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 Quiz EL106 
Symmetrical Components  

and Unbalanced Fault 
 

 

Lucas Monteiro Nogueira 
 
 

A PROBLEMS 

B Problem 1 

Determine the symmetrical components of the following line 
currents. 

 
 
 

B Problem 2 

Problem 2.1: Given the line-to-ground voltages 𝑉𝑉𝑎𝑎𝑎𝑎 = 280∠0o, 𝑉𝑉𝑏𝑏𝑏𝑏 = 
250∠ −110o, and 𝑉𝑉𝑐𝑐𝑐𝑐 = 290∠130o volts, calculate the sequence components of 
the line-to-ground voltages, denoted 𝑉𝑉𝐿𝐿,𝑔𝑔0, 𝑉𝑉𝐿𝐿,𝑔𝑔1, and 𝑉𝑉𝐿𝐿,𝑔𝑔2. 
Problem 2.2: Determine the line-to-line voltages 𝑉𝑉𝐿𝐿𝐿𝐿,0, 𝑉𝑉𝐿𝐿𝐿𝐿,1, and 𝑉𝑉𝐿𝐿𝐿𝐿,2. 
Problem 2.3: Determine the sequence components of the line-to-line 
voltages 𝑉𝑉𝐿𝐿𝐿𝐿,0 = 0, 𝑉𝑉𝐿𝐿𝐿𝐿,1, and 𝑉𝑉𝐿𝐿𝐿𝐿,2.  
Problem 2.4: The voltages given in the previous problem are applied to a 
balanced-Y load consisting of (12 + j16) ohms per phase. The load neutral is 
solidly grounded. Draw the sequence networks and calculate 𝐼𝐼0, 𝐼𝐼1, and 𝐼𝐼2, the 
sequence components of the line currents. Then calculate the line currents 
𝐼𝐼𝑎𝑎, 𝐼𝐼𝑏𝑏, and 𝐼𝐼𝑐𝑐. 
Problem 2.5: Repeat Problem 2.4 with the load neutral open. 
Problem 2.6: Repeat Problem 2.4 with a balanced-Δ load consisting of (12 + 
j16) ohms per phase. 
Problem 2.7: Repeat the previous problem for the load described in Example 
8.4 of Glover et al.’s book. The text is reproduced below. 

A balanced-Y load is in parallel with a balanced-Δ-connected capacitor 
bank. The Y load has an impedance 𝑍𝑍𝑌𝑌  = (3 +j4) Ω per phase, and its neutral is 
grounded through an inductive reactance Xn = 2 Ω. The capacitor bank has a 
reactance Xc = 30 Ω per phase. 
Problem 2.8: Repeat Problem 2.4 but include balanced three-phase 
impedances of (3 + j4) ohms per phase between the source and load.  

B Problem 3 (Glover et al., 2017, w/ permission)  

Problem 3.1: Consider the flow of unbalanced currents in the symmetrical 
three-phase line section with neutral conductor illustrated below. Express 
the voltage drops across the line conductors given by 𝑉𝑉𝑎𝑎𝑎𝑎, 𝑉𝑉𝑏𝑏𝑏𝑏, and 𝑉𝑉𝑐𝑐𝑐𝑐 in 
terms of line currents, self-impedances defined by 𝑍𝑍𝑆𝑆 = 𝑍𝑍𝑎𝑎𝑎𝑎 + 𝑍𝑍𝑛𝑛𝑛𝑛 − 2 𝑍𝑍𝑎𝑎𝑎𝑎, and 
mutual impedances defined by 𝑍𝑍𝑚𝑚 = 𝑍𝑍𝑎𝑎𝑎𝑎 + 𝑍𝑍𝑛𝑛𝑛𝑛 − 2𝑍𝑍𝑎𝑎𝑎𝑎.  

 

 

𝐼𝐼𝑎𝑎 = 6∠90o A 
𝐼𝐼𝑏𝑏 = 6∠320o A 
𝐼𝐼𝑐𝑐 = 6∠220o A 
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Problem 3.2: Show that the sequence components of the voltage drops 
between the ends of the line section can be written as 𝑉𝑉𝑎𝑎𝑎𝑎′0 = 𝑍𝑍0𝐼𝐼𝑎𝑎0, 𝑉𝑉𝑎𝑎𝑎𝑎′1 = 
𝑍𝑍1𝐼𝐼𝑎𝑎1, and 𝑉𝑉𝑎𝑎𝑎𝑎′2 = 𝑍𝑍2𝐼𝐼𝑎𝑎2, where  
 

0 2 2 3 6S M aa ab nn anZ Z Z Z Z Z Z= + = + + −  

1 2 S M aa abZ Z Z Z Z Z= = = = −  

B Problem 4 (Glover et al., 2017, w/ permission) 

Problem 4.1: Let the terminal voltages at the two ends of the line section 
shown below be given by 

( ) ( )
( ) ( )

( ) ( )

182 70 kV ; 154 28 kV

72.24 32.62 kV ; 44.24 74.62 kV

170.24 88.62 kV ; 198.24 46.62 kV

an an

bn bn

cn cn

V j V j

V j V j

V j V j

′

′

′=

= + = +

= − = −

= − + = − +

 

The line impedances are 𝑍𝑍𝑎𝑎𝑎𝑎 = j60 Ω, 𝑍𝑍𝑎𝑎𝑎𝑎 = j20 Ω, 𝑍𝑍𝑛𝑛𝑛𝑛 = j80 Ω, and 𝑍𝑍𝑎𝑎𝑎𝑎 = 
j30 Ω. Compute the line currents using symmetrical components.  

Hint: Use the results developed in Problem 3. 
Problem 4.2: Compute the line currents without using symmetrical 
components. 

 

B Problem 5 

Using Saadat’s (1999) MATLAB toolbox, obtain the symmetrical 
components for the following set of unbalanced voltages. 

 

 

B Problem 6 

The symmetrical components of a set of unbalanced three-phase 
currents are 𝐼𝐼𝑎𝑎0 = 3∠ −30o, 𝐼𝐼𝑎𝑎1 = 5∠90o, and 𝐼𝐼𝑎𝑎2 = 4∠30o. Obtain the original 
unbalanced phasors.  

B Problem 7 

The line-to-line voltages in an unbalanced three-phase supply are 𝑉𝑉𝑎𝑎𝑎𝑎 
= 1000∠0o, 𝑉𝑉𝑏𝑏𝑏𝑏 = 866.0254∠ −150o, and 𝑉𝑉𝑐𝑐𝑐𝑐 = 500∠120o. Determine the 
symmetrical components for line and phase voltages, then find the phase 
voltages 𝑉𝑉𝑎𝑎𝑎𝑎, 𝑉𝑉𝑏𝑏𝑏𝑏, and 𝑉𝑉𝑐𝑐𝑐𝑐.  

B Problem 8 (Saadat, 1999, w/ permission) 

Problem 8.1: A balanced three-phase voltage of 360-V line-to-neutral is 
applied to a balanced Y-connected load with ungrounded neutral, as shown 
below. The three-phase load consists of three mutually-coupled reactances. 
Each phase has a series reactance of 𝑍𝑍𝑆𝑆 = J24 Ω, and the mutual coupling 
between phases is 𝑍𝑍𝑀𝑀 = j6.0 Ω. Determine the line currents by mesh analysis 
without using symmetrical components.  
Problem 8.2: Determine the line currents using symmetrical components. 

 

𝑉𝑉𝑎𝑎 = 300∠ −120o 
𝑉𝑉𝑏𝑏 = 200∠90o 
𝑉𝑉𝑐𝑐 = 100∠ −30o 
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B Problem 9  (Saadat, 1999, w/ permission) 

A three-phase unbalanced source with the following phase-to-
neutral voltages 

abc

300 120º
200 90º

100 30º

∠− 
 = ∠ 
 ∠− 

V  

is applied to the circuit illustrated below. The load series impedance per 
phase is 𝑍𝑍𝑆𝑆 = 10 + j40 and the mutual impedance between phases is 𝑍𝑍𝑀𝑀 = j5. 
Determine:  
Problem 9.1: The load sequence impedance matrix, 𝒁𝒁012 = 𝐀𝐀−1𝒁𝒁𝑎𝑎𝑎𝑎𝑎𝑎𝑨𝑨. 
Problem 9.2: The symmetrical components of voltage. 
Problem 9.3: The symmetrical components of current. 
Problem 9.4: The load phase currents. 
Problem 9.5: The complex power delivered to the load in terms of 
symmetrical components, 𝑆𝑆3𝜙𝜙 = 3(𝑉𝑉𝑎𝑎0𝐼𝐼𝑎𝑎0

∗ + 𝑉𝑉𝑎𝑎1𝐼𝐼𝑎𝑎1
∗+ 𝑉𝑉𝑎𝑎2𝐼𝐼𝑎𝑎2

∗). 
Problem 9.6: The complex power delivered to the load by summing up the 
power in each phase, 𝑆𝑆3𝜙𝜙 = 𝑉𝑉𝑎𝑎𝐼𝐼𝑎𝑎∗ + 𝑉𝑉𝑏𝑏𝐼𝐼𝑏𝑏∗ + 𝑉𝑉𝑐𝑐𝐼𝐼𝑐𝑐∗.  

 

B Problem 10 

The line-to-line voltages in an unbalanced three-phase supply are 𝑉𝑉𝑎𝑎𝑎𝑎 
= 600∠ −36.87o, 𝑉𝑉𝑏𝑏𝑏𝑏 = 800∠126.87o, 𝑉𝑉𝑐𝑐𝑐𝑐 = 1000∠ −90o. A Y-connected load 
with a resistance of 37 Ω per phase is connected to the supply. Determine 
Problem 10.1: The symmetrical components of voltage. 
Problem 10.2: The phase voltages. 
Problem 10.3: The line currents. 

B Problem 11 (Glover et al., 2017, w/ permission) 

The single-line diagram of a three-phase power system is shown 
below. Equipment ratings are given as follows. 

