1.1 Montogue

QUIZ GT401

Rock Mechanics

Lucas Montogue

- PROBLEMS

PROBLEM

A 200-cm borehole log of a rock is illustrated below. Find the RQD for this rock sample.

A) $R Q D=36.6 \%$
B) $R Q D=51.8 \%$
C) $R Q D=74.5 \%$
D) $R Q D=90.8 \%$

PROBLEM ᄅ

Regarding rock properties, rock classification systems and other aspects of rock mechanics, true or false?
1.() There are several ways to measure the degree of jointing. As the joint spacings generally vary greatly, there will be differences in the degree of jointing in an outcrop or a location. Therefore, the characterization of block size should be given as an interval rather than a single value. The RQD and volumetric joint count J_{V} are less suitable for this, as they, by definition, express an average of the joints where measured. Indeed, it has been shown that there is a poor correlation between the RQD and other types of block size measurements.
2.() Palmström and the ISRM have suggested that the rock quality designation can be estimated from the volumetric joint count J_{V} by means of an equation of the form

$$
R Q D=115-3.3 J_{V}
$$

Later, however, the same author concluded that an expression of the form

$$
R Q D=110-2.5 J_{V}
$$

probably gives more appropriate average correlations than the former. Consider a rock mass that possesses 5 joint sets. The joint counts normal to each set are 12 per 10 m for joint set 1,9 per 6 m for joint set 2,8 per 10 m for joint set 3, 7 per 5 m for joint set 4 , and 12 per 4 m for joint set 5 . The RQD for this rock mass, as estimated from the newer $R Q D-J_{v}$ correlation, is greater than 92%.
3.() One group of investigators heated two marble and three limestone samples from $100^{\circ} \mathrm{C}$ to $500^{\circ} \mathrm{C}$ in $100^{\circ} \mathrm{C}$-increments and measured the effective porosity of the rocks at different temperatures. Their results indicated that the effective
porosity either increases with higher temperature or first slightly decreases until $200^{\circ} \mathrm{C}$ and then increases with higher temperature. Based on best fitting of the test data, they proposed the following relationship between effective porosity and temperature,

$$
n=n_{i}+a T^{2}+b T
$$

where n_{i} is the initial porosity, T is the temperature in ${ }^{\circ} \mathrm{C}$, and a and b are the regression coefficients, which are listed below for the five tested rocks. Appealing to these data, a sample of porous limestone heated to $400^{\circ} \mathrm{C}$ will have a porosity greater than 3.75\%.

Rock	$n_{i}(\%)$	$a\left(\times 10^{-4}\right)$	$b\left(\times 10^{-4}\right)$
Intramicritic limestone	7.86	0.2	-13
Porous limestone (travertine)	3.43	0.4	-144
Crystalized limestone	0.66	0.1	-21
Fine grain (0.1 - 1 mm$)$ marble	0.30	0.1	-5
Coarse grain (0.5 - 2 mm$)$ marble	0.24	0.07	+5

4. () While the porosity of an intact rock mass tends to decrease with increasing depth, the density tends to increase as depth increases. One author has proposed the following relation for variation in density of sandstones and siltstones with depth,

$$
\rho=2.72-1.244 \exp (-0.846 z)
$$

where ρ is in $\mathrm{g} / \mathrm{cm}^{3}$ and z is in km . From this relation, we can state that, in order for the density of the intact rock to be greater than $2.0 \mathrm{~g} / \mathrm{cm}^{3}$, the depth must be at least 750 m .
5. () It has been observed that, for similar specimen geometry, the uniaxial compressive strength of rock material varies with specimen volume. Generally, it is observed that the UCS increases with increasing specimen volume, except at very small specimen sizes where inaccuracy in specimen preparation and surface flaws or contamination may dominate behavior and cause a strength increase with decreasing specimen volume.
6.() Many researchers have studied the effect of water content on the strength of intact rocks. The unconfined compressive strength of intact rocks decreases as the water content increases and their relationship can be described by the negative exponential function

$$
\sigma_{c}=a e^{-b w}+c
$$

where w is the water content in $\%$, and a, b and c are constants. Here, σ_{c} is given in MPa. The following table lists the values of a, b and c for some types of rocks. With reference to these data, we conclude that, if we were to increase the water content of a gypsum sample from 2% to 7%, its UCS would decrease by more than 8\%.

A	b	c	Rock type
$4.16-84.01$	$0.0752-6.147$	$2.97-231$	15 British sandstones
83.59	0.4433	0	Coal measures, mudrock (clayshale, mudstone, and mudshale)
14.68	0.8193	24.0	Gypsum

7.() The tensile strength of a rock mass can be estimated using empirical relations such as the one below,

$$
\sigma_{t}=-0.029 \gamma f_{c} Q^{0.3}
$$

where $f_{c}=\sigma_{c} / 100$ for $Q>10$ and $\sigma_{c}>100 \mathrm{MPa}$, otherwise $f_{c}=1$, and γ is the density of rock mass in $\mathrm{g} / \mathrm{cm}^{3}$. In this equation, σ_{t} is given in MPa. For a granite with density of $2.70 \mathrm{~g} / \mathrm{cm}^{3}$, UCS of 120 MPa and Q-rating of 15 , the tensile strength as estimated from the relation above is greater than 250 kPa .
8.() Some intact rocks, such as those composed of parallel arrangements of flat minerals like mica, chlorite and clay, show strong strength anisotropy. The maximum strength of a rock mass is generally found when the major principal stress is nearly perpendicular or parallel to the stratification plane.
9.() Bieniawski studied seven projects and suggested the following correlation for estimating the rock mass deformation modulus from the Rock Mass Rating (RMR),

$$
E_{m}=2 R M R-100
$$

A few years later, Serafim and Pereira proposed the relation

$$
E_{m}=10^{(R M R-10) / 40}
$$

Both of these correlations were proposed before 1989. Accordingly, the RMR score to be used with these expressions is the rating from the 1976 version of the RMR system, which, as a rule of thumb, is to be taken as the score from the 1989 version of the RMR plus 5.
10.() The Q-system, as originally conceived by the Norwegian Geotechnical Institute in the 1970s, does not include parameters such as joint orientation, joint persistence, and joint aperture.

problem 3

A tunnel is to be driven through a weathered quartz with the following characteristics:
\rightarrow A point-load strength index of 4 MPa .
\rightarrow A RQD of 65\%.
\rightarrow Spacing between joints is 450 mm .
\rightarrow Joints are slightly rough and have a separation less than 1 mm . Walls are highly weathered.
\rightarrow Tunneling conditions are anticipated to be damp.
\rightarrow The dominant joint set dips at 30° against the direction of the drive.
What is the RMR of this rock mass?
A) $R M R=29$
B) $R M R=48$
C) $R M R=63$
D) $R M R=80$

PROBLEM 4

A dam foundation is to be built upon a strong limestone with the following characteristics:
\rightarrow Uniaxial compressive strength of 80 MPa .
\rightarrow A RQD of 80%.
\rightarrow Spacing between joints is 80 mm .
\rightarrow The joint set has been described as follows:
\rightarrow Average discontinuity length is 4 m .
\rightarrow Separation of joints is generally less than 0.1 mm .
\rightarrow Joints are slightly rough and moderately weathered.
\rightarrow Joints have no infilling.
\rightarrow Groundwater conditions are assumed to be dripping.
\rightarrow The discontinuity orientation was deemed fair.
What is the RMR of this rock mass?
A) $R M R=31$
B) $R M R=53$
C) $R M R=70$
D) $R M R=89$

PROBLEM 5

A small cavern will be excavated in a mass of norite wiith UCS of 160 MPa . The overburden stress is expected to reach 10 MPa at most, and the ratio of the horizontal principal stress to the vertical principal stress is $K=4 / 3$. Other characteristics of the rock mass are listed below:
\rightarrow The RQD is 80%.
\rightarrow The rock mass contains one joint set controlling stability.
\rightarrow Joints are rough, irregular and undulating.
\rightarrow There are unaltered joint walls with some surface staining.
\rightarrow There is medium hydraulic inflow with occasional outwash of joint fillings.
\rightarrow Stress conditions were deemed favorable to the excavation.

What is the rating of this rock mass in the Q-system? Use the average stress reduction factor (SRF) if Table 6 happens to suggest a range of values. Further, use the new SRF values if the stress field category is associated with old and new values. The latter values were taken from the 1993 review of the system.
A) $Q=0.86$
B) $Q=15.1$
C) $Q=79.2$
D) $Q=141$

PROBLEM 5

A small cavern will be excavated a mass of limestone wiith UCS of 39 MPa . The characteristics of the rock mass are as follows:
\rightarrow The RQD is 60\%.
\rightarrow The rock mass contains one joint set controlling stability plus a subset of random joints.
\rightarrow Joints are smooth and planar.
\rightarrow Rock wall contact before 10 cm shear. Strong overconsolidation. There are thin, continuous fillings of non-softening clay mineral.
\rightarrow The excavation intersects multiple weakness zones containing non-swelling clay minerals and disintegrated rock.
\rightarrow There is large hydraulic inflow with substantial outwash of joint fillings.

