\boldsymbol{H} Montogue
 QUIZ GT106 Soil Compressibility and Consolidation Lucas Montogue

PROBLEMS

PROBLEM 1

Which of the following is not an assumption in the derivation of Terzaghi's theory of one-dimensional consolidation?
A) The clay-water system is homogeneous.
B) The flow of water is two-dimensional.
C) Compressibility of water and soil grains is negligible.
D) The soil is fully saturated.

PROBLEM ?

When the total pressure acting at midheight of a consolidating layer is 200 $\mathrm{kN} / \mathrm{m}^{2}$, the corresponding void ratio of the clay is 0.98 . When the total pressure acting at the same location is $500 \mathrm{kN} / \mathrm{m}^{2}$, the corresponding void ratio decreases to 0.81 . Find the void ratio of the clay if the total pressure acting at midheight of the consolidating layer is $1000 \mathrm{kN} / \mathrm{m}^{2}$.
A) $e=0.48$
B) $e=0.58$
C) $e=0.68$
D) $e=0.78$

PROBLEM 3A

Consider the soil profile shown in the following figure. The soil is subjected to an uniformly distributed load $\Delta \sigma=31.1 \mathrm{kN} / \mathrm{m}^{2}$ on the ground surface. The sand is such that $\gamma_{d}=16.5 \mathrm{kN} / \mathrm{m}^{3}$ and $\gamma_{\text {sat,sand }}=19.3 \mathrm{kN} / \mathrm{m}^{3}$; the underlying clay has $\gamma_{\text {sat }, \text { clay }}=20.5 \mathrm{kN} / \mathrm{m}^{3}, L L=38, e_{o}=0.89$, and $C_{s}=0.25 C_{c}$. Depths H_{1}, H_{2}, and H_{3} are as shown. Determine the primary consolidation displacement of the normally consolidated clay layer.

A) $\rho_{s}=60.2 \mathrm{~mm}$
B) $\rho_{s}=73.8 \mathrm{~mm}$
C) $\rho_{s}=86.2 \mathrm{~mm}$
D) $\rho_{s}=99.8 \mathrm{~mm}$

PROBLEM 3 B

Determine the primary consolidation for the clay layer specified in the previous problem if it had a preconsolidation pressure $\sigma_{c}^{\prime}=95 \mathrm{kN} / \mathrm{m}^{2}$.
A) $\rho_{s}=23.4 \mathrm{~mm}$
B) $\rho_{s}=33.3 \mathrm{~mm}$
C) $\rho_{s}=40.2 \mathrm{~mm}$
D) $\rho_{s}=50.1 \mathrm{~mm}$

PROBLEM 3C

Refer to the soil introduced in Problem 3A. Given the coefficient of consolidation $c_{v}=0.24 \mathrm{~cm}^{2} / \mathrm{sec}$, how long will it take for 75% consolidation to be over in the field?
A) $t=221$ days
B) $t=305$ days
C) $t=385$ days
D) $t=461$ days

PROBLEM 4

A vertical section through a building foundation at a site is shown below. The average modulus of volume compressibility of the clay is $m_{v}=4 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{kN}$. Determine the primary consolidation settlement.

A) $\rho_{s}=20 \mathrm{~mm}$
B) $\rho_{s}=40 \mathrm{~mm}$
C) $\rho_{s}=60 \mathrm{~mm}$
D) $\rho_{s}=80 \mathrm{~mm}$

PROBLEM 5

The time required for 25% consolidation of a $40-\mathrm{mm}$ thick clay layer, drained on both ends, in the laboratory is 4 min. How long, in days, will it take for a 2-m-thick clay layer of the same clay in the field under the same pressure increment to reach 25% consolidation? The soil mass in the field is sandwiched between two thick layers of gravel, as shown.

A) $t_{\text {field }}=1.69$ days
B) $t_{\text {field }}=2.58$ days
C) $t_{\text {field }}=3.47$ days
D) $t_{\text {field }}=4.36$ days

PROBLEM 6A

A 6 m clay layer in the field, drained on both ends, is normally consolidated. When the pressure exerted on it is increased from 100 to 200 $\mathrm{kN} / \mathrm{m}^{2}$, the void ratio fell from 0.85 to 0.71 . The hydraulic conductivity of the clay layer was determined as $k=5.5 \times 10^{-7} \mathrm{~cm} / \mathrm{sec}$. Calculate the time required for the layer to reach 40% consolidation.

A) $t=13.4$ days
B) $t=18.3$ days
C) $t=23.6$ days
D) $t=38.5$ days

PROBLEM 6 B

What is the settlement of the soil introduced in the previous part when it reaches 40% consolidation?
A) $\left(\rho_{s}\right)_{40 \%}=68.5 \mathrm{~mm}$
B) $\left(\rho_{s}\right)_{40 \%}=120.5 \mathrm{~mm}$
C) $\left(\rho_{s}\right)_{40 \%}=186.0 \mathrm{~mm}$
D) $\left(\rho_{s}\right)_{40 \%}=225.0 \mathrm{~mm}$

PROBLEM 7

For a laboratory consolidation test on a 20-mm-thick clay specimen, drained on one side only, the following data were obtained. If the time for 70% consolidation was 6 min, determine the hydraulic conductivity of the clay in the loading range.