Synchronous generators 
G1 1000 MVA, 15 kV   𝑋𝑋𝑑𝑑′′ = 𝑋𝑋2 = 0.18, 𝑋𝑋0 = 0.07 per unit 
G2 1000 MVA, 15 kV 𝑋𝑋𝑑𝑑′′ = 𝑋𝑋2 = 0.20, 𝑋𝑋0 = 0.10 per unit 
G3 500 MVA, 13.8 kV  𝑋𝑋𝑑𝑑′′ = 𝑋𝑋2 = 0.15, 𝑋𝑋0 = 0.05 per unit 
G4 750 MVA, 13.8 kV 𝑋𝑋𝑑𝑑′′ = 0.30, 𝑋𝑋2 = 0.40, 𝑋𝑋0 = 0.10 per unit 

Transformers 
T1 1000 MVA, 15 kV Δ/765 kV Y   𝑋𝑋 = 0.10 per unit 
T2 1000 MVA, 15 kV Δ/765 kV Y 𝑋𝑋 = 0.10 per unit 
T3 500 MVA, 15 kV Δ/765 kV Y 𝑋𝑋 = 0.12 per unit 
T4 750 MVA, 15 kV Δ/765 kV Y 𝑋𝑋 = 0.11 per unit 

Transmission lines 
1-2 765 kV  𝑋𝑋1 = 50 Ω, 𝑋𝑋0 = 150 Ω 
1-3 765 kV  𝑋𝑋1 = 40 Ω, 𝑋𝑋0 = 100 Ω 
2-3 765 kV  𝑋𝑋1 = 40 Ω, 𝑋𝑋0 = 100 Ω 
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Problem 11.1: The inductor connected to generator 3 neutral has a reactance 
of 0.05 per unit using generator 3 ratings as a base. Draw the zero-, positive-, 
and negative-sequence reactance diagrams using a 1000-MVA, 765-kV base 
in the zone of line 1-2. Neglect the Δ-Y transformers phase shifts.  
Problem 11.2: Faults at bus n of Problem 11.1 are of interest (the instructor 
selects n = 1, 2, or 3). Determine the Thévenin equivalent of each sequence 
network as viewed from the fault bus. Prefault voltage is 1.0 per unit. 
Prefault load currents and Δ-Y transformer phase shifts are neglected.  
Problem 11.3: Determine the subtransient fault current in per-unit and in kA 
during a bolted three-phase fault at the fault bus selected in Problem 11.2. 
Problem 11.4: Reconsidering the system introduced in Problem 11.1, 
determine the subtransient fault current in per-unit and in kA, as well as the 
per-unit line-to-ground voltages at the fault bus for a bolted single line-to-
ground fault at the fault bus selected in Problem 11.2.  
Problem 11.5: Repeat the previous problem for a single line-to-ground arcing 
fault with arc impedance 𝑍𝑍𝐹𝐹 = 15 + j0 Ω.  
Problem 11.6: Repeat Problem 11.4 for a bolted line-to-line fault.  
Problem 11.7: Repeat Problem 11.4 for a bolted double line-to-ground fault. 

B Problem 12 (Glover et al., 2017, w/ permission) 

Equipment ratings for the four-bus power system illustrated below 
are given as follows. 

 

Generators 
Generator G1: 500 MVA, 13.8 kV, 𝑋𝑋𝑑𝑑′′ = 𝑋𝑋2 = 0.20, 𝑋𝑋0 = 0.10 per unit 
Generator G2: 750 MVA, 18 kV, 𝑋𝑋𝑑𝑑′′ = 𝑋𝑋2 = 0.18, 𝑋𝑋0 = 0.09 per unit 

Generator G3: 1000 MVA, 20 kV, 𝑋𝑋𝑑𝑑′′ = 0.17, 𝑋𝑋2 = 0.20, 𝑋𝑋0 = 0.09 per unit 
Transformers 

Transformer T1: 500 MVA, 13.8 kV Δ/500 kV Y, 𝑋𝑋 = 0.12 per unit  
Transformer T2: 750 MVA, 18 kV Δ/500 kV Y, 𝑋𝑋 = 0.10 per unit 

Transformer T3: 1000 MVA, 20 kV Δ/500 kV Y, 𝑋𝑋 = 0.10 per unit 
Each line: 𝑋𝑋1 = 50 Ω, 𝑋𝑋0 = 150 Ω   

Problem 12.1: The inductor connected to generator G3 neutral has a 
reactance of 0.028 Ω. Draw the zero-, positive, and negative-sequence 
reactance diagrams using a 1000-MVA, 20-kV base in the zone of generator 
G3. Neglect Δ-Y transformer phase shifts.  
Problem 12.2: Faults at bus n in Problem 12.1 are of interest (the instructor 
selects n = 1, 2, 3, or 4). Determine the Thévenin equivalent of each sequence 
network as viewed from the fault bus. Prefault voltage is 1.0 per unit. 
Prefault load currents and Δ-Y phase shifts are neglected.  
Problem 12.3: Determine the subtransient fault current in per-unit and in kA 
during a bolted three-phase fault at the fault bus selected in Problem 12.2.  
Problem 12.4: Determine the subtransient fault current in per unit and in kA, 
as well as contributions to the fault current from each line and transformer 
connected to the fault bus for a bolted single line-to-ground fault at the 
fault bus selected in Problem 12.2.  
Problem 12.5: Repeat the previous problem for a bolted line-to-line fault.  
Problem 12.6: Repeat Problem 12.4 for a bolted double line-to-ground fault. 
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B Problem 13 (Glover et al., 2017, w/ permission) 

Problem 13.1: Consider the system shown below. As viewed from the fault at F, 
determine the Thévenin equivalent of each sequence network. Neglect Δ–Y 
phase shifts. Compute the fault currents for a balanced three-phase fault at 
fault point F through three fault impedances 𝑍𝑍𝐹𝐹𝐹𝐹 = 𝑍𝑍𝐹𝐹𝐹𝐹 = 𝑍𝑍𝐹𝐹𝐹𝐹  = j0.5 per unit. 
Equipment data in per-unit on the same base are given as follows: 
 

 

 

 

 
 
 
 

 

Problem 13.2: For the system of Problem 13.1, compute the fault current and 
voltages at the fault for the following faults at point F: (a) a bolted single 
line-to-ground fault; (b) a line-to-line fault through a fault impedance 𝑍𝑍𝐹𝐹 = 
j0.05 per unit; (c) a double line-to-ground fault from phase B to C to ground, 
where phase B has a fault impedance 𝑍𝑍𝐹𝐹 = j0.05 per unit, 
phase C also has a fault impedance  𝑍𝑍𝐹𝐹 = j0.05 per unit, and the common 
line-to-ground fault impedance is 𝑍𝑍𝐺𝐺  = j0.033 per unit. 

B Problem 14 (Glover et al., 2017, w/ permission)   

Equipment ratings and per-unit reactances for the system illustrated 
below are given as follows: 

Synchronous generators 
Generator G1: 100 MVA, 25 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.2, 𝑋𝑋0 = 0.05 

Generator G2: 100 MVA, 13.8 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.2, 𝑋𝑋0 = 0.05 
Transformers 

Transformer T1: 100 MVA, 25/230 kV, 𝑋𝑋1 = 𝑋𝑋2 = 𝑋𝑋0 = 0.05 
Transformer T2: 100 MVA, 13.8/230 kV, 𝑋𝑋1 = 𝑋𝑋2 = 𝑋𝑋0 = 0.05 

Transmission lines 
Transmission line TL12: 100 MVA, 230 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.1, 𝑋𝑋0 = 0.3 
Transmission line TL13: 100 MVA, 230 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.1, 𝑋𝑋0 = 0.3 
Transmission line TL23: 100 MVA, 230 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.1, 𝑋𝑋0 = 0.3 

Problem 14.1: Using a 100-MVA, 230-kV base for the transmission lines, draw 
the per-unit sequence networks and reduce them to their Thévenin 
equivalents, “looking in” at bus 3. Neglect Δ-Y phase shifts. Compute the 
fault currents for a bolted three-phase fault at bus 3.  
 
 

Synchronous generators 
Generator G1: 𝑋𝑋1 = 0.2, 𝑋𝑋2 = 0.12, 𝑋𝑋0 = 0.06 per unit 

Generator G2: 𝑋𝑋1 = 0.33, 𝑋𝑋2 = 0.22, 𝑋𝑋0 = 0.066 per unit 
Transformers 

Transformer T1: 𝑋𝑋1 = 𝑋𝑋2 = 𝑋𝑋0 = 0.2  
Transformer T2: 𝑋𝑋1 = 𝑋𝑋2 = 𝑋𝑋0 = 0.225 
Transformer T3: 𝑋𝑋1 = 𝑋𝑋2 = 𝑋𝑋0 = 0.27 
Transformer T4: 𝑋𝑋1 = 𝑋𝑋2 = 𝑋𝑋0 = 0.16 

Transmission lines 
Line L1: 𝑋𝑋1 = 𝑋𝑋2 = 0.14, 𝑋𝑋0 = 0.3 
Line L2: 𝑋𝑋1 = 𝑋𝑋2 = 0.35, 𝑋𝑋0 = 0.6 
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Problem 14.2: Reconsidering the system of Problem 14.1, compute the fault 
current and voltages at the fault for the following faults at bus 3: (a) a bolted 
single line-to-ground fault; (b) a bolted line-to-line fault; (c) a bolted double 
line-to-ground fault. Also, for the single line-to-ground fault at bus 3, 
determine the currents and voltages at the terminals of generators G1 and 
G2.  

B Problem 15 (Glover et al., 2017, w/ permission)   

Consider the oneline diagram of a simple power system shown below. 
System data in per-unit on a 100-MVA base are given as follows: 

Synchronous generators 
Generator G1: 100 MVA, 20 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.15, 𝑋𝑋0 = 0.05 
Generator G2: 100 MVA, 20 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.15, 𝑋𝑋0 = 0.05 

Transformers 
Transformer T1: 100 MVA, 20/220 kV, 𝑋𝑋1 = 𝑋𝑋2 = 𝑋𝑋0 = 0.1 
Transformer T2: 100 MVA, 20/220 kV, 𝑋𝑋1 = 𝑋𝑋2 = 𝑋𝑋0 = 0.1 

Transmission lines 
Transmission line L12: 100 MVA, 220 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.125, 𝑋𝑋0 = 0.3 
Transmission line L13: 100 MVA, 220 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.15, 𝑋𝑋0 = 0.35 

Transmission line L23: 100 MVA, 220 kV, 𝑋𝑋1 = 𝑋𝑋2 = 0.25, 𝑋𝑋0 = 0.7125 

Problem 15.1: The neutral of each generator is grounded through a current-
limiting reactor of 0.08333 per unit on a 100-MVA base. All transformer 
neutrals are solidly grounded. The generators are operating no-load at their 
rated voltages and rated frequency with their EMFs in phase. Determine the 
fault current for a balanced three-phase fault at bus 3 through a fault 
impedance 𝑍𝑍𝐹𝐹 = 0.1 per unit on a 100-MVA base. Neglect Δ-Y phase shifts.  
Problem 15.2: For the system of Problem 15.1, compute the fault current for 
the following faults at bus 3: (a) a single line-to-ground fault through a fault 
impedance 𝑍𝑍𝐹𝐹 = j0.1 per unit; (b) a line-to-line fault through a fault impedance 
𝑍𝑍𝐹𝐹 = j0.1 per unit; (c) a double line-to-ground fault through a common fault 
impedance to ground 𝑍𝑍𝐹𝐹 = j0.1 per unit.  

