| sin (3, -6, ) = L2 s —2.0sins
T (0.16+0.30+0.20)

Since Pe2 = —P.;, we may write
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_H,P,-HP, 60x(2.0sin5)-4.0x(-2.0sind) 12.0sin5+8.0sin

" H+H, 4.0+6.0 - 10.0

Therefore, the equivalent swing equation is

2 2
id?sz—Pe% 24 d?=0.5—2sin§
xf, dt 180°%60 dt

i 5—0.5—2sin5
dr’

2
cfhf =4500(0.5—2sin &), where §is in degrees

P.4=p

Problem 4.1: We have the voltage magnitude at bus 1, but the phase
angle is missing. Noting that the two 0.8-pu reactances can be reduced to a
single 0.8/2 = 0.4 pu line, we may write

»_ 7l 1 1]x1.9)
sind, = 0.77 = sin o,
s 0.4
s.sino, =0.280
0, =16.3°
so that
V,=V. : 3°-1.0£0°
[=-—1—2 _1.1£16.5°~1.020 =0.772—-j0.140=0.784£-10.2°pu
JjX, j0.4

The total reactance isX =0.2 + 0.158 + 0.4 = 0.758, and the generator
excitation voltage is

E' =10+ j0.758><(0.7844 —10.2") =1.25227.9°pu

Finally, the swing equation with § in radians is

2 2
M do =P —P_ sind —> 566 d 25 = 0.77——1'25X1'O sino
rf, dt’ 7 x60 dt
2
+.0.030 ‘fhf =0.77-1.65sin 6
Problem 4.2: The linearized swing equation is given by
A A
ddt25 +2lw, d ° +w, A5 =0

where w,, is the angular frequency of oscillation and ¢ is the damping ratio.
The former is given by

where fo is the linear frequency, H is inertia constant, and Ps is the
synchronizing power coefficient. The damping ratio, in turn, is given by

_D |7/
° =3 HP

where D is the per-unit damping coefficient. Using the given data, we first
determine the initial power angle

0.77—M5m5 — sin g, = 0.467
0.758

.5, =27.8°

Then, the synchronizing power coefficient is
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1.25x1.
P =P coso, =5—X000827.8°=1.46
0.758

max

We proceed to determine w, and ¢,

w, = ﬂ—foPS = \/7[5x 60x1.46 =6.97rad/s

H 66
;D nfy 015 [ wx60 .o
2\HP 2 \5.66x1.46

It follows that the linearized force-free equation that determines the
mode of oscillation is, with § in radians,

2
d Ag+2§wﬂ%+aﬁA5=0

dr’
2
4 Af +2x0.358x6.9772% 4 69745 =0
dt dt
2
4 Af 1499729 4 48605 =0
di di

The damped circular frequency of oscillation is

w, =w\1-{7 =6.97x+/1-0.358" =6.51rad/s

and corresponds to a linear frequency such that

£, =24 _1.04Hz
2r

Also, 8 =cos™ { =cos™ 0.358 = 69.0°. Now, the motion of the rotor
relative to the synchronously revolving field is described by the equation

e sin (@t +6) ()

§:5O+L
\/1—4'2

Also, the rotor angular frequency is given by
o Ao, _
0 = @, ———=L 5!
NIt 4’2

which can be normalized to yield
£.AS
f=f- =
VI=¢

Here, in addition to familiar variables, we were given A§, = 15°.
Substituting in equations (1) and (I1) brings to

15°

J1-0.358>

.8 =27.8°+16.1e>*" sin (6.51¢ +69.0°)

sinaw,t

e ™ sing,t (1)

5=27.8+ e 009 5in (6.51¢ +69.0°)

f=60-0.311e" sin(6.51¢)

The remaining step is to plot rotor angle and frequency. For t € (0, 3) s,
using MATLAB,

t = 0:.01:3;

d=27.8 + 16.1*exp(-2.50*t) .*sin(6.51*t + 69.0*pi/180);
f =60 - 0.311%exp(-2.50*t) .*sin(6.51*t);

figure(l), plot(t,d), grid

xlabel ('t, sec.'), ylabel('Delta, degree')

figure(2), plot(t,f), grid

xlabel ('t, sec.'), ylabel('f, Hz'")

The resulting graphs are shown below.
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Problem 4.3: The equation that describes the motion of the rotor is, in
the case at hand,

+7rf0AP 1 1
Ho, | \1-¢°

while the rotor angular frequency is given by

5=35,

™" sin (e, +0)