Void ratio	$\sigma^{\prime}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
0.85	125
0.93	240

A) $k=1.62 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$
B) $k=3.25 \times 10^{-7} \mathrm{~cm} / \mathrm{s}$
C) $k=1.62 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$
D) $k=3.25 \times 10^{-6} \mathrm{~cm} / \mathrm{s}$

PROBLEM 8A

A sample of saturated clay of height 25 mm and water content 33% was tested in an oedometer. Loading and unloading of the sample were carried out, beginning at $100 \mathrm{kN} / \mathrm{m}^{2}$ to $400 \mathrm{kN} / \mathrm{m}^{2}$ and then back to 100 again . The values of the sample's height H_{z} in each loading stage are tabulated below. Plot the results as void ratio versus σ_{z}^{\prime}, with the latter organized in a log scale.

$\sigma_{z}^{\prime}(\mathrm{kPa})$	100	200	400	200	100
$H_{z}(\mathrm{~mm})$	25	24.14	23.28	23.35	23.44

PROBLEM 8 B

Determine the compression indexes C_{c} and C_{r} for the data introduced in the previous problem.
A) $C_{c}=0.035$ and $C_{r}=0.090$
B) $C_{c}=0.035$ and $C_{r}=0.123$
C) $C_{c}=0.060$ and $C_{r}=0.090$
D) $C_{c}=0.060$ and $C_{r}=0.123$

PROBLEM 8C

Determine the coefficient of volume compressibility between $\sigma_{z}^{\prime}=200 \mathrm{kPa}$ and $\sigma_{z}^{\prime}=300 \mathrm{kPa}$.
A) $m_{v}=5.54 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{kN}$
B) $m_{v}=9.57 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{kN}$
C) $m_{v}=5.54 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{kN}$
D) $m_{v}=9.57 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{kN}$

problem 9A

The following results were obtained from an oedometer test on a specimen of saturated clay.

Pressure $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	27	54	107	214	429	214	107	54
Void ratio	1.243	1.217	1.144	1.068	0.994	1.001	1.012	1.024

A layer of this clay 8 m thick lies below a 4 m depth of sand, the water table being at the surface. The saturated unit weight for both soils is $19 \mathrm{kN} / \mathrm{m}^{2}$. A 4 m depth of fill of unit weight $21 \mathrm{kN} / \mathrm{m}^{3}$ is placed on the sand over an extensive area. Determine the final settlement due to consolidation of the clay.

A) $\rho_{s}=113.4 \mathrm{~mm}$
B) $\rho_{s}=232.5 \mathrm{~mm}$
C) $\rho_{s}=317.9 \mathrm{~mm}$
D) $\rho_{s}=436.8 \mathrm{~mm}$

PROBLEM 9 B

If the fill considered in the previous part were removed some time after the completion of consolidation, what heave would eventually take place due to swelling of the clay?
A) $\Delta \rho_{s}=-11 \mathrm{~mm}$
B) $\Delta \rho_{s}=-25 \mathrm{~mm}$
C) $\Delta \rho_{s}=-39 \mathrm{~mm}$
D) $\Delta \rho_{s}=-53 \mathrm{~mm}$

PROBLEM 9C

Assuming the fill specified in the previous parts is dumped very rapidly, what would be the value of excess porewater pressure at the center of the clay layer after a period of 3 years? The layer is open and has a coefficient of consolidation $c_{v}=2.4 \mathrm{~m}^{2} /$ year.
A) $u_{e}=35.2 \mathrm{kPa}$
B) $u_{e}=55.1 \mathrm{kPa}$
C) $u_{e}=74.3 \mathrm{kPa}$
D) $u_{e}=93.4 \mathrm{kPa}$

problem 10

A clay layer below a foundation settles 15 mm in 200 days after the building was completed. According to the oedometer results, this settlement corresponds to an average degree of consolidation of 25%. Plot the settlementtime curve for a 10-year period, assuming double drainage.

PROBLEM 11

Data obtained from a laboratory consolidation test are shown in the next
table.

Time (min)	0.25	1	2.25	4	9	16	25	36	1440
Total $\Delta H(\mathrm{~mm})$	0.12	0.23	0.33	0.43	0.59	0.68	0.74	0.76	0.89

Also, we have $\sigma_{o}^{\prime}=100 \mathrm{kPa}, \sigma_{1}^{\prime}=200 \mathrm{kPa}$, and $H_{o}=23.6 \mathrm{~mm}$. Find the coefficient of consolidation in $\mathrm{mm}^{2} / \mathrm{min}$ using the root time method.
A) $c_{v}=2.10 \mathrm{~mm}^{2} / \mathrm{min}$
B) $c_{v}=7.05 \mathrm{~mm}^{2} / \mathrm{min}$
C) $c_{v}=14.05 \mathrm{~mm}^{2} / \mathrm{min}$
D) $c_{v}=20.10 \mathrm{~mm}^{2} / \mathrm{min}$

ADDITIONAL INFORMATION

Figure 1 Relationship between time factor and average degree of consolidation for a uniform distribution and a triangular distribution of initial excess porewater pressure.