A SOLUTIONS 

P.1 c Solution 
Let 𝐼𝐼0, 𝐼𝐼1, and 𝐼𝐼2 denote the symmetrical components of 𝐼𝐼𝑎𝑎, 𝐼𝐼𝑏𝑏, and 𝐼𝐼𝑐𝑐, 

respectively. Noting that a = 1∠120o, we may write 

0
2

1
2

2

1 1 1 6 90º
1 1 6 320º
3

1 6 220º

I
I a a
I a a

∠     
     = ∠     
     ∠     

 

0
2

1
2

2

1 1 1 1 90º
6 1 1 320º
3

1 1 220º

I
I a a
I a a

∠     
     ∴ = ∠     
     ∠     

 

( ) ( )
( ) ( )

0
2

1
2

2

1 1 90º 1 1 320º 1 1 220º

2 1 1 90º 1 120º 1 320º 1 120º 1 220º

1 1 90º 1 120º 1 320º 1 120º 1 220º

I
I
I

× ∠ + × ∠ + × ∠  
  ∴ = × ∠ + ∠ × ∠ + ∠ × ∠  
    × ∠ + ∠ × ∠ + ∠ × ∠  
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0

1

2

0.286 0.572
2 2.97 5.94

0.316 0.632

I j j
I j j
I j j

− −     
     ∴ = =     
          

 

0 1 20.572 90º ; 5.94 90º ; 0.632 90ºI I I∴ = ∠− = ∠ = ∠  

P.2 c Solution 
Problem 2.1: To calculate 𝑉𝑉𝐿𝐿,𝑔𝑔0, 𝑉𝑉𝐿𝐿,𝑔𝑔1 and 𝑉𝑉𝐿𝐿,𝑔𝑔2, we write 

, 0
2

, 1
2

, 2

1 1 1 280 0º
1 1 250 110º
3

1 290 130º

L g

L g

L g

V
V a a
V a a

  ∠   
     = ∠−     
     ∠    

 

, 0
2

, 1
2

, 2

280 0º 250 110º 290 130º
1 280 0º 250 110º 290 130º
3

290 130º 250 110º 290 130º

L g

L g

L g

V
V a a
V a a

  ∠ + ∠− + ∠ 
   ∴ = ∠ + × ∠− + × ∠   
   ∠ + × ∠− + × ∠  

 

, 0

, 1

, 2

2.70 4.26
271 31.3
6.71 27.0

L g

L g

L g

V j
V j
V j

  − 
   ∴ = +   
   −  

 

, 0

, 1

, 2

5.04 57.6º
273 6.59º V

27.8 76.0º

L g

L g

L g

V
V
V

  ∠− 
   ∴ = ∠   
   ∠−  

 

Problem 2.2: To determine the line-to-line voltages, we first establish 
the values of 𝑉𝑉𝑎𝑎𝑎𝑎, 𝑉𝑉𝑏𝑏𝑏𝑏, and 𝑉𝑉𝑐𝑐𝑐𝑐, 

280 0º 250 110º 366 235
250 110º 290 130º 101 457

290 130º 280 0º 466 222

ab ag bg

bc bg cg

ca cg ag

V V V j
V V V j
V V V j

 − ∠ − ∠− +     
      = − = ∠− − ∠ = −      
      − ∠ − ∠ − +      

 

435 32.7º
468 77.5º V

516 155º

ab

bc

ca

V
V
V

∠   
   ∴ = ∠−   
   ∠   

 

Problem 2.3: The values of the 𝑉𝑉𝐿𝐿𝐿𝐿’s are determined next, 

,0
2 2

,1
2 2

,2

1 1 1 1 1 1 435 32.7º
1 11 1 468 77.5º
3 3

1 1 516 155º

LL ab

LL bc

LL ca

V V
V a a V a a
V a a V a a

  ∠       
         = = ∠−         
         ∠        

 

, 0
2

, 1
2

, 2

435 32.7º 468 77.5º 516 155º 0.101 1.28
1 435 32.7º 468 77.5º 516 155º 378 282
3

435 32.7º 468 77.5º 516 155º 11.8 46.1

L g

L g

L g

V j
V a a j
V a a j

  ∠ + ∠− + ∠ − −   
     ∴ = ∠ + × ∠− + × ∠ = +     
     ∠ + × ∠− + × ∠ − −    

 

,0

,1

,2

1.28 94.5º
472 36.7º V

47.6 104º

LL

LL

LL

V
V
V

  ∠− 
   ∴ = ∠   
   ∠−  

 

Problem 2.4: A load of 12 + j16 Ω can be written in exponential form as 
20∠53.1o. The sequence networks are sketched below. 
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Given 𝑉𝑉𝐿𝐿,𝑔𝑔0 = 5.04∠ −57.6o, 𝑉𝑉𝐿𝐿,𝑔𝑔1 = 273∠6.59o, and 𝑉𝑉𝐿𝐿,𝑔𝑔2 = 27.8∠ −76.0o, 
we compute the sequence components of the line currents as follows, 

( ), 0
0

0

5.04 57.6º 5.04 57.6º 53.1º 0.252 111º A
20 53.1º 20

L gV
I

Z
∠−

= = = ∠ − − = ∠−
∠

 

, 1
1

1

273 6.59º 13.7 46.5º A
20 53.1º

L gV
I

Z
∠

= = = ∠−
∠

 

, 2
2

2

27.8 76.0º 1.39 129º A
20 53.1º

L gV
I

Z
∠−

= = = ∠−
∠

 

The next step is to calculate 𝐼𝐼𝑎𝑎, 𝐼𝐼𝑏𝑏, and 𝐼𝐼𝑐𝑐, 

2

2

1 1 1 0.252 111º 14.1 53.0º
1 13.7 46.5º 12.6 163º A
1 1.39 129º 14.6 76.9º

a

b

c

I
I a a
I a a

∠− ∠−       
       = ∠− = ∠−       
       ∠− ∠       

 

Observe that the source and load neutrals are connected with a zero-
ohm wire. It follows that a quicker, simpler way to compute the same 
currents is to write 

280 0º
20 53.1º 14 53.1º

250 110º 12.5 153º A
20 53.1º

14.5 76.9º290 130º
20 53.1º

a ag Y

b bg Y

c cg Y

I V z
I V z
I V z

∠ 
 ∠  ∠−    

∠−     = = = ∠−     ∠    ∠      ∠ 
 ∠ 

 

which agrees with the above result; the slight difference is due to round-off.  
Problem 2.5: With the load neutral open, 𝐼𝐼0 = 0; The remaining 

currents continue to be 𝐼𝐼1 = 13.7∠ −46.5o and 𝐼𝐼2 = 1.39∠ −129o A. We proceed 
to determine 𝐼𝐼𝑎𝑎, 𝐼𝐼𝑏𝑏, and 𝐼𝐼𝑐𝑐. 

2

2

1 1 1 0 8.56 11.1 13.9 52.2º
1 13.7 46.5º 11.9 3.42 12.4 164º A
1 1.39 129º 3.39 14.4 14.8 76.8º

a

b

c

I j
I a a j
I a a j

− ∠−         
         = ∠− = − − = ∠−         
         ∠− + ∠         

 

Problem 2.6: The sequence networks are redrawn as follows. 

 

Currents 𝐼𝐼0, 𝐼𝐼1, and 𝐼𝐼2 are restated as 

0 1 2
273 6.59º 27.8 76.0º0 ; 41.0 46.5º A ; 4.17 129º A
20 2053.1º 53.1º
3 3

I I I∠ ∠−
= = = ∠− = = ∠−

   ∠ ∠   
   

 

so that 

2

2

1 1 1 0 25.6 33.0 41.7 52.2º
1 41.0 46.5º 35.7 10.2 37.2 164º A
1 4.17 129º 10.2 43.2 44.4 76.8º

a

b

c

I j
I a a j
I a a j

− ∠−         
         = ∠− = − − = ∠−         
         ∠− + ∠         

 

Note that these currents are approximately 3 times the currents 
obtained in Problem 2.5, as they should be.  

Problem 2.7: The sequence networks are illustrated below. As shown, 
the Y-load impedance in the zero-sequence network is in series with three 
times the neutral impedance. Also, the Δ-load branch in the zero-sequence 
network is open, since no zero-sequence current flows into the Δ-load. In the 
positive- and negative-sequence circuits, the Δ-load impedance is divided by 
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3 and placed in parallel with the Δ-load impedance. The equivalent sequence 
impedances are  

( )0 3 3 4 3 2 3 10Y nZ Z Z j j j= + = + + × = + Ω  

( ) ( ) ( )
( )1

3 4 30 3
// 3 6.67 3.33 7.45 26.6º

3 4 30 3Y

j j
Z Z Z j

j j∆

+ × −
= = = + = ∠ Ω

+ −
 

2 1 7.45 26.6ºZ Z= = ∠ Ω  

 

Having determined the pertaining impedances, we proceed to 
compute currents 𝐼𝐼0, 𝐼𝐼1, and 𝐼𝐼2, 

, 0
0

0

5.04 57.6º 5.04 57.6º 0.485 131º A
3 10 10.4 73.3º

L gV
I

Z j
∠− ∠−

= = = = ∠−
+ ∠

 

, 1
1

1

273 6.59º 36.6 20.0º A
7.45 26.6º

L gV
I

Z
∠

= = = ∠−
∠

 

, 2
2

2

27.8 76.0º 3.73 103º A
7.45 26.6º

L gV
I

Z
∠−

= = = ∠−
∠

 

Lastly, we make use of the usual matrix equation to determine 𝐼𝐼𝑎𝑎, 𝐼𝐼𝑏𝑏, 
and 𝐼𝐼𝑐𝑐, 

2

2

1 1 1 0.485 131º 33.2 16.5 37.1 26.4º
1 36.6 20.0º 24.8 22.8 33.7 137º A
1 3.73 103º 9.40 38.2 39.4 104º

a

b

c

I j
I a a j
I a a j

∠− − ∠−         
         = ∠− = − − = ∠−         
         ∠− − + ∠         

 

Problem 2.8: The only change relatively to Problem 2.4 is the addition 
of a series (3 + j4)-Ω impedance to each sequence network, as shown. 

 

First determine 𝐼𝐼0, 𝐼𝐼1, and 𝐼𝐼2, 

( ) ( )
, 0

0
0

5.04 57.6º 5.04 57.6º 5.04 57.6º
3 4 3 4 20 53.1º 5 53.1º 20 53.1º 25 53.1º

L gV
I

j Z j
∠− ∠− ∠−

= = = =
+ + + + ∠ ∠ + ∠ ∠

 

0 0.202 111º AI∴ = ∠−  

( ) ( )
, 1

1
1

273 6.59º 10.9 46.5º A
3 4 3 4 20 53.1º

L gV
I

j Z j
∠

= = = ∠−
+ + + + ∠
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( ) ( )
, 2

2
2

27.8 76.0º 1.11 129º A
3 4 3 4 20 53.1º

L gV
I

j Z j
∠−

= = = ∠−
+ + + + ∠

 

 

It follows that 

2

2

1 1 1 0.202 111º 6.73 8.96 11.2 53.1º
1 10.9 46.5º 9.57 2.91 10.0 163º A
1 1.11 129º 2.63 11.3 11.6 76.9º

a

b

c

I j
I a a j

a a jI

∠− − ∠−         
         = ∠− = − − = ∠−         
         ∠− + ∠        

 

Since the source and load neutrals are connected with a zero-ohm 
neutral wire, another way to express the currents above is, using the voltages 
given in 2.1, 

( )
( )
( )

( )
( )
( )

3 4 280 0º 3 4 20 53.1º 6.72 8.96 11.2 53.1º
3 4 250 110º 3 4 20 53.1º 9.57 2.91 10.0 163º
3 4 290 130º 3 4 20 53.1º 2.63 11.3 11.6 7

a ag Y

b bg Y

c bg Y

I V j Z j j
I V j Z j j
I V j Z j j

 + + ∠ + + ∠ − ∠−    
      = + + = ∠− + + ∠ = − − = ∠−      
      + + ∠ + + ∠ + ∠     

A
6.9º

 
 
 
  

 

which confirms the results obtained above.  