What is the rating of this rock mass in the Q-system? Use the average stress reduction factor (SRF) if Table 6 happens to suggest a range of values. Further, use the new SRF values if the stress field category is associated with old and new values. The latter values were taken from the 1993 review of the system.
A) $Q=0.11$
B) $Q=5.8$
C) $Q=67.5$
D) $Q=120$

PROBLEM 7

The following characteristics apply to a siltstone rock:
\rightarrow Uniaxial compressive strength of 25 MPa .
\rightarrow Block volume of $0.002 \mathrm{~m}^{3}$.
\rightarrow Smooth joint surfaces with slightly undulating joint plane.
\rightarrow Presence of a pronounced 2-m continuous joint.
\rightarrow Joint is thinly coated with a portion of sand and silt, but not clay.

Determine the Rock Mass Index (RMi) of the rock.
A) $R M i=0.503$
B) $R M i=0.907$
C) $R M i=5.64$
D) $R M i=10.6$

PROBLEM 8

The following characteristics apply to a limestone rock:
\rightarrow Uniaxial compressive strength of 50 MPa .
\rightarrow Block volume of $0.005 \mathrm{~m}^{3}$.
\rightarrow Very rough, strongly undulating joints.
\rightarrow Presence of several 0.1- to 0.4-m continuous joints.
\rightarrow Fresh joint walls.

Determine the Rock Mass Index (RMi) of the rock.
A) $R M i=0.414$
B) $R M i=1.52$
C) $R M i=4.78$
D) $R M i=14.1$

PROBLEM

A point load test was carried out on a $70-\mathrm{mm}$ cross-section cylindrical sandstone core. The sample withstood a load of 14.7 kN . The following table lists correlations between the corrected point load index and the uniaxial compressive strength for some types of rocks. The UCS for the rock in question is:

Correlation	Rock Type
$\sigma_{c}=23.5 I_{s(50)}$	Amphibolite
$\sigma_{c}=23.3 I_{\mathrm{s}(50)}$	Gabbro
$\sigma_{c}=15.8 I_{s(50)}$	Khondalite
$\sigma_{c}=21.9 I_{\mathrm{s}(50)}$	Sandstone
$\sigma_{c}=14.4 I_{\mathrm{s}(50)}$	Shale

A) $\sigma_{c}=19.8 \mathrm{MPa}$
B) $\sigma_{c}=40.6 \mathrm{MPa}$
C) $\sigma_{c}=76.4 \mathrm{MPa}$
D) $\sigma_{c}=91.5 \mathrm{MPa}$

PROBLEM 1

Laboratory test data show that unconfined compressive and tensile strengths for a rock are 105 MPa and 12 MPa , respectively. Field measurements indicate a joint persistence of 0.75 . Further laboratory testing shows that joint cohesion and friction angle are 0.09 MPa and 26°, respectively. Using the Terzaghi jointed rock mass model, estimate the cohesion and angle of internal friction for intact rock tested in the laboratory, then determine rock mass values of friction angle, cohesion, unconfined compressive strength, and tensile strength. True or false?
1.() The angle of internal friction of the rock mass is greater than 40°.
2. () The cohesion of the rock mass is greater than 4 MPa .
3.() The unconfined compressive strength of the rock mass is greater than 60 MPa .
4.() The tensile strength of the rock mass is greater than 20 MPa .

PROBLEM 11

The rock block in biaxial stress is subjected to compressive stresses $\sigma_{x}=$ -24 MPa and $\sigma_{y}=-12 \mathrm{MPa}$ (the negative sign denotes compression). The corresponding strains are $\epsilon_{x}=-440 \times 10^{-6}$ and $\epsilon_{y}=-80 \times 10^{-6}$ (the negative sign denotes shortening). Determine the modulus of elasticity for the rock and, referring to the table below, answer: which type of rock is the block made of?

Rock Type	Mean Elastic Modulus (GPa)
Granite	53
Gabbro	76
Diabase	88
Quartzite	66
Marble	45
Slate	10
Schist	34
Sandstone	15
Limestone	39
Dolostone	29

A) Schist.
B) Marble.
C) Granite.
D) Gabbro.

problem 1 ?

The block shown below has a dimension $t=5 \mathrm{~m}$ perpendicular to the plane of the figure and is made of granite with density $2.75 \mathrm{~g} / \mathrm{cm}^{3}$. The block is subjected to uniform normal stresses σ_{x} and σ_{y}. Strain gages A and B oriented in the x - and y-directions, respectively, are attached to the block and give normal strains $\epsilon_{x}=-2 \times 10^{-4}$ (shortening) and $\epsilon_{y}=5 \times 10^{-5}$ (elongation). Find the change in the z-dimension of the block, i.e. perpendicular to the plane of the figure. Bear in mind that tensile stresses and elongation strains are positive, while compressive stresses and shortening strains are negative. Select a mean Poisson's ratio from the following table and estimate Young's modulus from the Deere and Miller correlation

$$
E=64.64 \rho_{d}-115.4
$$

where ρ_{d} is the density in $\mathrm{g} / \mathrm{cm}^{3}$ and E is in GPa.

Rock Type	Poisson's ratio
Basalt	0.23
Diabase	0.29
Gabbro	0.18
Granite	0.20
Limestone	0.23
Sandstone	0.20
Schist	0.12
Shale	0.09

A) $\Delta t=-0.352 \mathrm{~mm}$
B) $\Delta t=-0.189 \mathrm{~mm}$
C) $\Delta t=+0.189 \mathrm{~mm}$
D) $\Delta t=+0.352 \mathrm{~mm}$

problem 13A

Consider a cemented breccia with Geological Strength Index (GSI) of 75 With regard to the Hoek-Brown failure criterion, the m-parameter for the intact rock is $m_{i}=16.3$ and the uniaxial compressive strength is $\sigma_{c i}=51 \mathrm{MPa}$. Estimate the UCS of the rock mass. Let $D=0$.

A) $\sigma_{c m}=12.7 \mathrm{MPa}$
B) $\sigma_{c m}=19.6 \mathrm{MPa}$
C) $\sigma_{c m}=26.5 \mathrm{MPa}$
D) $\sigma_{c m}=33.1 \mathrm{MPa}$

PROBLEM $13 B$

In 2001, Marinos and Hoek published the following correlation to estimate the uniaxial compressive strength of a rock mass,

$$
\sigma_{\mathrm{cm}}=\sigma_{\mathrm{ci}} \times 0.0034 m_{i}^{0.8} \times\left[1.029+0.025 \exp \left(-0.1 m_{i}\right)\right]^{\mathrm{GSI}}
$$

Use this correlation to compute the UCS of the rock mass considered in the previous part.
A) $\sigma_{c m}=12.4 \mathrm{MPa}$
B) $\sigma_{c m}=19.7 \mathrm{MPa}$
C) $\sigma_{c m}=26.3 \mathrm{MPa}$
D) $\sigma_{c m}=33.0 \mathrm{MPa}$

problem 13C

Estimate the tensile strength of the rock mass.
A) $\sigma_{t m}=15.8 \mathrm{kPa}$
B) $\sigma_{t m}=30.4 \mathrm{kPa}$
C) $\sigma_{t m}=44.9 \mathrm{kPa}$
D) $\sigma_{t m}=68.7 \mathrm{kPa}$

PROBLEM 13D
Estimate the Mohr-Coulomb failure criterion properties ϕ^{\prime} and c^{\prime} of the rock mass.
A) $\phi^{\prime}=23.2^{\circ}$ and $c^{\prime}=5.67 \mathrm{MPa}$
B) $\phi^{\prime}=23.2^{\circ}$ and $c^{\prime}=10.3 \mathrm{MPa}$
C) $\phi^{\prime}=35.1^{\circ}$ and $c^{\prime}=5.67 \mathrm{MPa}$
D) $\phi^{\prime}=35.1^{\circ}$ and $c^{\prime}=10.3 \mathrm{MPa}$

In the following shaft-related problems, compressive stresses are positive. Notations σ_{V}, σ_{H} and σ_{h} refer to the vertical, major horizontal and minor horizontal stresses, respectively. Assume
compass coordinates, i.e. $x=$ east, $y=$ north and $z=$ up.

PROBLEM 14A (Pariseau, 2007, w/ permission)

A 6 m diameter circular shaft is planned in massive rock. Laboratory tests on core from exploration drilling show that the compressive strength of the rock is $\sigma_{c}=152 \mathrm{MPa}$, the tensile strength is $\sigma_{t}=8.3 \mathrm{MPa}$, the unit weight of rock is $\gamma=23$ $\mathrm{kN} / \mathrm{m}^{3}$, Young's modulus of the rock $E=34.5 \mathrm{GPa}$, and the shear modulus of the rock is $G=13.8 \mathrm{GPa}$. The depth of the excavation is 915 m . Site measurements show that no tectonic stresses are present. Determine the factors of safety with respect to failure in compression in the vertical and horizontal directions.