SOLUTIONS

P. 1 = Solution

Statements A and B are correct, since Terzaghi's one-dimensional consolidation theory presupposes that the soil is homogeneous and saturated. This formulation is also based on the hypothesis that the compressibility of water and soil grains is negligible, thus confirming statement C. The false statement is B, because flow of water is assumed to occur in one direction only, namely, the vertical direction.
\Rightarrow The correct answer is \mathbf{B}.

P. 2 ■ Solution

We were given two data points, one of which says that the void ratio of the clay is 0.98 when the total pressure is $200 \mathrm{kN} / \mathrm{m}^{2}$, and another according to which $e_{2}=0.81$ when $p_{2}=500 \mathrm{kN} / \mathrm{m}^{2}$. Using these data, we can determine the compression index,

$$
C_{c}=\frac{e_{1}-e_{2}}{\log \left(p_{2} / p_{1}\right)}=\frac{0.98-0.81}{\log (500 / 200)}=0.427
$$

We want to determine the value of C_{c} when the void ratio decreases to 0.81 . To do so, we make use of the value of C_{c} we have just computed and substitute any one of the two data points we were initially given; then, we solve the ensuing equation for the new void ratio e. Mathematically,

$$
\begin{gathered}
C_{c}=\frac{e_{1}-e_{2}}{\log \left(p_{2} / p_{1}\right)} \rightarrow 0.427=\frac{0.98-e}{\log (1000 / 200)} \\
\therefore 0.298=0.98-e \\
\therefore e=0.68
\end{gathered}
$$

\Rightarrow The correct answer is \mathbf{C}.

P. 3 ■ Solution

Part A: The in-situ overburden pressure is determined as follows,

$$
\begin{gathered}
\sigma_{o}^{\prime}=\gamma_{d, \text { sand }} \times H_{1}+\left(\gamma_{\text {sat,sand }}-\gamma_{w}\right) \times H_{2}+\left(\gamma_{\text {sat,clay }}-\gamma_{w}\right) \times \frac{H_{3}}{2} \\
\therefore \sigma_{o}^{\prime}=16.5 \times 2+(19.3-9.8) \times 3+(20.5-9.8) \times \frac{4}{2}=82.9 \mathrm{kPa}
\end{gathered}
$$

The compression index of the clay can be determined by means of the liquid limit relationship,

$$
C_{c}=0.009(L L-10)=0.009 \times(38-10)=0.252
$$

The primary consolidation settlement follows from the formula

$$
\rho_{s}=\frac{C_{c} H}{1+e_{o}} \log _{10}\left(\frac{\sigma_{o}^{\prime}+\Delta \sigma}{\sigma_{o}^{\prime}}\right)
$$

where C_{c} is the compression index, H is the thickness of the layer undergoing consolidation, e_{o} is the void ratio, σ_{o}^{\prime} is the overburden stress, and $\Delta \sigma$ is the additional above-ground load. Substituting 0.252 for $C_{c}, 4 \mathrm{~m}$ for $H, 0.89$ for $e_{0,} 82.9$ kPa for σ_{o}^{\prime}, and 32 kPa for $\Delta \sigma$, we obtain

$$
\rho_{s}=\frac{0.252 \times 4}{1+0.89} \log _{10}\left(\frac{82.9+31.1}{82.9}\right)=0.0738=73.8 \mathrm{~mm}
$$

The primary consolidation settlement of the clay layer is about 7 centimeters.
\Rightarrow The correct answer is B.

Part B: To determine which formula to use, we must verify the relationship between the overconsolidation pressure, $\Delta \sigma_{c}^{\prime}=95 \mathrm{kN} / \mathrm{m}^{2}$, and the sum $\sigma_{o}^{\prime}+\Delta \sigma^{\prime}=82.9+31.1=114 \mathrm{kN} / \mathrm{m}^{2}$; since the latter is greater than the former, the primary consolidation settlement is to be determined with the expression

$$
\rho_{s}=\frac{C_{s} H}{1+e_{o}} \log _{10}\left(\frac{\Delta \sigma_{c}^{\prime}}{\sigma_{o}^{\prime}}\right)+\frac{C_{c} H}{1+e_{o}} \log _{10}\left(\frac{\sigma_{o}^{\prime}+\Delta \sigma^{\prime}}{\Delta \sigma_{c}^{\prime}}\right)
$$

The swell index for the clay layer is one-fourth of the compression index, i.e.,

$$
C_{s}=0.25 \times 0.252=0.063
$$

Substituting this value for $C_{s}, \Delta \sigma_{c}^{\prime}=95 \mathrm{kN} / \mathrm{m}^{2}$, and the remaining variables in the equation for ρ_{s}, we see that

$$
\rho_{s}=\frac{0.063 \times 4}{1+0.89} \log _{10}\left(\frac{95}{82.9}\right)+\frac{0.252 \times 4}{1+0.89} \log _{10}\left(\frac{82.9+31.1}{95}\right)=0.0501=50.1 \mathrm{~mm}
$$

The overconsolidated soil will have a settlement about 30\% lower than its normally consolidated counterpart.

- The correct answer is D.