P.3 c Solution 
Problem 3.1: Applying Kirchhoff’s volage law brings to 
 

( )
an aa a ab b ab c an n a n

nn n an c an b an a

V Z I Z I Z I Z I V
Z I Z I Z I Z I

′ ′= + + + +

− + + +
 

 

The voltage drop across the line section is given by 
 

an a n aa a ab b ab c an n

nn n an c an b an a

V V Z I Z I Z I Z I
Z I Z I Z I Z I
′ ′− = + + +

− − − −
 

( ) ( )( ) ( )an a n aa an a ab an b c an nn nV V Z Z I Z Z I I Z Z I′ ′∴ − = − + − + + +  
 

Similarly for phases b and c, 

( ) ( )( ) ( )bn b n aa an b ab an a c an nn nV V Z Z I Z Z I I Z Z I′ ′− = − + − + + +  

( ) ( )( ) ( )cn c n aa an c ab an a b an nn nV V Z Z I Z Z I I Z Z I′ ′− = − + − + + +  
 

From Kirchoff’s circuit law, 
 

( )n a b cI I I I= − + +  
 

Upon substitution, 

( ) ( ) ( )2 2 2an a n aa nn an a ab nn an b ab nn an cV V Z Z Z I Z Z Z I Z Z Z I′ ′− = + − + + − + + −  

( ) ( ) ( )2 2 2bn b n ab nn an a aa nn an b ab nn an cV V Z Z Z I Z Z Z I Z Z Z I′ ′− = + − + + − + + −

( ) ( ) ( )2 2 2cn c n ab nn an a ab nn an b aa nn an cV V Z Z Z I Z Z Z I Z Z Z I′ ′− = + − + + − + + −  
 

We were given the definitions 
 

2S aa nn anZ Z Z Z≡ + −  

2M ab nn anZ Z Z Z≡ + −  

so that 

an a n S a M b M cV V Z I Z I Z I′ ′− = + +  

bn b n M a S b M cV V Z I Z I Z I′ ′− = + +  

cn c n M a M b S cV V Z I Z I Z I′ ′− = + +  

or, in matrix form, 
 

aa an a n S M M a

bb bn b n M S M b

cc cn c n M M S c

V V V Z Z Z I
V V V Z Z Z I
V V V Z Z Z I

′ ′ ′

′ ′ ′

′ ′ ′

−       
       = − =       
       −       

 

 

where the voltage drops across the phase conductors are denoted by 𝑉𝑉𝑎𝑎𝑎𝑎, 𝑉𝑉𝑏𝑏𝑏𝑏, 
and 𝑉𝑉𝑐𝑐𝑐𝑐. 

Problem 3.2: The a-b-c voltage drops and currents of the line section 
can be written in terms of their symmetrical components according to 𝑽𝑽𝑷𝑷 = 
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𝑨𝑨𝑽𝑽𝑺𝑺, where 𝑽𝑽𝑷𝑷 is the column vector of phase voltages, 𝑽𝑽𝑺𝑺 is the column 
vector of sequence voltages, and 𝑨𝑨 is a 3 × 3 transformation matrix. With 
phase a as the reference phase, we may write 

0 0

1 1

2 2

aa S M M M M a

aa S M M M M a

aa S M M M M a

V Z Z Z Z Z I
A V Z Z Z Z Z A I

V Z Z Z Z Z I

′

′

′

 − • •        
        = • − • +        
        • • −        

 

Multiplying across by 𝐴𝐴−1, 

( )
0 0

1
1 1

2 2

1 1 1 1
1 1 1 1

1 1 1 1

aa a

aa S M M a

aa a

V I
V A Z Z Z A I
V I

′
−

′

′

 • •        
        = − • • +        
        • •        

 

or  
 

0 0

1 1

2 2

2aa S M a

aa S M a

aa S M a

V Z Z I
V Z Z I
V Z Z I

′

′

′

− • •     
     = • − •     
     • • −     

 

Now define zero-, positive-, and negative-sequence impedances in 
terms of 𝑍𝑍𝑆𝑆 and 𝑍𝑍𝑀𝑀 as 

 

0 2 2 3 6S M aa ab nn anZ Z Z Z Z Z Z= + = + + −  

1 S M aa abZ Z Z Z Z= − = −  

2 S M aa abZ Z Z Z Z= − = −  
 

With reference to the last matrix equation, the sequence components 
of the voltage drops between the two ends of the line section can be written 
as three uncoupled equations, namely 

 

0 0 0 0 0aa an a n aV V V Z I′ ′ ′= − =  

1 1 1 1 1aa an a n aV V V Z I′ ′ ′= − =  

2 2 2 2 2aa an a n aV V V Z I′ ′ ′= − =  

P.4 c Solution 
 

Problem 4.1: Using the results from the previous problem, the 
sequence impedances are calculated as 

0 2 3 6 60 2 20 3 80 6 30 160aa ab nn anZ Z Z Z Z j j j j j= + + − = + × + × − × = Ω  

1 2 60 20 40Z Z j j j= = − = Ω  
 

The sequence components of the voltage drops in the line are 

( ) ( )
( ) ( )

( ) ( )

0
1 1 1

1

2

182 70 154 28 28.0 42.0
72.24 32.62 44.24 74.62 28.0 42.0

170.24 88.62 198.24 46.62 28.0 42.0

aa an a n

aa bn b n

aa cn c n

V V V j j j
V A V V A j j A j
V V V j j j

′ ′ ′
− − −

′ ′ ′

′ ′ ′

− + − + +      
      = − = − − − = +      
      − − + − − + +      

 

0
2

1
2

2

1 1 1 28.0 42.0 28.0 42.0
1 1 28.0 42.0 0 kV
3

1 28.0 42.0 0

aa

aa

aa

V j j
V a a j
V a a j

′

′

′

+ +       
       ∴ = + =       
       +       

 

Now, the solution to Problem 3 tells us that 
 

0 0 0 0 0aa an a n aV V V Z I′ ′ ′= − =  

1 1 1 1 1aa an a n aV V V Z I′ ′ ′= − =  

2 2 2 2 2aa an a n aV V V Z I′ ′ ′= − =  
 

Substituting 𝑍𝑍𝑛𝑛’s and the results from the previous matrix equation, 
we find that 

0 028,000 42,000 160aa aV j j I′ = + =  

0 262.5 175AaI j∴ = −  
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1 10 40aa aV j I′ = =  

1 0aI∴ =  

2 20 40aa aV j I′ = =  

2 0aI∴ =  
 

The line currents are then 
 

262.5 175Aa b cI I I j= = = −  

Problem 4.2: The self- and mutual impedances are 
 

2 60 80 2 30 80S aa nn anZ Z Z Z j j j j= + − = + − × = Ω  

2 20 80 2 30 40M ab nn anZ Z Z Z j j j j= + − = + − × = Ω  
 

Accordingly, line currents can be calculated as 

3

28.0 42.0 80 40 40
28.0 42.0 10 40 80 40
28.0 42.0 40 40 80

aa a

bb b

cc c

V j j j j I
V j j j j I
V j j j j I

′

′

′

+       
       = + × =       
       +       

 

3

180 40 40 28.0 42.0
40 80 40 28.0 42.0 10
40 40 80 28.0 42.0

a

b

c

I j j j j
I j j j j
I j j j j

− +     
     ∴ = + ×     
     +     

 

Using MATLAB, 

 

that is, 

262.5 175
262.5 175 A
262.5 175

a

b

c

I j
I j
I j

−   
   = −   
   −   

 

P.5 c Solution 
A link to Saadat’s MATLAB toolbox can be found in our website. The 

command to use is abc2sc, which converts a set of three phasors to its 
symmetrical components. Since the output of abc2sc is in rectangular form, 
finish by applying rec2pol.  

 
 

The symmetrical components are 𝑉𝑉0 = 42.27∠ −120o, 𝑉𝑉1 = 193.2∠ −135o, 
and 𝑉𝑉2 = 86.95∠ −84.9o. 

P.6 c Solution 
To convert a set of symmetrical components back to the original 

unbalanced phasors, use sc2abc.  
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The unbalanced phasors are 𝐼𝐼𝑎𝑎 = 8.185∠42.22o, 𝐼𝐼𝑏𝑏 = 4∠ −30o, and 𝐼𝐼𝑐𝑐 = 
8.185∠ −102.2o.  

P.7 c Solution 
First find the symmetrical components of line voltages, then find the 

symmetrical components of phase voltages. Use the inverse symmetrical 
components transformation to obtain the phase voltages. The commands 
involved are abc2sc, rec2pol, and sc2abc.  
a = -0.5 + 1i*sqrt(3)/2; %a operator 
Vabbcca = [1000,0; 866.0254,-150; 500,120]; 
VL012 = abc2sc(Vabbcca); %Finds the sym. comp. of line 
volt., rect. 
VL012p = rec2pol(VL012) %Converts the sym. comp. of line 
volt. to polar 
Va012 = [0; VL012(2)/(sqrt(3)*(0.866+1i*0.5)); 
VL012(3)/(sqrt(3)*(0.866-1i*0.5))]; %Sym. comp. of phase 
voltages, rect. 
Va012p = rec2pol(Va012) %Converts the sym. comp. of phase 
volt. to polar 
Vabc = sc2abc(Va012); %Unbalanced phase volt., rect. 
Vabcp = rec2pol(Vabc) %Converts unbalanced phase volt. to 
polar 

The output of the above code is shown below. Matrix VL012p 
contains the symmetrical components of the line voltages in polar form; 
matrix Va012p contains the symmetrical components of phase voltages in 
polar form; finally, matrix Vabcp contains the unbalanced phase voltages in 
polar form. 

 

 

 

P.8 c Solution 
Problem 8.1:  
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 Applying Kirchhoff’s voltage law to the two independent mesh 
equations, and writing one node equation, results in 

( ) ( )
( ) ( )

0 6
0 2
1 1 1 0

S M S M a L

S M S M b L

c

Z Z Z Z I V
Z Z Z Z I V

I

π
π

− − −  ∠    
    − − − = ∠−    
        

 

In matrix notation, 
 

abc
mesh mesh=Z I V  

 

or, equivalently, 
abc

mesh mesh
1−=I Z V  

Following Saadat, we write a short piece of code to determine the 
currents. 
disp('(a) Solution by mesh analysis') 
VL = 360*sqrt(3); %Line voltage magnitude 
Zs = 1i*24; Zm = 1i*6; %Series and mutual impedances 
Z = [(Zs-Zm), -(Zs-Zm), 0; 
     0, (Zs-Zm), -(Zs-Zm); 
           1, 1, 1]; %Matrix from 2 mesh eqs. and one node 
eq. 
V = [VL*cos(pi/6)+1i*VL*sin(pi/6); VL*cos(-pi/2)+1i*VL*sin(-
pi/2); 0]; 
Iabc = Z\V; %Line currents, rect. 
Iabcp = [abs(Iabc), angle(Iabc)*180/pi] %Converts line 
currents to polar 

The output is 

Iabcp = 

20.0000  -90.0000 

20.0000  150.0000 

20.0000   30.0000 

That is, 𝐼𝐼𝑎𝑎 = 20∠ −90o, 𝐼𝐼𝑏𝑏 = 20∠150o, and 𝐼𝐼𝑐𝑐 = 20∠30o. 
Problem 8.2: Using the symmetrical components method, we have 
 

012 012 012=V Z I  

where  

012 012

0 2 0 0
; 0 0

0 0 0

S M

a S M

S M

Z Z
V Z Z

Z Z

+   
   = = −   
   −   

V Z  

so that 
012 012 0121−

 =  I Z V  

A second piece of code is provided below. 