Vertical View

Horizontal View
A) $\left(F S_{c}\right)_{V}=3.62$ and $\left(F S_{c}\right)_{H}=5.45$
B) $\left(F S_{c}\right)_{V}=3.62$ and $\left(F S_{c}\right)_{H}=10.9$
C) $\left(F S_{c}\right)_{V}=7.24$ and $\left(F S_{c}\right)_{H}=5.45$
D) $\left(F S_{c}\right)_{V}=7.24$ and $\left(F S_{c}\right)_{H}=10.9$

PROBLEM 14B

If the opening in the previous problem is in an in situ stress field such that $\sigma_{V}=\sigma_{H}$, what is the new factor of safety with respect to compression in the horizontal?
A) $\left(F S_{c}\right)_{H}=1.79$
B) $\left(F S_{c}\right)_{H}=3.62$
C) $\left(F S_{C}\right)_{H}=5.45$
D) $\left(F S_{c}\right)_{H}=7.37$

PROBLEM 5 (Pariseau, 2007, w/ permission)

A rectangular shaft $3 \times 6 \mathrm{~m}$ with the long axis parallel to the N-S line exists at a depth of 290 m . The mining plan calls for deepening the shaft to 549 m . Estimate safety factors for the shaft wall at a depth of 533 m . The rock has unconfined compressive strength $\sigma_{c}=164 \mathrm{MPa}$, tensile strength $\sigma_{t}=10.2 \mathrm{MPa}$, Young's modulus $E=36.5 \mathrm{GPa}$, Poisson's ratio $v=0.27$, and unit weight $\gamma=26.6$ $\mathrm{kN} / \mathrm{m}^{3}$. The premining stress state relative to compass coordinates is

$$
\begin{gathered}
\sigma_{E}=2414+4.5 h \\
\sigma_{N}=2897+7.9 h \\
\sigma_{V}=25.3 h
\end{gathered}
$$

where stresses are in kPa, h is the depth in meters, and E, N and V refer to compass coordinates. Premining shear stresses are nil relative to compass coordinates.

A) $\left(F S_{c}\right)_{V}=6.52$ and $\left(F S_{c}\right)_{H}=4.43$
B) $\left(F S_{c}\right)_{V}=6.52$ and $\left(F S_{c}\right)_{H}=8.18$
C) $\left(F S_{c}\right)_{V}=12.1$ and $\left(F S_{c}\right)_{H}=4.43$
D) $\left(F S_{c}\right)_{V}=12.1$ and $\left(F S_{c}\right)_{H}=8.18$

problem 16A

(Pariseau, 2007, w/ permission)

A rectangular shaft 3 m wide by 6 m long is sunk vertically in ground where the state of pre-mining stress involves the following stress variables.

$$
\begin{gathered}
\sigma_{x x}=7.9 \mathrm{MPa} \\
\sigma_{y y}=14.2 \mathrm{MPa} \\
\sigma_{z z}=11.0 \mathrm{MPa} \\
\tau_{x y}=1.5 \mathrm{MPa} \\
\tau_{y z}=\tau_{z x}=0
\end{gathered}
$$

with compression positive, $x=$ east, $y=$ north, and $z=$ up. Rock properties are Young's modulus $E=31.0 \mathrm{GPa}$, Poisson's ratio $v=0.20$, compressive strength $\sigma_{c}=$ 103 MPa and tensile strength $\sigma_{t}=6.2 \mathrm{MPa}$. Find the most favorable orientation of the shaft. As your answer, provide the angle θ that the long axis should make with the x-axis, as illustrated below.

A) $\theta=32.5^{\circ}$
B) $\theta=47.1^{\circ}$
C) $\theta=62.0^{\circ}$
D) $\theta=77.3^{\circ}$

problem 16B

Find the factor of safety with respect to compression in the horizontal at the optimum orientation.
A) $\left(F S_{c}\right)_{H}=1.55$
B) $\left(F S_{C}\right)_{H}=3.72$
C) $\left(F S_{c}\right)_{H}=5.94$
D) $\left(F S_{c}\right)_{H}=7.11$

PROBLEM 17 A (Pariseau, 2017, w/ permission)

Consider a square footing on a jointed rock mass that contains 3 orthogonal joint sets. The strata dip 45 degrees, although the foundation surface is flat. A footing $1.8 \times 1.8 \mathrm{~m}$ square is subjected to a vertical stress of 12 MPa . Estimate the settlement expected when joint spacing is 0.9 m . Properties of the rock are given in Table 14.

A) $\delta=5.78 \mathrm{~mm}$
B) $\delta=10.4 \mathrm{~mm}$
C) $\delta=15.2 \mathrm{~mm}$
D) $\delta=20.8 \mathrm{~mm}$

PROBLEM 178

Estimate the settlement expected if the joint spacing for Part A is 0.18 m . Properties of the rock remain as given in Table 14.
A) $\delta=10.7 \mathrm{~mm}$
B) $\delta=15.9 \mathrm{~mm}$
C) $\delta=20.8 \mathrm{~mm}$
D) $\delta=25.6 \mathrm{~mm}$

problem 17C

Estimate the settlement expected in Part A if, instead of the properties given in Table 14, the rock has $E=42 \mathrm{GPa}$ and $v=0.23$.
A) $\delta=1.78 \mathrm{~mm}$
B) $\delta=3.93 \mathrm{~mm}$
C) $\delta=5.94 \mathrm{~mm}$
D) $\delta=7.72 . \mathrm{mm}$

ADDITIONAL INFORMATION

Table 1 Rock Mass Rating (RMR) system

* Some conditions are mutually exclusive. For example, if infilling is present, the roughness of the surface will be overshadowed by the influence of the gouge. In such cases use A. 4 directly.
** Modified after Wickham et al (1972).

Table 2 Joint set number $\left(J_{n}\right)$ for use with the Q-system

	Condition	J $_{n}$
A	Massive, no or few joints	$0.5-1.0$
B	One joint set	2
C	One joint set plus random	3
D	Two joint sets	4
E	Two joint sets plus random	6
F	Three joint sets	9
G	Three joint sets plus random	12
H	Four or more joint sets, random, heavily jointed, "sugar cube," etc.	15
J	Crushed rock, earth-like	20

For intersections use (3.0 $\cdot \mathrm{J}_{n}$). For portals use (2.0 $\cdot \mathrm{J}_{\mathrm{n}}$).

Table 3 Joint roughness number $\left(J_{r}\right)$ for use with the Q-system

	Condition	$\mathbf{J}_{\mathbf{r}}$
	(a) Rock wall contact and (b) Rock wall contact before $\mathbf{1 0} \mathbf{~ c m}$ shear	
A	Discontinuous joint	4.0
B	Rough or irregular, undulating	3.0
C	Smooth, undulating	2.0
D	Slickensided, undulating	1.5
E	Rough or irregular, planar	1.5
F	Smooth, planar	1.0
G	Slickensided, planar	0.5
	(c) No rock wall contact when sheared	
H	Zone containing clay minerals thick enough to prevent rock wall contact	1.0
J	Sandy, gravelly, or crushed zone thick enough to prevent rock wall contact	

Descriptions refer to small-scale features and intermediate-scale features, in that order. Add 1.0 if the mean spacing of the relevant joint set is greater than 3 m . $\mathrm{J}_{\mathrm{r}}=0.5$ can be used for planar, slickensided joints having lineation, provided the lineations are favorably oriented. J_{r} and J_{a} classification is applied to the joint set or discontinuity that is least favorable for stability both from the point of view of orientation and shear resistance, τ.

Table 4 Joint alteration number $\left(J_{a}\right)$ for use with the Q-system

	Condition	ϕ_{r} approx. (degree)	J_{a}
	(a) Rock wall contact (no mineral filling, only coating)		
A	Tightly healed, hard, non-softening, impermeable filling, i.e., quartz or epidote		0.75
B	Unaltered joint walls, surface staining only	25-35	1.0
C	Slightly altered joint walls; non-softening mineral coatings, sandy particles, clay-free disintegrated rock, etc.	25-30	2.0
D	Silty or sandy clay coatings, small clay fraction (non-softening)	20-25	3.0
E	Softening or low friction clay mineral coatings, i.e., kaolinite and mica; also chlorite, talc, gypsum, and graphite, etc., and small quantities of swelling clays (discontinuous coatings, $1-2 \mathrm{~mm}$ or less in thickness)	8-16	4.0
	(b) Rock wall contact before 10 cm shear (thin mineral fillings)		
F	Sandy particles, clay-free disintegrated rock, etc.	25-30	4.0
G	Strongly over-consolidated, non-softening clay mineral fillings (continuous, $<5 \mathrm{~mm}$ in thickness)	16-24	6.0
H	Medium or low over-consolidation, softening, clay mineral fillings (continuous, $<5 \mathrm{~mm}$ in thickness)	12-16	8.0
J	Swelling clay fillings, i.e., montmorillonite (continuous, $<5 \mathrm{~mm}$ in thickness); value of J_{a} depends on percent of swelling clay-size particles, and access to water, etc.	6-12	8-12
	(c) No rock wall contact when sheared (thick mineral fillings)		
K, L, M	Zones or bands of disintegrated or crushed rock and clay (see $\mathrm{G}, \mathrm{H}, \mathrm{J}$ for description of clay condition)	6-24	$\begin{aligned} & 6,8, \text { or } \\ & 8-12 \end{aligned}$
N	Zones or bands of silty or sandy clay, small clay fraction (non-softening)	-	5.0
O, P, R	Thick, continuous zones or bands of clay (see G, H, J for description of clay condition)	6-24	$\begin{aligned} & 10,13, \text { or } \\ & 13-20 \end{aligned}$