Part C: Recall that the time factor can be computed with the following simple relationships: for U (degree of consolidation) $\in(0 ; 60) \%$, the time factor T_{v} is given by

$$
T_{v}=\frac{\pi}{4}\left(\frac{U}{100}\right)^{2}
$$

whereas for $U>60 \%$, the following approximation is valid,

$$
T_{v}=1.781-0.933 \log (100-U)
$$

The second equation applies in this case, so that, substituting $U=75 \%$, we obtain

$$
T_{v}=1.781-0.933 \log _{10}(100-75)=0.477
$$

The time factor, T_{v}, is computed with the relation

$$
T_{v}=\frac{c_{v} t}{H_{\mathrm{dr}}^{2}}
$$

where c_{v} is the coefficient of consolidation, t is time, and $H_{d r}$ is the longest drainage path during consolidation. For soils drained at one side only (the upper end is exposed to the adjacent sand layer, but the lower end is sealed by a rocky layer), $H_{d r}$ is to be taken as equal to the thickness of the layer, that is, $H_{d r}=H_{3}=400 \mathrm{~cm}$. Substituting this data, along with $T_{v}=0.477$ and $c_{v}=0.24 \mathrm{~cm}^{2} / \mathrm{min}$, we can solve for t,

$$
\begin{gathered}
T_{v}=\frac{c_{v} t}{H_{\mathrm{dr}}^{2}} \rightarrow 0.477=\frac{0.24 \times t}{400^{2}} \\
\therefore t=\frac{0.477 \times 400^{2}}{0.24}=318,000 \mathrm{~min}
\end{gathered}
$$

or, in terms of days,

$$
t=\frac{318,000 \mathrm{~min}}{(60 \times 24) \frac{\mathrm{min}}{\text { day }}}=221 \text { days }
$$

The clay layer should take over 7 months to consolidate.

- The correct answer is A.

P. 4 ■ Solution

The coefficient of volume compressibility allows the engineer to obtain a quick estimate of the primary consolidation settlement using the rather simple relation

$$
\rho_{s}=m_{v} H \Delta \sigma^{\prime}
$$

Here, we substitute $4 \times 10^{-4} \mathrm{~m}^{2} / \mathrm{kN}$ for $\mathrm{m}, 2 \mathrm{~m}$ for the soil layer thickness H, and 100 kPa for $\Delta \sigma^{\prime}$, giving

$$
\rho_{s}=m_{v} H \Delta \sigma^{\prime}=\left(4 \times 10^{-4}\right) \times 2 \times 100=0.08 \mathrm{~m}=80 \mathrm{~mm}
$$

The advantage of the equation we used is that m_{v} is readily determined from displacement data in consolidation tests. There is no need to compute void ratio changes, as in the case of the compression index C_{c}. It should be noted that, unlike settlement calculations involving C_{c}, computations with m_{v} are somewhat inaccurate because this parameter varies with stress levels. To reduce the effects of nonlinearity, the vertical effective stress difference should not exceed 100 kPa in calculating m_{v}.
\Rightarrow The correct answer is \mathbf{D}.

P. 5 ■ Solution

Two soils of identical characteristics, be they in the lab or in the field, should have the same time factor at the same degree of consolidation; the coefficient of consolidation should be the same as well. Accordingly, we can write

$$
T_{50}=\frac{c_{v} t_{\mathrm{lab}}}{H_{\mathrm{dr}, \mathrm{lab}}^{2}}=\frac{c_{v} t_{\mathrm{field}}}{H_{\mathrm{dr}, \text { field }}^{2}} \rightarrow \frac{t_{\mathrm{lab}}}{H_{\mathrm{dr}, \mathrm{lab}}^{2}}=\frac{t_{\mathrm{field}}}{H_{\mathrm{dr}, \text { field }}^{2}}
$$

Substituting $t_{\text {lab }}=4 \mathrm{~min}, H_{d r, l a b}=0.040 / 2$, and $H_{d r, f i e l d}=2 / 2=1 \mathrm{~m}, t_{\text {field }}$ is determined to be

$$
\begin{gathered}
\frac{t_{\text {lab }}}{H_{\text {dr,lab }}^{2}}=\frac{t_{\text {field }}}{H_{\text {dr,field }}^{2}} \rightarrow \frac{4}{(0.040 / 2)^{2}}=\frac{t_{\text {field }}}{(2 / 2)^{2}} \\
\therefore t_{\text {field }}=\frac{(2 / 2)^{2}}{(0.040 / 2)^{2}} \times 4=5000 \mathrm{~min} \\
\therefore t_{\text {field }}=5000 \mathrm{~min} \times \frac{1}{1440} \frac{\text { day }}{\text { min }}=3.47 \text { days }
\end{gathered}
$$

or about 3 and a half days.

- The correct answer is C.