AP .
o=, +f°—2€§a’”t sin @, t
Ho\1-¢
or, equivalently,
AP . .
f:f0+2H fo o e 5 sin @, 1
o, \J1—

Substituting our data in the equation for §, we get

5=27.804 VOO0 1y L oo iy (6,511 +.69.0°)
5.66%x6.97 J1-0.358>

5. 6=27.8°+5.89[ 1-1.07¢ " sin(6.97¢ +69.0°)

Likewise for f,

f=60+0.122¢>°" sin 6.51

To plot these expressions, write the MATLAB code

t = 0:.01:3;

d=27.8 + 5.89*%(1-1.07*exp(-2.5*t) .*sin(6.97*t+69)) ;
f =60 + 0.122%exp(-2.5*%t) .*sin(6.51*t);

(1), plot(t,d), grid
xlabel ('t, sec.'), ylabel('Delta, degree')
figure(2), plot(t,f), grid
xlabel ('t, sec.'"), ylabel('f, Hz")

10
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The outputs are shown below.
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Problem 4.4: The real power input is Po = 0.77 pu; the generator
excitation voltage is E' = 1.25 pu; the voltage of the machine isV =1.0 pu; the
transfer reactance is X = 0.758 pu. Appealing to eacpower, we apply the code

disp('(a) Initial real power PO = 0.77")

PO = 0.77;, E =1.25; v =1.0; X = 0.758;
h=figure;
eacpower (PO, E,V, X)
h=figure;
disp('(b) Zero initial power')
PO = 0;
eacpower (PO, E,V, X)

Running this piece of code yields
(a) Initial real power PO = 0.77
Initial power = 0.770 p.u.
Initial power angle = 27.835 degrees
Sudden additional power = 0.649 p.u.
Total power for critical stability = 1.419 p.u.
Maximum angle swing =120.617 degrees
New operating angle = 59.383 degrees
Current plot held
(b) Zero initial power
Initial power = 0.000 p.u.
Initial power angle = 0.000 degrees
Sudden additional power = 1.195 p.u.
Total power for critical stability = 1.195 p.u.
Maximum angle swing =133.563 degrees
New operating angle = 46.437 degrees

P5=

Refer to the following graph.

11
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Initially,
P, =0.3=sin9¢,
o, =17.5°
After the load is doubled,
P, =0.6 =sino,
5.5, =36.9°

Area A is given by
5
4,=0.6(3,-5,)—["sin5d5 =0.049
Likewise, area Az is
4, =["sin8d5-0.6(5, - 6,)
2 5, . 3 2
Subtracting Az from A;,

5 .
A= 4, =["sin6d5-0.6(5,-5)=0
".c0s0, +0.60, =1.14

This transcendental equation can be easily solved with Mathematica’s
FindRoot command,

nz11= FindRoot[Cos[&3] + @.6 65 - 1.14, {63, 1}]

out[21= {&3 —» 1.00125)

That is, 5 = 1.00 rad = 57.4°. Synchronism will not be lost. Angle 8.«
is obtained by symmetry,

S =180°—5, =180°—-36.9°=143°

Area Azmax is to be compared to A; to ascertain system stability,

max max

4, = j; sin8d5 - 0.6(5,, —5,) =—cosd

T =0.6(5,, —5)

" A =—c05143°+¢c0s36.9°-0.6 x (143° —36.9") =0.487

* 0 472, max

Since Azmax > Ay, the system is stable. The maximum excursion angle A
about the new rotor position that can be attained while still retaining
synchronism is

A=6,-5, =57.4°-36.9°=

P.6 =

We first determine power angle &,

2.5sino, =1.0 > §, = arcsin (%)

5.0, =23.6°=0.412rad

The critical angle can be computed with equation 6,

8, =cos” [ (728, )sind, —cos &, | =cos™ [ (7 —2x0.412)xsin23.6°~cos 23.6° |

12
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.8, =1.56rad =

The critical clearing time is given by equation 7,

\/4H(5cr ~5,) \/4><6><(1.56—0.412)
t, = = =[0.270s
oP, (27x60)x1.0

P.7=p

Refer to the following graph.