Table 5 Joint water reduction factor $\left(J_{w}\right)$ for use with the Q-system

	Condition	Approx. water pressure (MPa)	J_{w}
A	Dry excavation or minor inflow, i.e., 5 It./min locally	<0.1	1
B	Medium inflow or pressure, occasional outwash of joint fillings	$0.1-0.25$	0.66
C	Large inflow or high pressure in competent rock with unfilled joints	$0.25-1.0$	0.5
D	Large inflow or high pressure, considerable outwash of joint fillings	$0.25-1.0$	0.33
E	Exceptionally high inflow or water pressure at blasting, decaying with time	>1.0	$0.2-0.1$
F	Exceptionally high inflow or water pressure continuing without noticeable decay	>1.0	$0.1-0.05$

Factors C to F are crude estimates. Modify Jw if drainage measures are installed. Special problems caused by ice formation are not considered.
For general characterization of rock masses distant from excavation influences, the use of $J_{w}=1.0,0.66$, $0.5,0.33$, etc., as depth increases from, say, $0-5,5-25,25-250$ to $>250 \mathrm{~m}$ is recommended, assuming that RQD $/ l_{\text {i }}$ is low enough (e.g., 0.5-25) for good hydraulic conductivity. This will help to adjust Q for some of the effective stress and water softening effects in combination with appropriate characterization values of the effective stress and water softening effects in combination with appropriate characterization values of
SRF. Correlations with depth-dependent static modulus of deformation and seismic velocity will then follow the practice used when these were developed.

Table 6 Stress reduction factor (SRF) for use with the Q-system

Conditions					SRF
(a) Weakness zones intersecting excavation, which may cause loosening of rock mass when tunnel is excavated					
	Multiple occurrences of weakness zones containing clay or chemically disintegrated rock, very loose surrounding rock (any depth)				10.0
B	Single-weakness zones containing clay or chemically disintegrated rock (depth of excavation $\leq 50 \mathrm{~m}$)				5.0
C	Single-weakness zones containing clay or chemically disintegrated rock (depth of excavation $>50 \mathrm{~m}$)				2.5
D	Multiple-shear zones in competent rock (clay-free), loose surrounding rock (any depth)				7.5
E	Single-shear zones in competent rock (clay-free) (depth of excavation $\leq 50 \mathrm{~m}$)				5.0
F	Single-shear zones in competent rock (clay-free) (depth of excavation $>50 \mathrm{~m}$)				2.5
G	Loose, open joints, heavily jointed or "sugar cube," etc. (any depth)				5.0
	(b) Competent rock, rock stress problems				
		$\mathrm{qc} / \sigma 1$	$\sigma_{0} / \mathbf{q c}$	SRF (old)	SRF (new)
H	Low stress, near surface, open joints	>200	<0.01	2.5	2.5
J	Medium stress, favorable stress condition	200-10	0.01-0.3	1.0	1.0
K	High stress, very tight structure; usually favorable to stability, may be unfavorable to wall stability	10-5	0.3-0.4	0.5-2.0	0.5-2.0
L	Moderate slabbing after >1 hour in massive rock	5-3	0.5-0.65	5-9	5-50
M	Slabbing and rock burst after a few minutes in massive rock	3-2	0.65-1.0	9-15	50-200
N	Heavy rock burst (strain-burst) and immediate dynamic deformations in massive rock	<2	>1	15-20	200-400

(c) Squeezing rock; plastic flow of incompetent rock under the influence of high rock pressures

O	Mild squeezing rock pressure	$1-5$	$5-10$
P	Heavy squeezing rock pressure	>5	$10-20$

(d) Swelling rock; chemical swelling activity depending on presence of water

Q	Mild swelling rock pressure	$5-10$
R	Heavy swelling rock pressure	$10-15$

Reduce these SRF values by $25-50 \%$ if the relevant shear zones only influence but do not intersect the excavation. This will also be relevant for characterization.
For strongly anisotropic virgin stress field (if measured): when $5 \leq \sigma_{1} / \sigma_{3} \leq 10$, reduce q_{c} to $0.75 q_{c}$; when $\sigma_{1} / \sigma_{3}>10$, reduce q_{c} to $0.50 \mathrm{q}_{\mathrm{c}}$ (where q_{c} is unconfined compressive strength), σ_{1} and σ_{3} are major and minor principal stresses, and σ_{0} is the maximum tangential stress (estimated from elastic theory).
Few case records available where depth of crown below surface is less than span width; suggest SRF increase from 2.5 to 5 for such cases (see H).
Cases L., M, and N are usually most relevant for support design of deep tunnel excavation in hard massive rock masses, with RQD//n ratios from about 50-200.
For general characterization of rock masses distant from excavation influences, the use of $\mathrm{SRF}=5,2.5,1.0$, and 0.5 is recommended as depth increases from, say, 0-5, 5-25, 25-250, $>250 \mathrm{~m}$. This will help to adjust Q for some of the effective stress effects, in combination with appropriate characterization values of J_{w} Correlations with depth-dependent static modulus of deformation and seismic velocity will then follow the practice used when these were developed.
Cases of squeezing rock may occur for depth $\mathrm{H}>350 \mathrm{Q}^{1 / 3}$ (Singh \& Goel, 2006). Rock mass compressive strength can be estimated from $\mathrm{q}_{\mathrm{cmax}} \approx 7 \gamma(\mathrm{Q})^{1 / 3}(\mathrm{MPa}) ; \gamma$ is the rock density in $\mathrm{t} / \mathrm{m}^{3}$, and $\mathrm{q}_{\mathrm{cmax}}=$ rock mass compressive strength.

Table $\mathbf{7}$ Classification of rock mass based on Q-values

Q	Group	Classification
$0.001-0.01$		Exceptionally poor
$0.01-0.1$	3	Extremely poor
$0.1-1$		Very poor
$1-4$	2	Poor
$4-10$		Fair
$10-40$		Good
$40-100$	1	Very good
$100-400$		Extremely good
$400-1000$		Exceptionally good

Table 8 Joint roughness factor $\left(j_{R}\right)$ for use with the RMi system

Small-scale smoothness* of joint surface	Large-scale waviness of joint plane				
(The ratings in bold are similar to Jr in the Q-system)	Planar	Slightly undulating	Undulating	Strongly undulating	Stepped or interlocking
Very rough	2	3	4	6	6
Rough	1.5	2	3	4.5	6
Smooth	1	1.5	2	3	4
Polished or slickensided*	0.5	1	1.5	2	3

*For slickensided surfaces the ratings given cover possible movement along the lineation. (For movements across lineation, a rough or very rough rating should be applied for the surface.)

Table 9 Joint length and continuity factor $\left(j_{L}\right)$ for use with the RMi system

			jL	
Joint length (m)	Term	Type	Continuous joints	Discontinuous joints**
<0.5	Very short	Bedding/foliation parting	3	6
$0.1-1.0$	Short/small	Joint	2	4
$1-10$	Medium	Joint	1	2
$10-30$	Long/large	Joint	0.75	1.5
>30	Very long/ large	Filled joint, seam or shear*	0.5	1

[^0] **Discontinuous joints end in massive rock mass.

Table 10 Joint alteration factor $\left(j_{A}\right)$ for use with the RMi system

Term	Description	jA
	A. Contact between rock wall surfaces	
Clean joints		0.75
Healed or welded joints	Softening, impermeable filling (quartz, epidote, etc.)	No coating or filling on joint surface, except from staining (rust)
Alteration of joint wall	The joint surface exhibits one class higher alteration than the rock	2
i. 1 grade more altered	The joint surface shows two classes higher alteration than the rock	4
ii. 2 grade more altered	Coating of friction materials without clay	3
Coating or thin filling	Coating of softening and cohesive minerals	4
Sand, silt, calcite, etc.	Ner	
Clay, chlorite, talc, etc.		