disp('(b) Solution by symmetrical components') 
Z012 = [Zs+2*Zm, 0, 0; 0, Zs-Zm, 0; 0, 0, Zs-Zm]; %Sym. 
comp. matrix 
V012 = [0; VL/sqrt(3); 0]; %Sym. comp. of phase voltages 
I012 = inv(Z012)*V012 %Sym. comp. of line currents 
a = cos(2*pi/3)+1i*sin(2*pi/3); 
A = [1, 1, 1; 1, a^2, a; 1, a, a^2]; %Transformation matrix 
Iabc = A*I012; %Line currents, rect. 
Iabcp = [abs(Iabc), angle(Iabc)*180/pi] %Converts line curr. 
to polar  
 

The outputs are 
I012 = 
   0.0000 + 0.0000i 
   0.0000 -20.0000i 
   0.0000 + 0.0000i 
 

Iabcp = 
   20.0000  -90.0000 
   20.0000  150.0000 
   20.0000   30.0000 
 

As before, 𝐼𝐼𝑎𝑎 = 20∠ −90o, 𝐼𝐼𝑏𝑏 = 20∠150o, and 𝐼𝐼𝑐𝑐 = 20∠30o. 
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P.9 c Solution 
Problems 9.1 to 9.6: All tasks can be accomplished with the following 

MATLAB code.  
Vabc = [300,-120; 200,90; 100,-30]; %Phase-to-neutral 
voltages 
Zabc = [10+1i*40, 1i*5, 1i*5; 1i*5, 10+1i*40, 1i*5; 1i*5, 
1i*5, 10+1i*40]; %Self and mutual impedances matrix 
Z012 = zabc2sc(Zabc) %Sym. components of impedance 
V012 = abc2sc(Vabc); %Sym. components of voltage, rect. 
V012p = rec2pol(V012) %Converts sym. components of volt. to 
polar 
I012 = inv(Z012)*V012; %Sym. components of current, rect. 
I012p = rec2pol(I012) %Converts sym. components of curr. to 
polar 
Iabc = sc2abc(I012); %Phase currents, rect. 
Iabcp = rec2pol(Iabc) %Converts phase currents to polar 
S3ph = 3*(V012.')*conj(I012) %Power using symmetrical 
components 
Vabcr = Vabc(:,1).*(cos(pi/180*Vabc(:,2)) + 
1i*sin(pi/180*Vabc(:,2)));  
S3ph = (Vabcr.')*conj(Iabc) %Power using phase quantities 

The outputs are listed below. Z012 is the load sequence impedance 
matrix.  

Z012 = 

  10.0000 +50.0000i  -0.0000 + 0.0000i   0.0000 + 0.0000i 

   0.0000 + 0.0000i  10.0000 +35.0000i  -0.0000 + 0.0000i 

-0.0000 + 0.0000i   0.0000 + 0.0000i  10.0000 +35.0000i 

V012p contains the symmetrical components of voltage in polar form. 

V012p = 

   42.2650 -120.0000 
  193.1852 -135.0000 
   86.9473  -84.8961 
 

I012p contains the symmetrical components of current in polar 
form. 

I012p = 

    0.8289  161.3099 
    5.3072  150.9454 
    2.3886 -158.9507 

Iabcp contains the load phase currents. 

Iabcp = 

    7.9070  165.4600 
    5.8190   14.8676 
    2.7011  -96.9315 

S3ph contains the load phase currents as calculated via 3(𝑉𝑉𝑎𝑎0𝐼𝐼𝑎𝑎0
∗ + 

𝑉𝑉𝑎𝑎1𝐼𝐼𝑎𝑎1
∗+ 𝑉𝑉𝑎𝑎2𝐼𝐼𝑎𝑎2

∗). 

S3ph = 

   1.0368e+03 + 3.6596e+03i 

S3ph is printed a second time, this time as calculated from 𝑆𝑆3𝜙𝜙 = 𝑉𝑉𝑎𝑎𝐼𝐼𝑎𝑎∗ 
+ 𝑉𝑉𝑏𝑏𝐼𝐼𝑏𝑏∗ + 𝑉𝑉𝑐𝑐𝐼𝐼𝑐𝑐∗. 

S3ph = 

   1.0368e+03 + 3.6596e+03i 

P.10 c Solution 
Problems 10.1 to 10.3: The pertaining code is shown below. 
 

Vabbcca = [600,36.87; 800,126.87; 1000,-90]; 
VL012 = abc2sc(Vabbcca); %Sym. comp. of line voltages, rect. 
VL012p = rec2pol(VL012) %Converts sym. comp. of line 
voltages to polar 
Va012 = [0; VL012(2)/(sqrt(3)*(0.866+1i*.5)); 
VL012(3)/(sqrt(3)*(0.866-1i*.5))]; %Sym. comp. of phase 
volt., rect. 
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Va012p = rec2pol(Va012) %Converts sym. comp. of phase 
voltages to polar 
Vabc = sc2abc(Va012); %Phase voltages, rect. 
Vabcp = rec2pol(Vabc) %Converts phase voltages to polar 
Iabc = Vabc/37; %Line currents, rect. 
Iabcp = rec2pol(Iabc) %Converts the line currents to polar 
 

The first output is VL012p, which contains the symmetrical 
components of line voltages in polar form. 

VL012p = 
    0.0006 -179.9999 
  237.0762  169.9342 
781.3204   24.0621 
 

The second output is Va012p, which contains the symmetrical 
components of phase voltages in polar form. 

Va012p = 
         0         0 
  136.8790  139.9335 

451.1055   54.0628 
 

The third output is Vabcp, which contains the unbalanced phase 
voltages in polar form. 

Vabcp = 
  480.7542   70.5606 
  333.3386  163.7411 

569.6111  -73.6857 
 

Lastly, we divide the Vabcp entries by 37 Ω to obtain the line currents 
Iabc and convert them to polar form with rec2pol. The output is 

Iabcp = 
   12.9934   70.5606 
    9.0092  163.7411 
   15.3949  -73.6857 

P.11 c Solution 
Problem 11.1: We begin by calculating the per-unit reactances of the 

synchronous generators. For G1, 

1 2 00.18 ; 0.18 ; 0.07 pud dX X X X X′′ ′′= = = = =  

For G2, 

1 2 00.20 ; 0.20 ; 0.10pud dX X X X X′′ ′′= = = = =  

For G3, 

2

1
13.8 10000.15 0.2539pu
15 500dX X    ′′= = × × =   

   
 

2 0.2539pudX X ′′= =  
2

0
13.8 10000.05 0.08464pu
15 500

X    = × × =   
   

 

Also, 3𝑋𝑋𝑛𝑛 = 3𝑋𝑋0 = 0.2539.  
For G4, 

2

1
13.8 10000.30 0.3386pu
15 750dX X    ′′= = × × =   

   
 

2

2
13.8 10000.40 0.4514pu
15 750

X    = × × =   
   

 

2

0
13.8 10000.10 0.1129pu
15 750

X    = × × =   
   

 

For the transformers, we have 𝑋𝑋𝑇𝑇1 = 0.10 pu, 𝑋𝑋𝑇𝑇2 = 0.10 pu, 𝑋𝑋𝑇𝑇3 = 
0.12(1000/500) = 0.24 pu, and 𝑋𝑋𝑇𝑇4 = 0.11(1000/750) = 0.1467 pu. Considering 
the transmission lines with a base impedance 𝑍𝑍base = 7652/1000 = 585.22 Ω, 
we have, for the positive and negative sequence reactances, 
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12
50 0.08544pu

585.22
X = =  

13 23
40 0.06835

585.22
X X= = =  

For the zero sequence reactances, 

12
150 0.2563pu

585.22
X = =  

13 23
100 0.1709pu

585.22
X X= = =  

The per-unit zero-sequence network is drawn below. 

 

The per-unit positive-sequence network is drawn below. 

 

The per-unit negative-sequence network is drawn below. 
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Problem 11.2: The zero-sequence Thévenin equivalent is developed 
below. 

 

Reducing the latter reactances, 
 

( )0 0.10//0.5063// 0.1427 0.3376X = +  

0 0.10//0.2465 0.07114puX∴ = =  
 

The negative-sequence Thévenin equivalent is developed below. 

 

Reducing the remaining reactances, 
 

( )2 0.28//0.7605// 0.04902 0.1872X = +  

2 0.28//0.1802 0.1096puX∴ = =  
 

Proceeding similarly with the positive-sequence reactances, you 
should find  

( )1 0.28//0.7605// 0.04902 0.1745 0.1068puX = + =  

Problem 11.3: Refer to the positive-sequence Thévenin equivalent 
obtained above. 

 

The base current value is 

base3
base

base

1000MVA 0.7547 kA
3 3 765kV

S
I

V
φ= = =

×
 

The current in the positive-sequence circuit is found as 
 

1
1

1.0 0º 9.363pu
0.1068

FVI j
Z j

∠
= = = −  

 

Since the fault is symmetrical, the zero- and negative-sequence 
currents are zero: 𝐼𝐼0 = 𝐼𝐼2 = 0. We proceed to compute the subtransient fault 
currents of each phase, 

2

2

1 1 1 0 9.363 9.363 90º
1 9.363 8.1086 4.6815 9.363 150º pu
1 0 8.1086 4.6815 9.363 30º

A

B

C

I j
I a a j j
I a a j

′′ − ∠−         
         ′′ = − = − + = ∠         
′′         + ∠         

 

Multiplying by the base current, 



19 
© 2021 Montogue Quiz 

9.363 90º 7.067 90º
9.363 150º 0.7547 7.067 150º kA
9.363 30º 7.067 30º

A

B

C

I
I
I

′′ ∠− ∠−     
     ′′ = ∠ × = ∠     
′′     ∠ ∠     

 

Problem 11.4: A bolted single-line-to-ground fault occurs at bus 1.  