P. 6 ■ Solution

Part A: The time factor is given by

$$
T_{v}=\frac{c_{v} t}{H_{\mathrm{dr}}^{2}}
$$

Solving for time, we get

$$
T_{v}=\frac{c_{v} t}{H_{\mathrm{dr}}^{2}} \rightarrow t=\frac{T_{v} H_{\mathrm{dr}}^{2}}{c_{v}}(\mathrm{I})
$$

The coefficient of consolidation, in turn, is related to other physical quantities by the expression

$$
c_{v}=\frac{k}{m_{v} \gamma_{w}}
$$

where k is the hydraulic conductivity of the soil, m_{v} is the coefficient of volume compressibility, and γ_{w} is the unit weight of water. One of the variables above that is not yet available is m_{v}; it is defined as

$$
m_{v}=\frac{a_{v}}{1+e_{\mathrm{avg}}}
$$

where $e_{\text {avg }}$ is the average void ratio and a_{v} is the coefficient of compressibility; the latter is given by the ratio of change in void ratio to change in stress,

$$
a_{v}=\frac{|\Delta e|}{\left|\Delta \sigma^{\prime}\right|}=\frac{|0.71-0.85|}{|200-100|}=0.0014 \frac{\mathrm{~m}^{2}}{\mathrm{kN}}
$$

The average void ratio $e_{\text {avg, }}$, in turn, is

$$
e_{\mathrm{avg}}=\frac{0.71+0.85}{2}=0.78
$$

so that

$$
m_{v}=\frac{a_{v}}{1+e_{\mathrm{avg}}}=\frac{0.0014}{1+0.78}=7.87 \times 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{kN}}
$$

Substituting in the expression for c_{V} gives
$c_{v}=\frac{k}{m_{v} \gamma_{w}}=\frac{5.5 \times 10^{-9}[\mathrm{~m} / \mathrm{s}]}{\left(7.84 \times 10^{-4}\right)\left[\frac{\mathrm{m}^{2}}{\mathrm{kN}}\right] \times 9.81\left[\frac{\mathrm{kN}}{\mathrm{m}^{3}}\right]}=7.15 \times 10^{-7} \mathrm{~m}^{2} / \mathrm{s}=0.0618 \mathrm{~m}^{2} /$ day
Using Figure 1, we see that the time factor that corresponds to a consolidation of 40% is $T_{v}=0.126$. Also, for a soil stratum drained on both ends, we have $H_{d r}=6 / 2=3 \mathrm{~m}$; substituting $T_{v}, H_{d r}$, and c_{v} in equation (I) brings to

$$
t=\frac{T_{v} H_{\mathrm{dr}}^{2}}{c_{v}}=\frac{0.126 \times(6 / 2)^{2}}{0.0618}=18.3 \text { days }
$$

The soil needs over half a month to attain 40% consolidation.

- The correct answer is \mathbf{B}.

Part B: To obtain the settlement at 40% consolidation, we should first determine the full primary consolidation. To do so, we compute the compression index as

$$
C_{c}=\frac{\Delta e}{\log _{10}\left(\frac{\sigma_{2}^{\prime}}{\sigma_{1}^{\prime}}\right)}
$$

where $\Delta e=|0.85-0.71|=0.14$ and $\sigma_{2}^{\prime} / \sigma_{1}^{\prime}=200 / 100=2$. Thus,

$$
C_{c}=\frac{0.14}{\log _{10} 2}=0.465
$$

The primary settlement is given by

$$
\rho_{s}=\frac{C_{c} H}{1+e_{o}} \log _{10}\left(\frac{\sigma_{o}^{\prime}+\Delta \sigma^{\prime}}{\sigma_{o}^{\prime}}\right)
$$

Substituting $C_{c}=0.465, H=6 \mathrm{~m}, e_{o}=0.71, \sigma_{o}^{\prime}=100 \mathrm{kN} / \mathrm{m}^{2}$, and $\sigma_{o}^{\prime}+\Delta \sigma^{\prime}=$ $200 \mathrm{kN} / \mathrm{m}^{2}$, it follows that

$$
\rho_{s}=\frac{0.465 \times 6}{1+0.71} \log _{10}\left(\frac{200}{100}\right)=0.491 \mathrm{~m}=491 \mathrm{~mm}
$$

The full consolidation of the soil will be just short of half a meter, which is quite high for a 6-m-thick layer such as the one under consideration. We assume that the 40% settlement is simply 0.4 times the full primary consolidation ρ_{s}; that is,

$$
\left(\rho_{s}\right)_{40 \%}=0.4 \rho_{s}=0.4 \times 465=186 \mathrm{~mm}
$$

The correct answer is \mathbf{C}.

P. 7 ■ Solution

The coefficient of consolidation is given by

$$
c_{v}=\frac{k}{m_{v} \gamma_{w}}
$$

Solving for the hydraulic conductivity k yields

$$
c_{v}=\frac{k}{m_{v} \gamma_{w}} \rightarrow k=c_{v} m_{v} \gamma_{w}(\mathrm{I})
$$

The coefficient of volume compressibility, m_{v}, is given by

$$
m_{v}=\frac{a_{v}}{1+e_{\mathrm{avg}}}
$$

where a_{v} is the coefficient of compressibility and $e_{\text {ovg }}$ is the average void ratio. The coefficient of compressibility, in turn, is the ratio of change in void ratio to change in overburden stress,

$$
a_{v}=\frac{|\Delta e|}{\left|\Delta \sigma^{\prime}\right|}
$$

In the present case, $|\Delta e|=|0.85-0.93|=0.08$ and $\left|\Delta \sigma^{\prime}\right|=|240-125|=$ 115 kPa , so that

$$
a_{v}=\frac{0.08}{115}=6.96 \times 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{kN}}
$$