B. Filled joints with partial or no contact between the joint wall surfaces

		Partial wall contact Type of filling material	No wall contact (thick filling or
Sand, silt, calcite, etc. (non- softening)	Filling of friction material without clay	4	8
Compacted clay materials	"Hard" filling of softening and cohesive materials	6	$6-10$
Soft clay materials	Medium to low over- consolidation of filling	8	12
Swelling clay materials	Filling material exhibits clear swelling properties	$8-12$	$13-20$

*Based on joint thickness division in the RMR system (Bieniawski, 1973).
Table 11 Classification of rock based on RMi values

Term		
For $R M i$	Related to rock mass strength	RMi value
Extremely low	Extremely weak	<0.001
Very low	Very weak	$0.001-0.01$
Low	Weak	$0.01-0.1$
Moderate	Medium	$0.1-1.0$
High	Strong	$1.0-10.0$
Very high	Very strong	$10-100$
Extremely high	Extremely strong	>100

Table 12 Principal stresses for selected pre-shaft stress ratios (M values)
(Compression is considered positive)

Case M	Principal stresses	Physical description
-1	$S_{3}=-S_{1}$	Pure shear
0	$S_{3}=0$	Uniaxial compression
+1	$S_{3}=+S_{1}$	Hydrostatic compression
$-\infty$	$S_{1}=0$	Uniaxial tension

Figure 1 Stress concentrations at the wall of a circular shaft at 5° intervals for a range of principal stress ratios (M values)

Table 13 Stress concentration factors about a rectangular section

$\begin{aligned} & k \\ & k^{\prime} \end{aligned}$	M										
	0		1/5		1/3		1/2		$3 / 4$		1
	$K_{\text {max }}$	$K_{\text {min }}$	$K_{\text {max }}$ $K_{\text {min }}$								
1/8	3.70	-0.84	5.30	-0.18	6.62	0.20	8.28	0.64	11.1	0.42	14.04
8	11.8	-1.01	12.08	-0.77	12.4	-0.60	12.8	-0.40	13.4	-0.10	0.18
1/4	2.96	-0.81	3.72	-0.29	4.36	0.03	5.28	0.42	6.80	0.56	8.43
4	6.96	-0.96	7.21	-0.71	7.37	-0.53	7.58	-0.32	7.99	0.00	0.32
1/2	3.28	-0.82	3.70	-0.41	4.05	-0.14	4.57	0.19	5.48	0.69	6.46
2	4.72	-0.92	4.97	-0.64	5.15	-0.44	5.44	-0.20	5.92	0.16	0.52
।	3.58	-0.85	3.83	-0.52	4.06	-0.29	4.39	-0.02	4.97	0.40	5.65
											0.80

Notes
$M=$ principal stress ratio $\left(S_{3} / S_{1}\right)$.
$k=$ aspect ratio $(b / a), S_{1}$ is applied parallel to the a-axis (long axis of the section).
$k^{\prime}=I / k$ corresponding to application of S_{I} parallel to the short axis of the section.
$K(\max)=$ maximum stress concentration factor.
$K(\mathrm{~min})=$ minimum stress concentration factor.
Table 14 Properties for guideline computations involving foundations on jointed rock

PROPERTY MATERIAL	$E\left(10^{6} \mathrm{psi} / \mathrm{GPa}\right)$	$v(-)$	$C_{o}(\mathrm{psi} / \mathrm{MPa})$	$T_{o}(\mathrm{psi} / \mathrm{MPa})$
ROCK	$4.8 / 33.1$	0.20	$9,600 / 66.2$	$800 / 5.52$
JOINTS	$0.048 / 0.33$	0.20	$480 / 3.3$	$4.8 / 0.033$
FOOTING	$4.8 / 33.1$	0.20	$4,800 / 33.1$	$400 / 2.76$

$\mathrm{E}=$ Young's modulus, $\mathrm{v}=$ Poisson's ratio, $\mathrm{C}_{\mathrm{o}}=$ unconfined compressive strength, $\mathrm{T}_{\mathrm{o}}=$ tensile strength.

Table 15 Square foundation stiffness for various combinations of joint spacing and strata dip. ($B=$ foundation width, $S=$ joint spacing)

SPACING	WIDE	MEDIUM	CLOSE	VERY CLOSE
DIP (deg)	$B / S=2$	$B / S=5$	$B / S=10$	$B / S=25$
$0 / 90$	$6.48 / 1.76$	$4.37 / 1.19$	$2.98 / 0.81$	$1.54 / 0.42$
$15 / 75$	$5.68 / 1.54$	$3.50 / 0.95$	$2.05 / 0.56$	$1.06 / 0.29$
$30 / 60$	$6.04 / 1.64$	$3.76 / 1.02$	$2.00 / 0.54$	$1.06 / 0.29$
$45 / 45$	$6.37 / 1.73$	$3.56 / 0.97$	$1.78 / 0.48$	$0.94 / 0.25$

[^1]
SOLUTIONS

P. 1 ■ Solution

The RQD is given by

$$
R Q D=\frac{\sum \text { Length of core pieces }>10 \mathrm{~cm}}{\text { Total length of core run }}
$$

Accordingly,

$$
R Q D=\frac{24+40+41+44}{200}=74.5 \%
$$

This RQD indicates a rock with fair to good quality.

- The correct answer is \mathbf{C}.

P. 2 ■ Solution

1. True. Palmström and other investigators verified that, indeed, there is a poor correlation between the RQD and other approaches to block size measurement. As a result, the use of RQD as a standalone parameter in rock engineering calculations may lead to inaccuracy or errors. Bienlawski has observed that while the RQD is a practical parameter for core logging, it is not sufficient on its own to provide an accurate description of a rock mass. This parameter should, therefore, be used with great care.
2. False. The volumetric joint count for the rock mass in question is

$$
J_{V}=\frac{1}{(10 / 12)}+\frac{1}{(6 / 9)}+\frac{1}{(10 / 8)}+\frac{1}{(5 / 7)}+\frac{1}{(4 / 12)}=7.9 \text { joints } / \mathrm{m}^{3}
$$

The corresponding RQD follows as

$$
R Q D=110-2.5 \times 7.9=90.25 \%
$$

3. True. The coefficients to use for a porous limestone such as the one in question are $n_{i}=3.43 \%, a=0.4 \times 10^{-4}$ and $b=-144 \times 10^{-4}$. Substituting $T=400^{\circ} \mathrm{C}$ in the correlation brings to

$$
n=3.43+0.4 \times 10^{-4} \times 400^{2}-144 \times 10^{-4} \times 400=4.07 \%
$$

4. False. We are looking for the depth at which the density becomes 2.0 $\mathrm{g} / \mathrm{cm}^{3}$. With reference to the correlation received, we write

$$
2.72-1.244 \exp (-0.846 z)=2.0
$$

Solving this equation gives $z_{\min }=0.646 \mathrm{~km}$; that is, the rock reaches the prescribed density at a depth of about 650 m .
5. False. In general, the opposite is true, i.e., the UCS tends to decrease with increasing specimen volume. For very small specimen sizes, the opposite effect is observed, that is, there may be a decrease with decreasing specimen volume. This latter effect, coupled with the ISRM's requirement that the specimen diameter should be at least 10 times the size of the largest grain, provides a reason for using specimen diameters of approximately 50 mm in laboratory compression tests.
6. True. The coefficients for use with the type of rock in question are $a=$ $14.68, b=0.8193$, and $c=24.0$, which leads to the relation

$$
\sigma_{c}=14.68 e^{-0.8193 w}+24.0
$$

For a water content of 2%, we get

$$
\left(\sigma_{c}\right)_{1}=14.68 \times \exp (-0.8193 \times 2)+24.0=26.85 \mathrm{MPa}
$$

while, for $w=5 \%$,

$$
\left(\sigma_{c}\right)_{2}=14.68 \times \exp (-0.8193 \times 7)+24.0=24.05 \mathrm{MPa}
$$

which represents a decrease of 10.43%.
7. False. Factor $f_{c}=120 / 100=1.20$. Substituting this and other pertaining variables gives

$$
\sigma_{t}=-0.029 \times 2.70 \times 1.0 \times 15^{0.3}=-0.176 \mathrm{MPa}=-176 \mathrm{kPa}
$$

8. True. This is observed in Section 7.8 of Zhang's Engineering Properties of Rocks. In addition, the minimum strength is obtained when the angle β between the major principal stress and the stratification plane is at 30-60 degrees. The degree of strength anisotropy is commonly quantified by the strength anisotropy ratio, R_{c}, defined as

$$
R_{c}=\frac{\sigma_{c, \max }}{\sigma_{c, \min }}
$$

where $\sigma_{c, \text { max }}$ and $\sigma_{c, \text { min }}$ are the maximum and minimum compressive strengths at a given confining pressure, respectively. A rock is said to exhibit high anisotropy if $4.0<R_{c} \leq 6.0$, and very high anisotropy if $R_{c}>6.0$.
9. False. The 1976 RMR equals the 1989 RMR minus, not plus, 5. The RMR underwent several modifications since it was first proposed in 1973. For example, in 1974 the number of classification parameters was reduced from 8 to 6; in 1975, ratings were adjusted and recommended support requirements were reduced; in 1976, class boundaries were reduced to even multiples of 20; in 1979, the ISRM rock mass description proposed in the previous year was adopted.
10. True. Joint orientation, for one, was not found to be an important, general parameter. If joint orientations had been included, the Q classification system would have been less general, and its essential simplicity lost. Other features not included in the Q-system are direct measurements of rock strength (although a 2002 review of the system does take the UCS into account), joint size, joint persistence, and joint aperture. The latter is used in the RMR, GSI and RMi systems.