 

The pertaining reactances have been determined above. The zero-, 
positive-, and negative-sequence current components are given by 

0 1 2
0 ! 2

1.0 3.4778pu
0.07114 0.1068 0.1096

REI I I j
Z Z Z j j j

= = = = = −
+ + + +

 

We proceed to determine the subtransient fault current, 

2

2

1 1 1 3.4778 10.4334
1 3.4778 0 pu
1 3.4778 0

A

B

C

I j j
I a a j
I a a j

′′ − −       
       ′′ = − =       
′′       −       

 

or – 𝑗𝑗10.4334 × 0.7547 = −j7.8741 kA. To determine the sequence components 
of voltage at fault current, we write 

0

1

2

0 0.07114 0 0 3.4778 0.2474
1.0 0º 0 0.1068 0 3.4778 0.6286 pu

0 0 0 0.1096 3.4778 0.3812

V j j
V j j
V j j

− −         
         = ∠ − − =         
         − −         

 

Finally, we convert the sequence components to line-to-phase 
voltages, 

2

2

1 1 1 0.2474 0
1 0.6286 0.9500 112.994º pu
1 0.3812 0.9500 112.994º

Ag

Bg

Cg

V
V a a
V a a

  −     
       = = ∠−       
       − ∠      

 

 Problem 11.5: Expressing the added arc impedance in per units, we 
have  

15 0 0.02563pu
585.22F

jZ +
= =  

 

In total, the arc impedance contributes 3𝑍𝑍𝐹𝐹 = 0.07689 pu to the 
circuit. 
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The zero-, positive-, and negative-sequence current components are 
given by 

0 1 2
0 ! 2

1.0
3 0.07114 0.1068 0.1096 0.07689

R

F

EI I I
Z Z Z Z j j j

= = = =
+ + + + + +

 

0 1 2 0.8679 3.2457 3.3597 75.0288º puI I I j∴ = = = − = ∠−  

The phase currents during fault are 𝐼𝐼𝐴𝐴′′ = 3𝐼𝐼0 = 10.0791∠ −75.0288o pu 
and 𝐼𝐼𝐵𝐵′′ = 𝐼𝐼𝐶𝐶′′ = 0 pu. Multiplying by the base current (0.7547 kA) yields 𝐼𝐼𝐴𝐴′′ = 
7.6067∠ −75.0288o kA and 𝐼𝐼𝐵𝐵′′ = 𝐼𝐼𝐶𝐶′′ = 0. Determining the voltages 𝑉𝑉012 at fault 
is no different from the previous problem, 

0

1

2

0 0.07114 0 0 3.3597 75.0288º 0.2309 0.0617
1.0 0º 0 0.1068 0 3.3597 75.0288º 0.6534 0.0927

0 0 0 0.1096 3.3597 75.0288º 0.3557 0.0951

V j j
V j j
V j j

∠− − −         
         = ∠ − ∠− = −         
         ∠− − −         

 

0

1

2

0.2390 165.029º
0.6599 8.0748º pu
0.3682 165.029º

V
V
V

∠−   
   ∴ = ∠−   
   ∠−   

 

Lastly, we convert the sequence components into line-to-phase 
voltages, 

2

2

1 1 1 0.2390 165.029º 0.2583 75.0213º
1 0.6599 8.0748º 0.9225 114.163º pu
1 0.3682 165.029º 0.9832 112.851º

Ag

Bg

Cg

V
V a a
V a a

  ∠− ∠−     
       = ∠− = ∠−       
       ∠− ∠      

 

Problem 11.6: Now, a bolted line-to-line fault occurs at bus 1.  

 

Current components 𝐼𝐼1 and 𝐼𝐼2 flow in opposite directions and are 
given by 

1 2
1 2

1.0 0º 4.6189pu
0.1068 0.1097

FVI I j
Z Z j j

∠
= − = = = −

+ +
 

 

Also, 𝐼𝐼0 = 0. The fault currents are determined next, 

2

2

1 1 1 0 0 0
1 4.6189 8.0002 180º pu 6.0377 180º kA
1 4.6189 8.0002 0º 6.0377 0º

A

B

C

I
I a a j
I a a j

′′         
         ′′ = − = ∠ = ∠         
′′         ∠ ∠         

 

Voltages 𝑉𝑉012 are such that 

0

1

2

0 0.07114 0 0 0 0
1.0 0º 0 0.1068 0 4.6189 0.5067 pu

0 0 0 0.1096 4.6189 0.5062

V j
V j j
V j j

         
         = ∠ − − =         
                  

 

The fact that |𝑉𝑉1| ≠ |𝑉𝑉2| is due to round-off error. We finish by 
determining the phase voltages, 

2

2

1 1 1 0 1.0219 1.0219 0º
1 0.5067 0.5065 0.5065 180º pu
1 0.5062 0.5065 0.5065 180º

Ag

Bg

Cg

V
V a a
V a a

  ∠       
         = = − = ∠         
         − ∠        

 

Problem 11.7: Now, a double line-to-ground fault occurs at bus 1. 
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Referring to the diagram above, current 𝐼𝐼1 is determined as 
 

1
1 2 0

1.0 0º 6.6687 6.6687 90º pu0.1097 0.07114// 0.1068
0.1097 0.07114

FVI jj jZ Z Z j
j j

∠
= = = − = ∠−

×+ +
+

 

By current division, 
 

( )0
2 1

0 2

0.071146.6687 2.6236pu
0.07114 0.1097

Z
I I j j

Z Z
 

= − × = − − × = + + 
 

( )2
0 1

0 2

0.10976.6687 4.0453pu
0.07114 0.1097

ZI I j j
Z Z

 
= − × = − − × = + + 

 

 

Currents 𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴  are such that 

2

2

1 1 1 4.0453 0 0
1 6.6687 10.0786 142.983º pu 7.6063 142.983º kA
1 2.6236 10.0786 37.0169º 7.6063 37.0169º

A

B

C

I j
I a a j
I a a j

′′         
         ′′ = − = ∠ = ∠         
′′         ∠ ∠         

 

Voltages 𝑉𝑉012 are such that 

0

1

2

0 0.07114 0 0 4.0453 0.2878
1.0 0º 0 0.1068 0 6.6687 0.2878 pu

0 0 0 0.1096 2.6236 0.2876

V j j
V j j
V j j

         
         = ∠ − − =         
                  

 

The fact that 𝑉𝑉2 ≠ 𝑉𝑉0,𝑉𝑉1 is due to round-off error. Finally, phase 
voltages 𝑉𝑉𝐴𝐴𝐴𝐴𝐴𝐴  are such that 

 

2

2

1 1 1 0.2878 0.8634
1 0.2878 0 pu
1 0.2878 0

Ag

Bg

Cg

V
V a a
V a a

       
       = =       
             

 

P.12 c Solution  
Problem 12.1: We begin by calculating the per-unit reactances of the 

synchronous generators. For G1, 
 

1 2 0
1000 10000.2 0.4 ; 0.4 ; 0.10 0.2pu
500 500d dX X X X X   ′′ ′′= = × = = = = × =   

   
 

For G2, 

1 2 0
1000 10000.18 0.24 ; 0.24 ; 0.09 0.12pu
750 750d dX X X X X   ′′ ′′= = × = = = = × =   

   
 

For G3, 
 

1 2 0
1000 1000 10000.17 0.17 pu ; 0.20 0.20pu ; 0.09 0.09pu
1000 1000 1000

X X X     = × = = × = = × =     
     

 

For generator 3, the neutral reactance added to the generator has 
reactance of 0.028 Ω. Using as a reference 𝑋𝑋base3 = 202/1000 = 0.4 Ω, we have 
3𝑋𝑋𝑛𝑛 = 3 × 0.028/0.4 = 0.21 pu. For the transformers, we have 𝑋𝑋𝑇𝑇1 = 
0.12(1000/500) = 0.24 pu, 𝑋𝑋𝑇𝑇2 = 0.10(1000/750) = 0.1333 pu, and 𝑋𝑋𝑇𝑇3 = 
0.10(1000/1000) = 0.10 pu. Considering the transmission lines with a base 
impedance 𝑍𝑍base = 5002/1000 = 250 Ω, we have, for the positive and negative 
sequence reactances, 

1 2
50 0.20pu
250

X X= = =  



22 
© 2021 Montogue Quiz 

For the zero sequence reactance, 

0
150 0.60pu
250

X = =  

The per-unit zero-sequence network is drawn below. 

 

The per-unit positive-sequence network is drawn below. 

 

The per-unit negative-sequence network is drawn below. 

 

Problem 12.2: The zero-sequence Thévenin equivalent is shown below. 

 

Reducing the latter reactances, 
 

( )0 0.24// 0.6 0.7333//0.7X = +    

0 0.24//0.9581 0.1919puX∴ = =  
 

The positive-sequence Thévenin equivalent is shown below. 
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Reducing the latter impedances, 
 

( )1 0.64// 0.20 0.5733//0.47X = +    

1 0.64//0.4583 0.2670puX∴ = =  
 

The negative-sequence Thévenin equivalent is shown below. 

 

Reducing the remaining reactances, 
 

( )1 0.64// 0.20 0.5733//0.50X = +    

1 0.64//0.4671 0.2700puX∴ = =  

Problem 12.3: Refer to the positive-sequence Thévenin equivalent 
obtained above. 

 
The base current value is 
 

base3
base

base

1000MVA 1.1547 kA
3 3 500kV

S
I

V
φ= = =

×
 

 

The current in the positive-sequence circuit is found as 
 

1
1

1.0 0º 3.7453 3.7453 90º pu
0.267

FVI j
Z j

∠
= = = − = ∠−  

 

For a symmetrical fault such as the present one, the zero- and 
negative-sequence currents are zero. The subtransient fault currents of each 
phase are computed below. 

2

2

1 1 1 0 3.7453 3.7453 90º
1 3.7453 90º 3.2435 1.8727 3.7453 150º pu
1 0 3.2435 1.8727 3.7453 30º

A

B

C

I j
I a a j
I a a j

′′ − ∠−         
         ′′ = ∠− = − + = ∠         
′′         + ∠         

 

Multiplying by the base current, 

3.7453 90º 4.3247 90º
3.7453 150º 1.1547 4.3247 150º kA
3.7453 30º 4.3247 30º

A

B

C

I
I
I

′′ ∠− ∠−     
     ′′ = ∠ × = ∠     
′′     ∠ ∠     

 

Problem 12.4: Assume a single line-to-ground fault at bus 1.  
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 The sequence current through each impedance is the same, and can 
be calculated as 

0 1 2
0 1 2

1.0 1.3719pu
0.1919 0.2670 0.270

gE
I I I j

Z Z Z j j j
= = = = = −

+ + + +
 

The phase currents are determined next, 

2

2

1 1 1 1.3719 4.1157
1 1.3719 0 pu
1 1.3719 0

A

B

C

I j j
I a a j
I a a j

′′ − −       
       ′′ = − =       
′′       −       

 

or – 𝑗𝑗4.1157 × 1.1547 = −j4.7524 kA. For the zero-sequence network, the 
transformer contribution to current is 
 

0
0.95811.3719 1.0971pu

0.24 0.9581TI j j−
 = − × = − + 

 

 

while the line contribution to current is 

0
0.241.3719 0.2748pu

0.24 0.9581LI j j−
 = − × = − + 

 

 
For the positive-sequence network, the transformer contribution to 

current is 
 

1
0.45831.3719 0.5725pu

0.64 0.4583TI j j−
 = − × = − + 

 

 

while the line contribution to current is 
 

1
0.641.3719 0.7994pu

0.64 0.4583LI j j−
 = − × = − + 

 

 
 To determine the sequence components of voltage at fault current, 

we write 
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2
0.46711.3719 0.5788pu

0.64 0.4671TI j j−
 = − × = − + 

 

 

while the line contribution to current is 

2
0.641.3719 0.7931pu

0.64 0.4671LI j j−
 = − × = − + 

 

 
Given the transformer results above, we assemble the matrix 

equation 

2

2

1 1 1 1.0971 2.2484 2.5962
1 0.5725 0.5215 89.4005º pu 0.6022 89.4005º kA
1 0.5788 0.5215 90.5995º 0.6022 90.5995º

T A

T B

T C

I j j j
I a a j
I a a j

−

−

−

′′ − − −         
         ′′ = − = ∠− = ∠−         
′′         − ∠− ∠−         

 

Likewise for the line currents, 

2

2

1 1 1 0.2748 1.8673 2.1562
1 0.7994 0.5215 90.5995º pu 0.6022 90.5995º kA
1 0.7931 0.5215 89.4005º 0.6022 89.4005º

L A

L B

L C

I j j j
I a a j
I a a j

−

−

−

′′ − − −         
         ′′ = − = ∠ = ∠         
′′         − ∠ ∠         

 

Problem 12.5: A bolted line-to-line fault occurs at bus 1. 