The average void ratio is $e_{\text {avg }}=(0.85+0.93) / 2=0.89$. Substituting in the equation for m_{v} gives

$$
m_{v}=\frac{\left(6.96 \times 10^{-4}\right)}{1+0.89}=3.68 \times 10^{-4} \frac{\mathrm{~m}^{2}}{\mathrm{kN}}
$$

The time factor can be obtained from Figure 1 or computed with the approximation $T_{v}=1.781-0.933 \log (100-U[\%])$, which is valid when $U>60 \%$; we choose the latter option, obtaining

$$
T_{v}=1.781-0.933 \log (100-70)=0.403
$$

We now have all necessary variables to determine the coefficient of consolidation, c_{v},

$$
T_{v}=\frac{c_{v} t}{H_{\mathrm{dr}}^{2}} \rightarrow c_{v}=\frac{T_{v} H_{\mathrm{dr}}^{2}}{t}
$$

where $H_{d r}=50 \mathrm{~mm}$ for a soil drained on one end only and $t=6 \mathrm{~min}$, so that

$$
c_{v}=\frac{0.403 \times\left(20 \times 10^{-3}\right)^{2}}{6}=2.69 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{min}
$$

Returning to equation (I), the hydraulic conductivity is determined to be

$$
k=c_{v} m_{v} \gamma_{w}=\left(2.69 \times 10^{-5}\right) \times\left(3.68 \times 10^{-4}\right) \times 9.81=9.71 \times 10^{-8} \mathrm{~m} / \mathrm{min}
$$

or, equivalently,

$$
k=9.71 \times 10^{-8} \frac{\not 1 \mathrm{n}}{\text { min }} \times \frac{1}{60} \frac{\text { min }}{\mathrm{s}} \times \frac{100}{1} \frac{\mathrm{~cm}}{\not \mathrm{~m}}=1.62 \times 10^{-7} \mathrm{~cm} / \mathrm{s}
$$

\Rightarrow The correct answer is \mathbf{A}.

P. 8 ■ Solution

Part A: The change in void ratio is determined as

$$
|\Delta e|=\frac{|\Delta H|}{H_{o}\left(1+e_{o}\right)}
$$

where e_{o} is the initial void ratio, ΔH is the change in height, and H_{0} is the thickness of the clay sample. Since the soil is saturated, the initial void ratio is simply the product of water content and specific gravity,

$$
e_{o}=w G_{s}=0.33 \times 2.67=0.881
$$

Similarly, the change in soil thickness is such that

$$
|\Delta H|=H_{o}-H_{f}=25-24.14=0.86 \mathrm{~mm}
$$

The variation in void ratio easily follows,

$$
\Delta e=\frac{\Delta H}{H_{o}\left(1+e_{o}\right)}=\frac{0.86}{25 \times(1+0.881)}=0.018
$$

The void ratio e_{1} after the first loading is obtained as

$$
\begin{gathered}
|\Delta e|=e_{o}-e_{1} \\
\therefore e_{1}=e_{o}-|\Delta e|=0.881-0.018=0.863
\end{gathered}
$$

Applying similar calculations to the later loading stages, the following table is prepared,

$\sigma_{z}^{\prime}(\mathrm{kPa})$	$H_{f}(\mathrm{~mm})$	ΔH	Δe	e
100	25			
200	24.14	0.86	0.018	0.863
400	23.28	1.72	0.037	0.844
200	23.35	1.65	0.035	0.846
100	23.44	1.56	0.033	0.848

The plot we were asked to obtain is one of void ratio, the blue column above, versus the vertical effective stress, the red column, with the latter measured on a log scale. This can be done with Mathematica's ListLogLinearPlot command, as shown.

Part B: The compression index is the average slope of the normal consolidation line in a plot of void ratio versus the logarithm of stress; mathematically,

$$
C_{c}=\frac{\Delta e}{\log _{10}\left(\frac{\sigma_{2}}{\sigma_{1}}\right)}=\frac{0.018}{\log _{10}\left(\frac{200}{100}\right)}=0.060
$$

Similarly, the recompression index is the average slope of the unloading/reloading curve, that is,

$$
C_{r}=\frac{\Delta e}{\log _{10}\left(\frac{\sigma_{3}}{\sigma_{2}}\right)}=\frac{0.037}{\log _{10}\left(\frac{400}{200}\right)}=0.123
$$

\Rightarrow The correct answer is \mathbf{D}.

Part C: The coefficient of volume compressibility can be determined with the relation

$$
m_{v}=\frac{|\Delta e|}{\left|\Delta \sigma^{\prime}\right|\left(1+e_{o}\right)}
$$

Substituting $\Delta e=0.018, \Delta \sigma^{\prime}=300-200=100 \mathrm{kPa}$, and $e_{o}=0.881$ gives

$$
m_{v}=\frac{0.018}{(300-200) \times(1+0.881)}=9.57 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{kN}
$$

The coefficient of volume compressibility is close to $10^{-4} \mathrm{kPa}^{-1}$.