Pe 500

250

)

From symmetry of the lower curve, 6, =180° - §, = 134°. Let §,. denote
the critical clearing angle. Rectangular area A is given by

A =——x(5.-30°)x250 = 4.365, —131
180
Area Az is,in turn,
Om .
4, = ["(350sin 6 ~250)d & = 350cos 5, +2505, —342
Expressing the term in the middle in degrees for homogeneity,

A, =350c0s 5. +2508, x%—342 =350c0s 5, +4.365, —342

Equating A; and Az and solving for &,

2365 —131=350c0s 0, + 365 —342

5. —131=350co0s 0, —342
s.coso, =0.603
|0, =53.0°

Writing the swing equation up to the critical angle and integrating
twice,

2
4’5 250 d6 250, | 5y 125, 5
it M dt M

where we have used zero initial velocity and initial power angle = §; as
boundary conditions. Evaluating the resulting function at the critical clearing
time,

5(():5;%5 5
50_51_12_5t02
M
- (53.0030°)x L =122
180 M
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-.0.401 rad = 12_5t3
M

o1, =+/0.00321M =0.0567M" s

To determine the critical clearing time, we need the inertia constant M.

P8=p

Three pertaining power versus clearing angle plots are shown below.

P, 266.7
Pel
Penn
200
[=}
P, / /N el
/h i
. . 100 ,
' | | 180°
o
o o1+ 60° 0o+ O

Clearing angle

Using the three reactance values in turn, we have

2

P, (pre-fault) = 2105% sino =267sino

2

P, (during fault) = 24%00 sino =100sin o

2

sino =200sin o

P, (post-fault) = 2200

Maximum load transfer corresponds to A; = A,, so that

A = J';I%OO(P1 —100sin6)ds = P x%x 60°+100x [ cos (&, +60°) —cos, |
With P, = 267sin 6,
Al:267x§xsﬁu2+100xum@i+60ﬂ—400xc0&2 (I)

Now, with

S, =180°—sin™' )2 1800—sin (ﬁsm@j (i)
200 200

we have, for Az,

% 1 s, o
4y =] (200sin5 = P)d5 =-200c0s 5[ |, = (S, =6, ~60°)x /180
o A, ==200cos 8], — B (8, +38, —60°)x /180

.. A, ==200c0s 8, +200cos (8, +60°)—4.65(5, — 6, —60°)sin 5, (II)
Equating (1) and (1) brings to
280sin &, +100cos (8, +60°)—100cos 5, =
—200c0s 8, +200cos (8, +60°)—4.65(5, — 5, —60°)sin 5,

with &, given by (i). This trigonometric equation can be easily solved with
Mathematica’s FindRoot command, yielding §; = 28.5°. The maximum load
follows as

P

i(max)

=267sin28.5°=|127TMW

14
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P9

We begin by determining &,, the phase angle before fault,
P sino, =0.6P — 6, =arcsin0.6 =36.9°=0.644rad

Since the fault causes the reactance between the generator internal
voltage and the infinite bus to increase by 400%, r1 = 1/4.0 = 0.25. Further,
because the maximum power that can be delivered is 80% of the original

maximum, r2 = 0.8. This extreme state of operation corresponds to a phase
angle 6,.x such that

P, sin(180°-5, )=P, —sin(180°-5, )= b1

max

max

sin(180° ) ) = 0.6x% =0.75

~180°—5,  =sin"' 0.75=48.6°
~ 0. =180°-48.6°=131°=2.29rad

Using equation 8 yields the critical angle

(Pm/Pmax)(émax —50)+7"2 COSé‘maX —7’1 COSé‘0

coso, =
h—h
0.6x(2.29—-0.644) +0.8x c0s2.29 — 0.25 x c0s 0.644
S.COSO, = =0.474
0.8-0.25
o, = cos ' 0.474 =
P.I0=

Problem 10.1: The accelerating power is

P =P-P =25-225=[25MW

Inertia constant H is determined as

TS, 50

W, 200 _,

and can be used to determine M,

vy =Sl _ 50x4.0
rf, 180x60

=0.0185 MJ -s/degree =1.06 MJ - s/rad

Lastly, dividing the accelerating power by inertia constant M gives the
acceleration

d’s d’s P
5 = Pa —> 7 =
dt dt M
Ld*s 25
CdP 1.06
Problem 10.2: Integrating & =2.36 with respect tot brings to
d*s do

57 =236—> E =2.36t+C,

M

2.36rad/s’

Since § =0 att =0, constant C; = 0. Integrating a second time yields

%=2.36t—>5:1.18t2 +C,

Att=0, let § = §, (the initial power angle). It follows that
5(t)=1.18¢ +6,

At 60 Hz, the time required for ten cycles ist =10/60 = 0.167 s. For
this value of t,