P. 3 ■ Solution

For a point-load strength index of 4 MPa , Table 1-A1 gives a rating of 12. For a RQD between 50 and 75\%, Table 1-A2 gives a rating of 13 . For a discontinuity spacing of 450 mm , Table 1-A3 gives a rating of 10 . For slightly rough joints with the specified separation and highly weathered walls, Table 1-A4 gives a rating of 20. For the specified groundwater conditions, Table 1-A5 gives a rating of 10. Lastly, Table 1-F gives a description of 'favorable' if the tunnel is to be driven against the dip of a set of joints dipping at 30°. Referring to Table 1-B with this classification, we read a rating adjustment of -2 . Gathering this information, the RMR is found as

$$
R M R=12+13+10+20+10-2=63
$$

According to Table 1-C, the mass in question fits into the 'good rock' category.
\Rightarrow The correct answer is \mathbf{C}.

P. 4 ■ Solution

For a UCS of 80 MPa , Table 1-A1 gives a rating of 12. For a RQD of 80%, Table 1-A2 gives a rating of 17. For a discontinuity spacing of 80 mm , Table 1-A3 gives a rating of 8 . Since detailed information on the joint set is available, we may resort to the detailed classification in Table 1-E instead of using the generalizations in row 1-A4. Accordingly, a discontinuity persistence of 4 m contributes +2 to the rating; an aperture $<0.1 \mathrm{~mm}$ adds +5 ; a slightly rough structure adds +3 ; the absence of infilling adds +6 ; a moderately weathered structure adds +3 ; then, the overall rating increase due to discontinuity conditions
is $2+5+3+6+3=19$. For dripping groundwater conditions, Table $1-A 5$ gives a rating of +4 . For 'fair' discontinuity conditions, Table 1-B gives a penalty rating of 7. Gleaning this information, the RMR is found as

$$
R M R=12+17+8+19+4-7=53
$$

As per Table 1-C, the mass considered belongs to the 'fair rock' category.

- The correct answer is B.

P. 5 ■ Solution

For one set of joints governing stability, Table 2 gives a joint set number J_{n} = 2.0. For rough, irregular and undulating joints, Table 3 gives a joint roughness number $J_{r}=3.0$. For unaltered joint walls with surface staining only, Table 4 gives a joint alteration number $J_{a}=1.0$. For medium inflow with occasional outwash of joint fillings, Table 5 gives a joint water reduction number $J_{w}=0.66$. The overburden stress will not surpass 10 MPa , which is to say that the major principal stress will be $\sigma_{1}=K \times 10=4 / 3 \times 10=13.3 \mathrm{MPa}$ at most. This gives a ratio $\sigma_{c} / \sigma_{1}=$ $160 / 13.3=12.0$. Referring to Table 6 with this quantity, we see that, for a ratio σ_{c} / σ_{1} ranging from 10.0 to 200 and favorable stress conditions, the SRF should be taken as 1.0. We are now in position to evaluate the Q-value for this rock mass,

$$
Q=\frac{R Q D}{J_{n}} \times \frac{J_{r}}{J_{a}} \times \frac{J_{w}}{S R F}=\frac{80}{2.0} \times \frac{3.0}{1.0} \times \frac{0.66}{1.0}=79.2
$$

According to Table 7, the mass in question is just above the threshold to be classified as 'very good' rock.

- The correct answer is C.

P. 6 ■ Solution

For one set of joints governing stability plus random, Table 2 gives a joint set number $J_{n}=3.0$. For smooth and planar joints, Table 3 gives a joint roughness number $J_{r}=1.0$. For rock wall contact before 10 cm shear, strongly overconsolidated, non-softening clay mineral, Table 4 gives a joint alteration number $J_{a}=6.0$. For large inflow with considerable outwash of joint fillings, Table 5 gives a joint water reduction $J_{w}=0.33$. Since the excavation intersects multiple weakness zones containing clay and disintegrated rock, Table 6 indicates a SRF of 10.0. We can then establish the Q-value for this rock mass,

$$
Q=\frac{R Q D}{J_{n}} \times \frac{J_{r}}{J_{a}} \times \frac{J_{w}}{S R F}=\frac{60}{3.0} \times \frac{1.0}{6.0} \times \frac{0.33}{10.0}=0.11
$$

According to Table 7, the mass in question is just above the threshold to be classified as 'very poor' rock.

- The correct answer is A.

P. 7 ■ Solution

For smooth and strongly undulating joints, Table 8 gives $j_{R}=3$. For a single medium continuous joint, Table 9 gives $j_{L}=1$. For the joints coated with sand and silt, Table 10 gives $j_{A}=3$. The joint condition factor is, accordingly,

$$
j_{C}=\frac{j_{L} j_{R}}{j_{A}}=\frac{1 \times 3}{3}=1.0
$$

The value of D is

$$
D=0.37 \times j_{C}^{-0.2}=0.37 \times 1.0^{-0.2}=0.37
$$

and the jointing parameter follows as

$$
J_{P}=0.2 \times j_{C}^{0.5} \times V_{b}^{D}=0.2 \times 1.0^{0.5} \times 0.002^{0.37}=0.0201
$$

The RMi is then

$$
R M i=\sigma_{c} \times J_{p}=25 \times 0.0201=0.503
$$

From Table 11, we see that the rock in question has medium mechanical strength.

- The correct answer is A.

P. 8 - Solution

For very rough and strongly undulating joints, Table 8 gives $j_{R}=6$. For very short continuous joints, Table 9 gives $j_{L}=3$. For fresh joint walls, Table 11 gives j_{A} $=1$. The joint condition factor is calculated as

$$
j_{C}=\frac{j_{L} j_{R}}{j_{A}}=\frac{3 \times 6}{1}=18.0
$$

The value of D is

$$
D=0.37 \times j_{C}^{-0.2}=0.37 \times 18.0^{-0.2}=0.208
$$

and the jointing parameter is computed as

$$
J_{P}=0.2 \times j_{C}^{0.5} \times V_{b}^{D}=0.2 \times 18.0^{0.5} \times 0.005^{0.208}=0.282
$$

The RMi is determined to be

$$
R M i=\sigma_{c} \times J_{P}=50 \times 0.282=14.1
$$

Reading Table 11, we verify that the rock in question is very strong.

- The correct answer is D.

P. 9 ■ Solution

The uncorrected point load index is

$$
I_{s}=\frac{P}{D_{e}^{2}}=\frac{14.7 \times 10^{3}}{0.07^{2}}=3 \mathrm{MPa}
$$

The corrected index follows as

$$
I_{\mathrm{s}(50)}=I_{\mathrm{s}} \times\left(\frac{D_{e}}{50}\right)^{0.45}=3 \times\left(\frac{70}{50}\right)^{0.45}=3.49 \mathrm{MPa}
$$

With reference to the table, the correlation to use is $\sigma_{c}=21.9 I_{s(50)}$. Accordingly,

$$
\sigma_{\mathrm{c}}=21.9 I_{\mathrm{s}(50)}=21.9 \times 3.49=76.4 \mathrm{MPa}
$$

- The correct answer is \mathbf{C}.

P. 10 ■ Solution

1. False. The angle of internal friction for intact rock is

$$
\begin{aligned}
\sin \phi=\frac{\sigma_{c}-\sigma_{t}}{\sigma_{c}+\sigma_{t}} & =\frac{105-12}{105+12}=0.795 \\
\therefore \phi & =52.7^{\circ}
\end{aligned}
$$

The cohesion of the intact rock is

$$
c=\frac{\sqrt{\sigma_{c} \sigma_{t}}}{2}=\frac{\sqrt{105 \times 12}}{2}=17.7 \mathrm{MPa}
$$

Turning to the rock mass, the angle of internal friction is determined as $\tan \phi_{r m}=(1-p) \times \tan \phi+p \times \tan \phi_{j}=(1-0.75) \times \tan 52.7^{\circ}+0.75 \times \tan 26^{\circ}=0.694$

$$
\therefore \phi_{r m}=34.8^{\circ}
$$

2. True. The cohesion of the rock mass is calculated as
$c_{r m}=(1-p) \times c+p \times c_{j}=(1-0.75) \times 17.7+0.75 \times 0.09=4.49 \mathrm{MPa}$
3. True. The unconfined compressive strength of the rock mass is
computed as

$$
\sigma_{c, r m}=\frac{2 c \cos \phi_{r m}}{1-\sin \phi_{r m}}=\frac{2 \times 17.7 \times \cos 34.8^{\circ}}{1-\sin 34.8^{\circ}}=67.7 \mathrm{MPa}
$$

4. False. The tensile strength of the rock mass is evaluated as

$$
\sigma_{t, r m}=\frac{2 c \cos \phi_{r m}}{1+\sin \phi_{r m}}=\frac{2 \times 17.7 \times \cos 34.8^{\circ}}{1+\sin 34.8^{\circ}}=18.5 \mathrm{MPa}
$$

As a final check on the validity of these results, note that the ratio of the compressive strength to the tensile strength of the rock mass should obey the relation

$$
\frac{\sigma_{c, r m}}{\sigma_{t, r m}}=\frac{1+\sin \phi_{r m}}{1-\sin \phi_{r m}}
$$

Evaluating the left-hand side gives

$$
\frac{\sigma_{c, r m}}{\sigma_{t, r m}}=\frac{67.7}{18.5}=3.66
$$

As for the right-hand side,

$$
\frac{1+\sin 34.8^{\circ}}{1-\sin 34.8^{\circ}}=3.66
$$

The equality is correct, and our results have been corroborated.