 

Currents 𝐼𝐼1 and 𝐼𝐼2 flow in opposite directions and are given by 

1 2
1 2

1.0 0º 1.8622pu
0.2670 0.270

FVI I j
Z Z j j

∠
= − = = = −

+ +
 

Also, 𝐼𝐼0 = 0. The fault currents are determined next, 

2

2

1 1 1 0 0 0
1 1.8622 3.2254 180º pu 3.7244 180º kA
1 1.8622 3.2254 0º 3.7244 0º

A

B

C

I
I a a j
I a a j

′′         
         ′′ = − = ∠ = ∠         
′′         ∠ ∠         

 

In zero sequence, the contributions to current from transformer and 
line are 𝐼𝐼𝑇𝑇−0 = 0 and 𝐼𝐼𝐿𝐿−0 = 0. In positive sequence, the contributions to 
current are 

1
0.45831.8622 0.7771pu

0.64 0.4583TI j j−
 = − × = − + 

 

and  

1
0.641.8622 1.0851pu

0.64 0.4583LI j j−
 = − × = − + 

 

In negative sequence, the contributions to current are 

2
0.46711.8622 0.7857 pu

0.64 0.4671TI j j−
 = × = + 

 

and 
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2
0.641.8622 1.0765pu

0.64 0.4671LI j−
 = × = + 

 

The contributions to fault from transformer are 

2

2

1 1 1 0 0.0086 90º 0.0099 90º
1 0.7771 1.3534 179.868º pu 1.5628 179.868º kA
1 0.7857 1.3534 0.132º 1.5628 0.132º

T A

T B

T C

I
I a a j
I a a j

−

−

−

′′ ∠ ∠         
         ′′ = − = ∠ = ∠         
′′         ∠ ∠         

 

The contributions to fault from line are 

2

2

1 1 1 0 0.0086 90º 0.0099 90º
1 1.0851 1.8720 179.868º pu 2.1616 179.868º kA
1 1.0765 1.8720 0.132º 2.1616 0.132º

L A

L B

L C

I
I a a j
I a a j

−

−

−

′′ ∠ ∠         
         ′′ = − = ∠ = ∠         
′′         ∠ ∠         

 

Problem 12.6: Now, a double line-to-ground fault occurs at bus 1. 

 
Referring to the diagram above, current 𝐼𝐼1 is determined as 

1
1 2 0

1.0 0º 2.6373 2.6373 90º pu
0.27 0.1919// 0.2670
0.27 0.1919

FVI j
j jZ Z Z j
j j

∠
= = = − = ∠−

×+ +
+

 

By current division, 

( )0
2 1

0 2

0.19192.6373 1.0957 pu
0.1919 0.27

Z
I I j j

Z Z
 

= − × = − − × = + + 
 

( )2
0 1

0 2

0.272.6373 1.5416pu
0.1919 0.27

ZI I j j
Z Z

 
= − × = − − × = + + 

 

 

Currents 𝐼𝐼𝐴𝐴𝐴𝐴𝐴𝐴  are such that 

2

2

1 1 1 1.5416 0 0
1 2.6373 3.9748 144.425º pu 4.5897 144.425º kA
1 1.0957 3.9748 35.575º 4.5897 35.575º

A

B

C

I j
I a a j
I a a j

′′         
         ′′ = − = ∠ = ∠         
′′         ∠ ∠         

 

We proceed to compute the contributions to fault current. For zero 
sequence, noting that 𝐼𝐼0 = j1.5416 pu, the contributions from transformer and 
line are 

0
0.95811.5416 1.2328pu

0.24 0.9581TI j j−
 = × = + 

 

and  

0 1.5416 1.2328 0.3088puLI j j j− = − =  

 
For positive sequence, observing that 𝐼𝐼1 = −j2.6373 pu, the 

contributions from transformer and line are 
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1
0.45832.6373 1.1005pu

0.64 0.4583TI j j−
 = − × = − + 

 

and  

( )1 2.6373 1.1005 1.5368puLI j j j− = − − − = −  

 
For negative sequence, recalling that 𝐼𝐼2 = j1.0957 pu, the contributions 

from transformer and line are 

2
0.46711.0957 0.4623pu

0.64 0.4671TI j j−
 = × = + 

 

and  

2 1.0957 0.4623 0.6334puLI j j j− = − =  

 
We proceed to determine the contributions to fault current from 

transformer, 

2

2

1 1 1 1.2328 0.5946 90º 0.6866 90º
1 1.1005 2.0592 131.092º pu 2.3778 131.092º kA
1 0.4623 2.0592 48.9081º 2.3778 48.901º

T A

T B

T C

I j
I a a j
I a a j

−

−

−

′′ ∠ ∠         
         ′′ = − = ∠ = ∠         
′′         ∠ ∠         

 

and from line, 

2

2

1 1 1 0.3088 0.5946 90º 0.6866 90º
1 1.5368 2.0275 157.97º pu 2.3412 157.97º kA
1 0.6334 2.0275 22.0302º 2.3412 22.0302º

L A

L B

L C

I j
I a a j
I a a j

−

−

−

′′ ∠− ∠−         
         ′′ = − = ∠ = ∠         
′′         ∠ ∠         

 

P.13 c Solution  
Problem 13.1: The positive sequence network is reduced to its 

Thévenin equivalent as follows: 
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The negative sequence network is reduced to its Thévenin equivalent 
as follows: 
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Lastly, the zero sequence network is reduced to its Thévenin 
equivalent as follows: 
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We calculated a final reactance of j0.14 pu for the positive sequence 
network. As stated, a j0.5-pu impedance is added to the network. 

 

The fault current for a balanced three-phase fault is calculated to be 

( )
1.0 0º 1.3158pu
0.26 0.5scI j

j
∠

= = −
+

 

Problem 13.2: For a single line-to-ground fault, the sequence 
networks from the solution of Problem 13.1 are connected in series, as 
shown. 
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The sequence currents are given by 
 

0 1 2
1.0 0º 1.6434 1.6434 90º pu

0.26 0.2085 0.14
I I I j

j j j
∠

= = = = − = ∠−
+ +

 

The subtransient fault current can be obtained with the usual matrix 
equation, which should yield 𝐼𝐼𝑎𝑎′′ = 3𝐼𝐼0 = −j4.9302 = 4.9302∠ −90o pu and 𝐼𝐼𝑏𝑏′′ = 
𝐼𝐼𝑐𝑐′′ = 0. The sequence voltages are, in turn, 

( ) ( )1 1 11.0 0º 1.0 0º 1.6434 90º 0.26 90º 0.5727 0º puV I Z= ∠ − = ∠ − ∠− × ∠ = ∠  

( ) ( )2 2 2 1.6434 90º 0.2085 90º 0.3426puV I Z= − = − ∠− × ∠ = −  

( ) ( )0 0 0 1.6434 90º 0.14 90º 0.2301puV I Z= − = − ∠− × ∠ = −  
 

It remains to compute the line-to-ground phase voltages at the 
faulted bus, 

2

2

1 1 1 0.2301 0
1 0.5727 0.8646 113.53º pu
1 0.3426 0.8646 113.53º

ag

bg

cg

V
V a a
V a a

  −     
       = = ∠−       
       − ∠      

 

For a line-to-line fault through a fault impedance 𝑍𝑍𝐹𝐹 = j0.05, the 
sequence network connection is as follows. 

 

Current components 𝐼𝐼1 and 𝐼𝐼2 flow in opposite directions and have 
intensity given by 

1 2
1 0º 1.9286pu 1.9286 90º pu

0.26 0.05 0.2085
I I j

j j j
∠

= − = = − = ∠−
+ +

 

Also, 𝐼𝐼0 = 0. The phase currents are given by 

0aI =  

( ) ( ) ( )22
1 1 120º 1 120º 1.9286 90º 3.3404 180º pub cI I a a I  = − = − = ∠ − ∠ × ∠− = ∠−   

The sequence voltages are 

( ) ( )1 1 11.0 0º 1.0 0º 1.9286 90º 0.26 90º 0.4986puV I Z= ∠ − = ∠ − ∠− × ∠ =  

( ) ( )2 2 2 1.9286 90º 0.2085 90º 0.4021puV I Z= − = − ∠− × ∠ =  

( )0 0 0 1.9286 90º 0 0V I Z= − = − ∠− × =  

The phase voltages are then given by 

1 2 0 0.4986 0.4021 0 0.9007 0º puaV V V V= + + = + + = ∠  

( ) ( )2
1 2 0 1 240º 0.4986 1 120º 0.4021 0 0.4580 169.487º pubV a V aV V= + + = ∠ × + ∠ × + = ∠−  

( ) ( )2
1 2 0 1 120º 0.4986 1 240º 0.4021 0 0.4580 169.487º pucV aV a V V= + + = ∠ × + ∠ × + = ∠  

 

As a final check, 

( ) ( ) ( )0.4580 169.487º 0.4580 169.487º 3.3404 180º 0.05b c b FV V I Z j− = ⇒ ∠− − ∠ = ∠− ×  

0.1671 0.1670j j∴− = −  

The equality checks to three decimal places. 
For a double line-to-ground fault with given conditions, the sequence 

network connection is shown below. 
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Reducing the system is an elementary task. 

 

The positive-sequence current is 

1
1 0º 2.2222 2.2222 90º
0.45

I j
j
∠

= = − = ∠−  

Then, 𝐼𝐼2 and 𝐼𝐼0 are found by current division, 

( )2 1
0.29 0.292.2222 1.1749 90º pu

0.29 0.2585 0.29 0.2585
I I j   = − × = − − × = − ∠−   + +   

 

( )0 1
0.2585 0.25852.2222 1.0472 90º pu

0.29 0.2585 0.29 0.2585
I I j   = − × = − − × = − ∠−   + +   

 

The sequence voltages are given by 

( ) ( )1 1 11 0º 1 0º 2.2222 90º 0.26 90º 0.4223puV I Z= ∠ − = ∠ − ∠− × ∠ =  

( ) ( )2 2 2 1 0º 1.1749 90º 0.2085 90º 0.2450puV I Z= − = ∠ − − ∠− × ∠ =  

( ) ( )0 0 0 1.0472 90º 0.14 90º 0.1466puV I Z= − = − − ∠− × ∠ =  

The phase currents are given by 
 

0aI =  

( ) ( ) ( ) ( )2
1 2 0 1 240º 2.2222 90º 1 120º 1.1749 90º 1.0472 90ºbI a I aI I= + + = ∠ × ∠− + ∠ × − ∠− − ∠−  

3.3351 151.9º pubI∴ = ∠  

( ) ( ) ( ) ( )2
1 2 0 1 120º 2.2222 90º 1 240º 1.1749 90º 1.0472 90ºcI aI a I I= + + = ∠ × ∠− + ∠ × − ∠− − ∠−  

3.3351 28.0997º pucI∴ = ∠  
 

The neutral fault current is 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐 = 3𝐼𝐼0 = −3.1416∠ −90o. We conclude 
by determining the phase voltages, 

1 2 0 0.4223 0.245 0.1466 0.8139 0º puaV V V V= + + = + + = ∠  
2

1 2 0 0.242 140.618º pubV a V aV V= + + = ∠−  
2

1 2 0 0.242 140.618º pucV aV a V V= + + = ∠  

P.14 c Solution  
Problem 14.1: The zero, positive, and negative sequence networks are 

shown below. 
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Using delta-wye transformation and series-parallel combinations, 

Thévenin equivalents looking into bus 3 are shown below. 