- The correct answer is \mathbf{B}.

P. 9 ■ Solution

Part A: For one-dimensional consolidation, we can estimate the settlement of soil with the expression

$$
\rho_{s}=\frac{e_{o}-e_{1}}{1+e_{o}} H_{\mathrm{dr}}
$$

Approximate values of e are obtained from the following graph. Since the clay layer is relatively thick, we propose dividing it into four equal strata, each with 2-m thickness, as illustrated below.

Then, the following table is prepared. In the second column the initial stress σ_{o}^{\prime} is the product $(4+1) \times(19.0-9.8)=46 \mathrm{kN} / \mathrm{m}^{2}$, where the first factor is the depth from the surface to the middle of the first layer and the second is the submerged unit weight of either soil. The third column, in turn, is the sum of the aforementioned 46 kPa and the stress due to the overlying sand fill, $4 \times 21=84$ kPa , totaling $\sigma_{1}^{\prime}=46+84=130 \mathrm{kPa}$.

Layer	$\sigma_{o}^{\prime}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	$\sigma_{1}^{\prime}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	e_{o}	e_{1}	$e_{o}-e_{1}$	$\rho_{s}(\mathrm{~mm})$
1	46	130	1.236	1.123	0.113	101.1
2	64.4	148.4	1.2	1.108	0.092	83.6
3	82.8	166.8	1.172	1.095	0.077	70.9
4	101.2	185.2	1.15	1.083	0.067	62.3
					Total ρ	317.9

As highlighted in the blue column, the total settlement of the clay layer will be close to one foot.
\Rightarrow The correct answer is \mathbf{C}.
Part B: When the clay is expanding, the stresses σ_{1}^{\prime} and σ_{o}^{\prime} switch places in the previous table, and the e_{1} void ratio values are taken from the unloading path of the $e-\log \sigma^{\prime}$ curve. Then, the following table is prepared.

Layer	$\sigma_{o}^{\prime}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	$\sigma_{1}^{\prime}\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	e_{o}	e_{1}	$e_{o}-e_{1}$	$\rho_{s}(\mathrm{~mm})$
1	130	46	1.123	1.136	-0.013	-12.2
2	148.4	64.4	1.108	1.119	-0.011	-10.4
3	166.8	82.8	1.095	1.104	-0.009	-8.6
4	185.2	101.2	1.083	1.091	-0.008	-7.7
					Total ρ	-39.0

As shown in the red column, the clay will experience about 39 millimeters of heave.
\Rightarrow The correct answer is \mathbf{C}.
Part C: If the layer is open, the drainage path is $H_{d r}=8 / 2=4 \mathrm{~m}$.
Substituting this value, along with $c_{v}=2.4 \mathrm{~m}^{2} /$ year and $t=3 \mathrm{yrs}$, we obtain a time factor

$$
T_{v}=\frac{c_{v} t}{H_{\mathrm{dr}}^{2}}=\frac{2.4 \times 3}{4^{2}}=0.45
$$

The porewater pressure corresponds to the weight of the fill, i.e., $u_{i}=\Delta \sigma=$ $4 \times 21=84 \mathrm{kN} / \mathrm{m}^{2}$. The expression for porewater developed in one-dimensional consolidation theory is

$$
u_{e}=\sum_{m=0}^{m=\infty} \frac{2 u_{i}}{M}\left[\sin \left(\frac{M z}{H_{\mathrm{dr}}}\right)\right] \exp \left(-M^{2} T_{v}\right)
$$

In this case, $z=H_{d r}$. and the sine term above simplifies as

$$
\sin \left(\frac{M z}{d}\right)=\sin M
$$

where M is such that

$$
M=\frac{\pi}{2}, \frac{3 \pi}{2}, \frac{5 \pi}{2}, \ldots
$$

We can then prepare the following table.

M	$\sin M$	$M^{2} T_{v}$	$\exp -M^{2} T_{v}$
$\pi / 2$	+1	1.110	0.329
$3 \pi / 2$	-1	9.993	4.57×10^{-5}

Notice that the term involving the second possible value of M, that is, $3 \pi / 2$, is associated with a term $\exp \left(-M^{2} T_{v}\right)$ that is quite small $\left(=4.57 \times 10^{-5}\right)$. Thus, considering the first value of M only is a reasonable approximation. Finally, the porewater pressure at the center of the clay after 3 years is such that

$$
u_{e}=2 \times 84 \times \frac{2}{\pi} \times 1 \times 0.329=35.2 \mathrm{kPa}
$$

- The correct answer is A.