P. 11 ■ Solution

The stresses and strains are related by the stress-strain relationships

$$
\begin{aligned}
& \varepsilon_{x}=\frac{1}{E}\left(\sigma_{x}-v \sigma_{y}\right) \\
& \varepsilon_{y}=\frac{1}{E}\left(\sigma_{y}-v \sigma_{x}\right)
\end{aligned}
$$

Inserting our data yields

$$
\begin{aligned}
& -440 \times 10^{-6}=\frac{1}{E}\left[-24 \times 10^{6}-v \times\left(-12 \times 10^{6}\right)\right] \\
& \therefore-440 \times 10^{-6} E=-24 \times 10^{6}+12 \times 10^{6} v(\mathrm{I}) \\
& -80 \times 10^{-6}=\frac{1}{E}\left[-12 \times 10^{6}-v \times\left(-24 \times 10^{6}\right)\right] \\
& \therefore-80 \times 10^{-6} E=-12 \times 10^{6}+24 \times 10^{6} v(\mathrm{II})
\end{aligned}
$$

Solving equations (I) and (II) simultaneously gives $v=0.35$ and $E=45 \mathrm{GPa}$. With reference to the table we were given, we conclude that the block is made of marble.
\Rightarrow The correct answer is B.

P. 12 ■ Solution

Reading the table, we take a Poisson's ratio $v=0.20$. For a density of 2.75 $\mathrm{g} / \mathrm{cm}^{3}$, Young's modulus is estimated as

$$
E=64.64 \times 2.75-115.4=62.4 \mathrm{GPa}
$$

The stress in the x-direction can be determined with the stress-strain relation for biaxial stress,
$\sigma_{x}=\frac{E}{1-v^{2}}\left(\varepsilon_{x}+\nu \varepsilon_{y}\right)=\frac{62.4 \times 10^{9}}{1-0.20^{2}} \times\left[-2 \times 10^{-4}+0.20 \times\left(5 \times 10^{-5}\right)\right]=-12.4 \mathrm{MPa}$
The negative sign of course denotes compression. As for the y-direction, we have
$\sigma_{y}=\frac{E}{1-v^{2}}\left(\varepsilon_{y}+v \varepsilon_{x}\right)=\frac{62.4 \times 10^{9}}{1-0.20^{2}} \times\left[5 \times 10^{-5}+0.20 \times\left(-2 \times 10^{-4}\right)\right]=0.650 \mathrm{MPa}$
The strain in the z-direction follows as

$$
\varepsilon_{z}=-\frac{v}{E}\left(\sigma_{x}+\sigma_{y}\right)=-\frac{0.20}{62.4 \times 10^{9}} \times\left(-12.4 \times 10^{6}+0.65 \times 10^{6}\right)=3.77 \times 10^{-5}
$$

Finally, the change in the dimension in the z-direction is found as

$$
\Delta t=\varepsilon_{z} \times t=\left(3.77 \times 10^{-5}\right) \times 5000=+0.189 \mathrm{~mm}
$$

The positive sign of course indicates an increase in the dimension being considered.
\Rightarrow The correct answer is \mathbf{C}.

P. $13 ■$ Solution

Part A: The uniaxial compressive strength of the rock mass can be estimated as

$$
\sigma_{\mathrm{cm}}=\sigma_{\mathrm{ci}} \times s^{a}
$$

Constant s is computed as

$$
s=\exp \left(\frac{G S I-100}{9-3 D}\right)=\exp \left(\frac{75-100}{9-3 \times 0}\right)=0.0622
$$

Constant a, in turn, is determined as

$$
a=\frac{1}{2}+\frac{1}{6} \times\left(e^{-G S I / 15}-e^{-20 / 3}\right)=0.5+0.167 \times\left(e^{-75 / 15}-e^{-20 / 3}\right)=0.501
$$

Lastly, the uniaxial compressive strength of the rock mass is estimated as

$$
\sigma_{\mathrm{cm}}=\sigma_{\mathrm{ci}} s^{a}=51 \times 0.0622^{0.501}=12.7 \mathrm{MPa}
$$

- The correct answer is A.

Part B: Substituting the pertaining data gives

$$
\sigma_{\mathrm{cm}}=51 \times 0.0034 \times 16.3^{0.8} \times[1.029+0.025 \times \exp (-0.1 \times 16.3)]^{75}=19.7 \mathrm{MPa}
$$

- The correct answer is B.

Part C: The tensile strength of the rock mass can be estimated with the relation

$$
\sigma_{\mathrm{tm}}=-\sigma_{\mathrm{cm}} \frac{\sqrt{m_{m}^{2}+4 s}-m_{m}}{2}
$$

where m_{m} is the m-parameter for the rock mass, which is given by

$$
m_{m}=m_{i} \exp \left(\frac{G S I-100}{28-14 D}\right)=28 \times \exp \left(\frac{75-100}{28-14 \times 0}\right)=11.5
$$

Accordingly,

$$
\begin{gathered}
\sigma_{\mathrm{tm}}=-12.7 \times\left(\frac{\sqrt{11.5^{2}+4 \times 0.0622}-11.5}{2}\right)=-0.0687 \\
\therefore \sigma_{\mathrm{tm}}=68.7 \mathrm{kPa}
\end{gathered}
$$

- The correct answer is D.

Part D: The first step is to appeal to the Hoek-Brown failure criterion curve and simulate some data points. The curve in question is of course

$$
\sigma_{1 \mathrm{f}}^{\prime}=\sigma_{3 \mathrm{f}}^{\prime}+\sigma_{\mathrm{ci}}^{\prime}\left(m_{m} \frac{\sigma_{3 \mathrm{f}}^{\prime}}{\sigma_{\mathrm{ci}}^{\prime}}+s\right)^{a}
$$

which in the present case becomes

$$
\begin{aligned}
& \sigma_{1 \mathrm{f}}^{\prime}=\sigma_{3 \mathrm{f}}^{\prime}+51\left(11.5 \times \frac{\sigma_{3 \mathrm{f}}^{\prime}}{51}+0.0622\right)^{0.501} \\
& \therefore \sigma_{1 \mathrm{f}}^{\prime}=\sigma_{3 \mathrm{f}}^{\prime}+51\left(0.225 \sigma_{3 \mathrm{f}}^{\prime}+0.0622\right)^{0.501}
\end{aligned}
$$

Using this equation, we can tabulate some values of the major principal stress $\sigma_{1 \mathrm{f}}^{\prime}$ for given values of the confining pressure $\sigma_{3 f}^{\prime}$, as shown.

$\sigma^{\prime}{ }_{3 f}(\mathrm{MPa})$	$\sigma^{\prime}{ }_{1 f}(\mathrm{MPa})$
0	12.7
10	87.6
20	129
30	163
40	194
50	222
60	248

The next step is to fit a line that passes through the data points generated above. Using the LinearModelFit function in Mathematica, we get a line of the form

$$
\sigma_{1 \mathrm{f}}^{\prime}=3.71 \sigma_{3 \mathrm{f}}^{\prime}+39.5
$$

The coefficient of determination is 0.963 and indicates a good fit to the data. The line and the data points are plotted below.

Now, recall that, in the Mohr-Coulomb failure criterion, the principal stresses are related by

$$
\sigma_{1 \mathrm{f}}^{\prime}=\sigma_{3 \mathrm{f}}^{\prime} \tan ^{2}\left(45^{\circ}+\frac{\phi^{\prime}}{2}\right)+2 c^{\prime} \tan \left(45^{\circ}+\frac{\phi^{\prime}}{2}\right)
$$

Comparing this equation to that of the line obtained above, we see that

$$
\tan ^{2}\left(45^{\circ}+\frac{\phi^{\prime}}{2}\right)=3.71 \rightarrow \phi^{\prime}=35.1^{\circ}
$$

and

$$
\begin{gathered}
2 c^{\prime} \tan \left(45^{\circ}+\frac{\phi^{\prime}}{2}\right)=39.5 \\
\therefore 2 c^{\prime} \tan \left(45^{\circ}+\frac{35.1^{\circ}}{2}\right)=39.5 \\
\therefore c^{\prime}=10.3 \mathrm{MPa}
\end{gathered}
$$

- The correct answer is D.