 

A bolted three-phase fault occurs at bus 3. 

 

The positive-sequence current is 
 

1
1 0º 5.7143 5.7143 90º pu
0.175

I j
j
∠

= = − = ∠−  

 

Also, 𝑉𝑉1 = 𝑉𝑉2 = 𝑉𝑉0 = 0. The phase currents are calculated to be 

2

2

1 1 1 0 5.7143 90º
1 5.7143 5.7143 150º pu
1 0 5.7143 30º

a

b

c

I
I a a j
I a a

∠−       
       = − = ∠       
       ∠       

 

Problem 14.2: For a single line-to-ground fault at bus 3, the 
interconnection of the sequence networks is shown below. 
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The zero-, positive- and negative-sequence currents are given by 

0 1 2
1.0 0º 1.8214pu

0.199 0.175 0.175
I I I j

j j j
∠

= = = = −
+ +

 

Multiplying by 3 gives the phase current 𝐼𝐼𝑎𝑎 = −j5.4642 pu; further, 𝐼𝐼𝑏𝑏 = 
𝐼𝐼𝑐𝑐 = 0. The sequence voltages are given by 

( ) ( )1 1 11.0 0º 1.0 0º 1.8214 90º 0.175 90º 0.6813puV I Z= ∠ − = ∠ − ∠− × ∠ =  

( ) ( )2 2 2 1.8214 90º 0.175 90º 0.3187 puV I Z= − = − ∠− × ∠ = −  

( ) ( )0 0 0 1.8214 90º 0.199 90º 0.3625puV I Z= − = − ∠− × ∠ = −  
 

The phase voltages are calculated as 

2

2

1 1 1 0.3625 0
1 0.6813 1.0226 122.126º pu
1 0.3187 1.0226 122.126º

a

b

c

V
V a a
V a a

−       
       = = ∠−       
       − ∠       

 

For a line-to-line fault at bus 3, the sequence networks are 
interconnected as shown below. 

 

Current 𝐼𝐼0 = 0, and 
 

1 2
1 0º 2.8571 2.8571 90º pu

0.175 0.175
I I j

j j
∠

= − = = − = ∠−
+

 

 

The phase currents follow as 

2

2

1 1 1 0 0
1 2.8571 4.9486 pu
1 2.8571 4.9486

a

b

c

I
I a a j
I a a j

       
       = − = −       
              

 

The sequence voltages are 
 

0 0V =  

1 2 1 0.175 2.8571 0.175 0.50puV V I j j j= = × = − × =  
 

Lastly, the phase voltages are calculated to be 

2

2

1 1 1 0 1.0
1 0.5 0.5 pu
1 0.5 0.5

a

b

c

V
V a a
V a a

       
       = = −       
       −       

 

For a double line-to-ground fault at bus 3, the sequence network 
interconnection is shown below. 
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With reference to the illustration above, the sequence currents are  

1
1 0º 3.7297 pu

0.175 0.175// 0.199
I j

j j j
∠

= = −
+

 

By dint of current division, 

( )2
0.1993.7297 1.9845pu

0.175 0.199
I j j = − − × = + 

 

( )0
0.1753.7297 1.7452pu

0.175 0.199
I j j = − − × = + 

 

The phase currents are given by 

2

2

1 1 1 1.7452 0
1 3.7297 5.5984 152.121º pu
1 1.9845 5.5984 27.8786º

a

b

c

I j
I a a j
I a a j

       
       = − = ∠       
       ∠       

 

The neutral fault current is 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐 = 3𝐼𝐼0 = j5.2356 pu. The sequence 
voltages are obtained as 

0 1 2 1.7452 0.199 0.3473puV V V j j= = = − × =  

Lastly, the phase voltages are 

2

2

1 1 1 0.3473 1.0419
1 0.3473 0 pu
1 0.3473 0

a

b

c

V
V a a
V a a

       
       = =       
              

 

In order to compute currents and voltages at the terminals of 
generators G1 and G2, we need to return to the original sequence circuits in 
the solution to Problem 14.1. Consider first generator G4 (bus 4). For a single 
line-to-ground fault, the sequence network interconnection is shown below. 

 

From the solution to Problem 14.1, 𝐼𝐼𝑓𝑓 = −j1.8214 pu. From the circuit 
above, 𝐼𝐼1 = 𝐼𝐼2 = 𝐼𝐼𝑓𝑓/2 = −j0.9107 pu. Transforming the Δ of j0.3 in the zero 
sequence network (highlighted by dashed lines above) into an equivalent Y of 
j0.1 and using current division, 

( )0
0.15 1.8214 0.6209pu

0.29 0.15
I j j= × − = −

+
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The phase currents are then 

2

2

1 1 1 0.6209 2.4423 90º
1 0.9107 0.2898 90º pu
1 0.9107 0.2898 90º

a

b

c

I j
I a a j
I a a j

− ∠−       
       = − = ∠       
       − ∠       

 

The sequence voltages are, in turn, 

( )0 0.6209 0.14 0.0869puV j j= − − × = −  

( )1 1 0.9107 0.2 0.8179puV j j= − − × =  

( )2 0.9107 0.2 0.1821puV j j= − − × = −  
 

The phase voltages follow as 

2

2

1 1 1 0.0869 0.5489 0º
1 0.8179 0.956 115.052º pu
1 0.1821 0.956 115.052º

a

b

c

V
V a a
V a a

− ∠       
       = = ∠−       
       − ∠       

 

Consider now generator G2 (bus 5). From the interconnected 
sequence networks and the results above, 

1 2 01.8214 ; 0.9107 ; 0
2f fI j I I I j I1

= − = = = − =  

Recall that Y-Δ transformer connections produce 30o phase shifts in 
sequence quantities. The HV quantities are to be shifted 30o ahead of the 
corresponding LV quantities for positive sequence, and vice versa for 
negative sequence. One may however neglect phase shifts. Since bus 5 is the 
LV side, considering phase shifts, 

 

( )1 0.9107 90º 30º 0.9107 120º puI = ∠ − − = ∠−  

( )2 0.9107 90º 30º 0.9107 60º puI = ∠ − + = ∠−  
 

Then, phase currents are 
 

2

2

1 1 1 0 1.5774 90º
1 0.9107 120º 1.5774 90º pu
1 0.9107 60º 0

a

b

c

I
I a a
I a a

∠−       
       = ∠− = ∠       
       ∠−       

 

 

Positive and negative sequence voltages are the same as on the G1 
side, 

 

1 2 00.8179pu ; 0.1821pu ; 0V V V= = − =  
 

With phase shift, 𝑉𝑉1 = 0.8179∠ −30o, 𝑉𝑉2 = 0.1821∠210o. The phase 
voltages are calculated as 

2

2

1 1 1 0 0.7438 42.2416º
1 0.8179 30º 0.7438 137.758º pu
1 0.1821 210º 1.0 90º

a

b

c

V
V a a
V a a

∠−       
       = ∠− = ∠−       
       − ∠ ∠       

 

P.15 c Solution  
Problem 15.1: For a balanced three-phase fault at bus 3, we need the 

positive sequence impedance network reduced to its Thévenin equivalent 
viewed from bus 3. The development is shown on the next page.  
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Converting the Δ formed by buses 1, 2 and 3 to an equivalent Y, we 
have (my calculations use less decimal places than the illustration above) 

1
0.125 0.15 0.0357 pu

0.525X
j jZ

j
×

= =  

2
0.125 0.25 0.0595pu

0.525X
j jZ

j
×

= =  

3
0.15 0.25 0.0714pu

0.525X
j jZ

j
×

= =  

 

Using series-parallel combinations, the positive-sequence Thévenin 
impedance is given by, viewed from bus 3, 

( ) ( )
( ) ( )
0.15 0.1 0.0357 0.15 0.1 0.0595

0.0714 0.21996 0.22
0.15 0.1 0.0357 0.15 0.1 0.0595

j j j
 + + × + +

+ = ≈ + + + + + 
 

 

Accounting for the fault impedance 𝑍𝑍𝐹𝐹 = 0.1 pu, the fault current is 
(with the no-load generated EMF to be 1.0∠0o pu), 

1
1.0 0º 3.125pu

0.22 0.1a aI I j
j j

∠
= = = −

+
 

 

The base current is 

base
base

base

100 0.2625kA 262.5 A
3 3 220
S

I
V

= = = =
×

 

so that 

3.125 262.5 820.3125 90º AaI j= − × = ∠−  

The fault current is close to 820.3 A.  
Problem 15.2: The negative sequence network is similar to the 

positive sequence network, but without the source. 
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The zero-sequence network is shown below considering the 
transformer winding connections (as before, I’d suggest converting the Δ to a 
Y with four decimal places only, instead of the six used in the illustration). 

 

For a single line-to-ground fault through a fault impedance ZF = 0.1 
pu, we draw up the following interconnections.   

 

At bus 3 through a fault impedance 𝑍𝑍𝐹𝐹 = j0.1, 

0 1 2
1 0º 0.9174pu

0.35 0.22 0.22 0.3
I I I j

j j j j
∠

= = = = −
+ + +

 

The fault currents are 𝐼𝐼𝑎𝑎 = 3𝐼𝐼0 = −j2.7522 pu and 𝐼𝐼𝑏𝑏 = 𝐼𝐼𝑐𝑐 = 0. 
For a line-to-line fault at bus 3 through a fault impedance of j0.1, the 

sequence network interconnection is as follows. 
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The zero-sequence current 𝐼𝐼0 = 0. The other two currents follow from 
the diagram above, 

 

1 2
1.0 0º 1.8519pu

0.22 0.1 0.22
I I j

j j j
∠

= − = = −
+ +

 

The fault currents follow as 

2

2

1 1 1 0 0
1 1.8519 3.2076 pu
1 1.8519 3.2076

a

b

c

I
I a a j
I a a j

       
       = − = −       
              

 

For a double line-to-ground fault at bus 3 through a common fault 
impedance to ground 𝑍𝑍𝐹𝐹 = j0.1, the sequence network interconnection is as 
follows. 

 

With reference to the diagram above, the positive sequence current 𝐼𝐼1 
is calculated as 

 

( )
( )

1
1.0 0º 2.6017 pu

0.22 0.35 0.3
0.22

0.22 0.35 0.3

I j
j j j

j
j j j

∠
= = −

× +
+

+ +

 

 

Applying KVL to the circuit above, we find that 

( )
2

1 0.22 2.6017
1.9438pu

0.22
j j

I j
j

− × −
= − =  

and  

( )
0

1 0.22 2.6017
0.6579pu

0.35 0.3
j j

I j
j j

− × −
= − =

+
 

The fault phase currents are then 

2

2

1 1 1 0.6579 0
1 2.6017 4.0583 165.926º pu
1 1.9438 4.0583 14.0732º

a

b

c

I j
I a a j
I a a j

       
       = − = ∠       
       ∠       

 

The neutral fault current at bus 3 is 𝐼𝐼𝑏𝑏 + 𝐼𝐼𝑐𝑐 = 3𝐼𝐼0 = 1.9737∠90o.  
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