P. 10 ■ Solution

The degree of saturation, U, is the ratio of settlement at time, ρ_{s}, to total settlement, $\rho_{s, \text { total }}$; solving for $\rho_{s, \text { total }}$ gives

$$
U=\frac{\rho_{s}}{\rho_{s, \text { total }}} \rightarrow \rho_{s, \text { total }}=\frac{\rho_{s}}{U}=\frac{15}{0.25}=60 \mathrm{~mm}
$$

The time factor for 25% consolidation is obtained with the usual approximation (or from Figure 1),

$$
T_{v}=\frac{\pi}{4}\left(\frac{U[\%]}{100}\right)^{2}=\frac{\pi}{4}\left(\frac{25}{100}\right)^{2}=0.049
$$

The time span for 25% consolidation to occur, when converted to years, is $t_{25}=200 / 365=0.55 \mathrm{yr}$. Since the drainage path and the coefficient of consolidation are the same, we can make use of the equality

$$
\begin{gathered}
\frac{T_{v, 1}}{t_{1}}=\frac{T_{v, 2}}{t_{2}} \rightarrow \frac{0.049}{0.55}=\frac{T_{v, 2}}{t_{2}} \\
\therefore t_{2}=\frac{0.55}{0.049} T_{v, 2} \\
\therefore t_{2}=11.22 T_{v, 2}
\end{gathered}
$$

Using the relationship above and the adequate time factors, we can tabulate the necessary data.

$\mathrm{U}(\%)$	$T_{v 2}$	t_{2} (yrs)	$\rho_{s}(\mathrm{~mm})$
0	0	0.00	0
5	0.002	0.02	3
10	0.008	0.09	6
15	0.018	0.20	9
20	0.031	0.35	12
25	0.049	0.55	15
30	0.071	0.80	18
40	0.126	1.41	24
50	0.197	2.21	30
60	0.287	3.22	36
70	0.403	4.52	42
80	0.567	6.36	48
90	0.848	9.51	54

The plot we are looking for is one of settlement in mm (the red column) versus time in years (the blue column).

P. 11 ■ Solution

We first compute the average thickness as $H_{\text {avg }}=23.6-4.1 / 2=21.55 \mathrm{~mm}$. The drainage path is $H_{d r}=21.55 / 2=10.78 \mathrm{~mm}$. We then tabulate settlement and square-root-of-time values as shown, then plotting the former (blue row) versus the latter (red row).

Time (min)	0.25	1	4	9	16	25	36	81	1440
VTime $\left(\min ^{1 / 2}\right)$	0.5	1	2	3	4	5	6	9	37.9
Total $\Delta H(\mathrm{~mm})$	0.622	1.244	2.468	3.4	3.838	3.97	4	4.051	4.1

To derive the coefficient of consolidation with the root time method, we begin by delineating a tangent to the curve of settlement against time ${ }^{1 / 2}$ beginning at the origin, as shown.

It is found that $\sqrt{t_{A}}=4.5 \mathrm{~min}^{1 / 2}$. The next step is to draw a second line, this time going from the origin to the abscissa corresponding to $1.15 \sqrt{t_{A}}=1.15 \times 4.5=$ $5.18 \mathrm{~min}^{1 / 2}$; the line in question is shown in blue below.

Finally, the intercept of the blue line with the settlement-time ${ }^{1 / 2}$ curve is to be taken as the time required for 90% consolidation, t_{90}. Projecting the intercept onto the abscissa yields $\sqrt{t_{90}}$.

The green line intercepts the horizontal axis at $\sqrt{t_{90}} \approx 3.4 \mathrm{~min}$., which corresponds to a time of 90% consolidation $t_{90}=11.56 \mathrm{~min}$. We are then ready to substitute the available data in the expression for the time factor T_{v}, which can be easily solved for the coefficient of consolidation,

$$
T_{v}=\frac{c_{v} t_{90}}{H_{\mathrm{dr}}^{2}} \rightarrow c_{v}=\frac{T_{v} H_{\mathrm{dr}}^{2}}{t_{90}}
$$

At 90\% consolidation, the time factor $T_{v}=0.848$; also, given the current height $20-0.89=19.1 \mathrm{~mm}$, the drainage path is such that $H_{\mathrm{dr}}=\left(H_{o}+H_{f}\right) / 4=(20$
$+19.1) / 4=9.8 \mathrm{~mm}$. Substituting the available data in the expression for c_{v}, we obtain

$$
c_{v}=\frac{T_{v} H_{\mathrm{dr}}^{2}}{t_{90}}=\frac{0.848 \times 9.8^{2}}{11.56}=7.05 \mathrm{~mm}^{2} / \mathrm{min}
$$

The correct answer is \mathbf{B}.

- ANSWER SUMMARY

Problem 1		B
Problem 2		C
Problem 3	3A	B
	3B	D
	3C	A
Problem 4		D
Problem 5		C
Problem 6	6A	B
	6B	C
Problem 7		
Problem 8	8A	Open-ended pb.
	8B	D
	9A	B
	9B	C
	9C	C
Problem 10		Open-ended pb.
Problem 11		B

- REFERENCES

- BUDHU, M. (2011). Soil Mechanics and Foundations. 3rd edition. New York: John Wiley and Sons.
- CRAIG, R. (2004). Craig's Soil Mechanics. 7th edition. London: Spon Press.
- DAS, B. and SOBHAN, K. (2014). Principles of Geotechnical Engineering. 8th edition. Stamford: Cengage Learning.
- LIU, C., and EVETT, J. (2008). Soils and Foundations. 7th edition. Upper Saddle River: Pearson.

Got any questions related to this quiz? We can help!
Send a message to contact@montogue.com and we'll
answer your question as soon as possible.