15
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5(0.167)=1.18x0.167% + 5, =|0.0329 + &, rad

Problem 10.3: The critical clearing angle can be determined from
equation 8, which we restate as

(O — Gy )SIN G, +1, cOSS, —1; cos S,

max

CoSO,, =

—h

The maximum power before the fault is

12x1.0

max

=4.0pu

and can be used to determine the initial power angle §,, namely

4.0sind, =1.0 - sino, =0.25
-8, =sin”' 0.25=14.5°=0.253rad

During the fault, Ppax, = 0 and r2 = 0. After the fault is cleared, the
reactance between the generator and the bus becomes 0.4 pu and P4 3 is
computed as

Thus, r2=3.0/4.0 = 0.75. The last quantity we need is 8;,ax,

sin (180°~5,,,, ) = % —180°-5,, =sin (3%) =19.5°

max

.8 =180°-19.5°=161°=2.81rad
Finally, the critical clearing angle is calculated to be

(2.81—O.253)sin0.253+O.75><cos2.81—0><cosO.253
coso,, = 0750 =-0.0921

.8, =cos '—0.0921 =

Problem 10.4: The critical clearing angle can be determined from
equation 8, which we restate as

(O — Gy )SIN G, +1, cOSS, —1; 0SS,

max

coso, =
Hh—h

The maximum power before the fault is

12x1.0

=4.0pu
e 0.3 P

and can be used to determine the initial power angle §,, namely
4.0sind, =1.0 - sing, =0.25
-8, =sin”' 0.25=14.5°=0.253rad

During the fault, Ppax, = 0 and r2 = 0. After the fault is cleared, the
reactance between the generator and the bus becomes 0.4 pu and P4 3 is
computed as

Thus, r2=3.0/4.0 = 0.75. The last quantity we need is 8,ax,

max

sin(180°-5,,, ) = % —>180°~6,,,, =sin"’ (%) =19.5°

.8, =180°-19.5°=161°=2.81rad

Finally, the critical clearing angle is calculated to be

16
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(2.81-0.253)sin 0.253+0.75x cos 2.81 - 0x cos 0.253
CoSo._ = =-0.0921

“ 0.75-0
.8, =cos'=0.0921 =
The per-unit value of the angular momentum, based on the machine
rating, is

M=% 3 90%10% pu

 180x60

Following the algorithm outlined in the Appendix, we initially have,
using At =0.05s,

P (0
a(0+)= (0+) 05 —=1351°/s
M 3.7x10

Ao, = a(0+)Ar =1351x0.05 = 67.55°/s
@,y = @, + A0, ) =0+67.57=67.55%s

A5(1) = a)r(l)At =67.55%x0.05=3.379°
Finally, with &, = 14.5° determined in Problem 10.3,

8 =60 +AS, =14.5°+3.379°=17.88°

N =Y )

Proceeding similarly with the second interval,
Pa(l) =1.0-0.0=1.0
a0 = 1.0

M 3.7x10™

Aa)r(z) = a(l)At =2703%x0.05=135.2°/s

=2703°/s

@) = D)+ Aa)r(z) =67.55+135.2=202.8°/s

Aé'(z)

8 =6,y + A5, =17.88°+10.14°= 28.02°

= 0,,)At = 202.8x0.05=10.14°

Calculations for other steps are tabulated below.

t P, a Aw, Wy AS 5

0 0.5 1351 14.50
0.05 1.0 2703 67.55 67.55 3.378 17.88
0.1 1.0 2703 135.15 | 202.70 10.14 28.01
0.15 1.0 2703 135.15 | 337.85 16.89 44.91
0.2 1.0 2703 135.15 | 473.00 23.65 68.56
0.25 1.0 2703 135.15 | 608.15 30.41 98.96
0.3 1.0 2703 135.15 | 743.30 37.17 136.13

The swing curve is obtained by plotting power angle (red column)
versus time (blue column), as shown on the next page.
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Problem 10.5: In Problem 10.3 we established the critical clearing
angle to be 95.3°. Entering this ordinate into the preceding graph, we read a
time of 0.245 s. Hence the fault must be cleared within 60 x 0.245 =14.7
cycles.
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Was this material helpful to you? If so, please consider donating a small
amount to our project at www.montoguequiz.com/donate so we can keep

posting free, high-quality materials like this one on a regular basis.
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