P. 14 ■ Solution

Part A: The overburden stress due to the excavation is $\sigma_{1}=\gamma \mathrm{H}=23 \times 915$ $=21.0 \mathrm{MPa}$. The principal stress in question is also the vertical stress, i.e. $\sigma_{1}=\sigma_{V}=$ 21.0 MPa . The factor of safety with respect to compression in this direction follows as

$$
\left(F S_{c}\right)_{V}=\frac{\sigma_{c}}{\sigma_{V}}=\frac{152}{21.0}=7.24
$$

Since the shaft is under hydrostatic compression relatively to the horizontal, we have $\sigma_{h}=\sigma_{H}$ and $M=\sigma_{3} / \sigma_{1}=1.0$ (Table 12). Referring to Figure 1 with this ratio, we read a stress concentration factor $K_{c}=2.0$. The horizontal stresses are related to the vertical stress by the expression

$$
\sigma_{h}=\sigma_{H}=\frac{v}{1-v} \times \sigma_{V}
$$

where v is Poisson's ratio, which, from strength of materials, can be estimated as

$$
v=\frac{E}{2 G}-1=\frac{34.5}{2 \times 13.8}-1=0.25
$$

Therefore,

$$
\sigma_{h}=\sigma_{H}=\frac{v}{1-v} \times \sigma_{V}=\frac{0.25}{1-0.25} \times 21.0=7.0 \mathrm{MPa}
$$

The factor of safety against compression in the horizontal direction is determined to be

$$
\left(F S_{c}\right)_{H}=\frac{\sigma_{c}}{K_{c} \times \sigma_{H}}=\frac{152}{2.0 \times 7.0}=10.9
$$

The correct answer is D.
Part B: The horizontal stress state is illustrated below.

We now have $\sigma_{H}=\sigma_{V}=21.0 \mathrm{MPa}$. The updated factor of safety follows as

$$
\left(F S_{c}\right)_{H}=\frac{\sigma_{c}}{K_{c} \times \sigma_{H}}=\frac{152}{2.0 \times 21.0}=3.62
$$

The horizontal stress has increased relatively to the previous problem, and the factor of safety has decreased accordingly.

- The correct answer is B.

P. 15 ■ Solution

The maximum vertical stress is

$$
\sigma_{V}=25.3 \times 533=13.5 \mathrm{MPa}
$$

The eastward horizontal stress is, at most,

$$
\sigma_{E}=2414+4.5 \times 533=4.81 \mathrm{MPa}
$$

The northward horizontal stress is, at most,

$$
\sigma_{N}=2897+7.97 \times 533=7.11 \mathrm{MPa}
$$

The ratio of principal stresses in the horizontal is $M=\sigma_{3} / \sigma_{1}=4.81 / 7.11=$ 0.677. From Table 13, we know that the maximum stress concentration factor is 4.57 for $M=0.5$ and 5.48 for $M=0.75$. Interpolating between these two quantities gives $K_{\max }=5.21$. We proceed to determine the factor of safety against compression in the horizontal direction,

$$
\left(F S_{c}\right)_{H}=\frac{\sigma_{c}}{K_{\max } \times \sigma_{1}}=\frac{164}{5.21 \times 7.11}=4.43
$$

The factor of safety in the vertical direction is determined next,

$$
\left(F S_{c}\right)_{V}=\frac{164}{13.5}=12.1
$$

The correct answer is C.

P. 16 ■ Solution

Part A: As a rule, the most favorable orientation for the shaft is to have it be with the long axis parallel to the major compressive stress, as illustrated below.

Angle θ can be obtained with the stress transformation

$$
\begin{gathered}
\tan 2 \theta=\frac{\tau_{x y}}{\frac{1}{2}\left(\sigma_{x x}-\sigma_{y y}\right)}=\frac{1.5}{\frac{1}{2} \times(7.9-14.2)}=-0.476 \\
\therefore 2 \theta=-25.5^{\circ}, 154.5^{\circ} \\
\therefore \theta=-12.8^{\circ}, 77.3^{\circ}
\end{gathered}
$$

We take the positive solution and conclude that the long axis should make an angle of 77.3° with the x-axis.

\Rightarrow The correct answer is D.
Part B: The major principal stress is given by the stress transformation
$\sigma_{1}=\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right)+\left[\left(\frac{\sigma_{x x}-\sigma_{y y}}{2}\right)^{2}+\tau_{x y}^{2}\right]^{1 / 2}=\frac{1}{2} \times(7.9+14.2)+\left[\left(\frac{14.2-7.9}{2}\right)^{2}+1.5^{2}\right]^{1 / 2}=14.5 \mathrm{MPa}$
while the minor principal stress follows as
$\sigma_{3}=\frac{1}{2}\left(\sigma_{x x}+\sigma_{y y}\right)-\left[\left(\frac{\sigma_{x x}-\sigma_{y y}}{2}\right)^{2}+\tau_{x y}^{2}\right]^{1 / 2}=\frac{1}{2} \times(7.9+14.2)-\left[\left(\frac{14.2-7.9}{2}\right)^{2}+1.5^{2}\right]^{1 / 2}=7.56 \mathrm{MPa}$
The stress ratio M is, accordingly,

$$
M=\frac{\sigma_{3}}{\sigma_{1}}=\frac{7.56}{14.5}=0.521 \approx 0.5
$$

Referring to Table 13 with this value of M and an aspect ratio $k=1 / 2$, we read a stress concentration factor in compression $K_{\max }=K_{\mathrm{c}}=4.57$. The factor of safety with respect to compression in the horizontal is then

$$
\left(F S_{c}\right)_{H}=\frac{\sigma_{c}}{K_{c} \times \sigma_{1}}=\frac{103}{4.57 \times 14.5}=1.55
$$

The correct answer is A.

P. 17 ■ Solution

Part A: The ratio of footing width to joint spacing is $B / S=1.8 / 0.9=2.0$.
Referring to Table 15 with this value, we read a stiffness of $1.73 \mathrm{MPa} / \mathrm{mm}$. Settlement is given by $\delta=P / K$, where P is the load and K is the stiffness.
Substituting these data gives

$$
\delta=\frac{P}{K}=\frac{10 \times 10^{6}}{1.73 \times 10^{6}}=5.78 \mathrm{~mm}
$$

The correct answer is A.
Part B: The ratio B / S now becomes 1.8/0.18 = 10. Consulting Table 15 with this value, we read a stiffness of $0.48 \mathrm{MPa} / \mathrm{mm}$. The ensuing settlement is then

$$
\delta=\frac{P}{K}=\frac{10 \times 10^{6}}{0.48 \times 10^{6}}=20.8 \mathrm{~mm}
$$

Since the rock is much more jointed than that of the previous part, the strength of the material underlying the foundation is reduced, and the settlement is increased.

- The correct answer is C.

Part C: Since the properties are not the same as those in Table 14, we cannot readily apply $\delta=P / K$. Instead, we use propose a modified stiffness $K^{\prime}=$ $K\left(E^{\prime} / E\right)$, where E^{\prime} is a rectified Young's modulus given by

$$
E^{\prime}=\frac{(1-v)}{(1-2 v)(1+v)} E=\frac{1-0.23}{(1-2 \times 0.23) \times(1+0.23)} \times 42=48.7 \mathrm{GPa}
$$

The settlement is, accordingly,

$$
\delta=\frac{P}{K^{\prime}}=\frac{P}{K\left(E^{\prime} / E\right)}=\frac{10 \times 10^{6}}{\left(1.73 \times 10^{6}\right) \times(48.7 / 33.1)}=3.93 \mathrm{~mm}
$$

- The correct answer is B.

ANSWER SUMMARY

Problem 1		C
Problem 2		T/F
Problem 3		C
Problem 4		B
Problem 5		C
Problem 6		A
Problem 7		A
Problem 8		D
Problem 9		C
Problem 10		T/F
Problem 11		B
Problem 12		C
Problem 13	13A	A
	13B	B
	13C	D
	13D	D
Problem 14	14A	D
	14B	B
Problem 15		C
Problem 16	16A	D
	16B	A
Problem 17	17A	A
	17B	C
	17C	B

REFERENCES

- PALMSTRÖM, A. and STILLE, H. (2015). Rock Engineering. 2nd edition London: ICE Publishing.
- PARISEAU, W. (2007). Design Analysis in Rock Mechanics. 1st edition. London: Taylor and Francis.
- PARISEAU, W. (2017). Design Analysis in Rock Mechanics. 3rd edition. London: Taylor and Francis.
- SINGH, B. and GOEL, R. (2011). Engineering Rock Mass Classification. Oxford: Butterworth-Heinemann
- SIVAKUGAN, N., SHUKLA, S., and DAS, B. (2013). Rock Mechanics: An Introduction. Boca Raton: CRC Press.
- ZHANG, L. (2017). Engineerng Properties of Rocks. 2nd edition. Oxford: Butterworth-Heinemann

Got any questions related to this quiz? We can help!
Send a message to contact@montogue.com and we'll
answer your question as soon as possible.

[^0]: *Often a singularity (special feature), and should in these cases be treated separately.

[^1]: Notes

 * Units of stiffness are $\mathrm{kpsi} / \mathrm{inch} / \mathrm{MPa} / \mathrm{mm}$. Conversion: $(\mathrm{MPa} / \mathrm{mm})=0.272(\mathrm{kpsi} / \mathrm{inch})$.

