
1
© 2022 Montogue Quiz

• Summary •

Problem 1 Basic corpus statistics
Problem 2 Keyword extraction – Prep. data
Problem 3 Keyword extraction
Problem 4 Document Categorization

A PROBLEMS
 [Problem 1 – Basic corpus statistics

In this tutorial, we explore some of MATLAB’s powerful capabilities for text
processing tasks such as keyboard extraction and document classification. The
tutorial draws heavily from the User’s Guide for MATLAB’s Text Analytics Toolbox™
and the second edition of Banchs’s (2021) textbook Text Mining with MATLAB. Before
we delve in any specifics, however, I provide a quick rundown of interesting insights
into corpus linguistics that can be derived and illustrated with MATLAB’s
computational tools.

We begin by loading a simple English-language corpus to work with. I chose
to use The Complete Works of William Shakespeare, a 1994 compilation that can be
downloaded from Project Gutenberg or directly from one of our Google Drive
folders. (Please bear in mind that the book is to be utilized for personal or academic
use only; not all books available on Project Gutenberg are available in the public
domain.) We can load the file text via MATLAB’s extractFileText command:

fileName = "shaks12.pdf";
str = extractFileText(fileName);

Importantly, this PDF file contains junk text such as page numbers and legal
reproduction disclaimers; while these pieces of text can be easily edited out for use
in MATLAB, we will save time by leaving the PDF file unchanged. This has no effect
on our initial analysis, which is corpus-based only. (We’ll be much more careful
when handling text data for keyword extraction and doc classification; see below.)

We proceed to lowercase the contents of the file:

str = lower(str);

Then, we replace all non-alphanumeric characters with whitespaces:

str = regexprep(str, '\W', ' ');

 Then, we eliminate leading and trailing whitespaces:

str = strtrim(str);

Lastly, we are ready to segment the string str into a sequence of
words/tokens:

words = split(str);

 Tutorial MAT6

 Text Mining with MATLAB

 Lucas Monteiro Nogueira

https://drive.google.com/drive/folders/1DRMiEYCxRSvFSxWNM5kxsz4tXQyFmx2D?usp=sharing
https://drive.google.com/drive/folders/1DRMiEYCxRSvFSxWNM5kxsz4tXQyFmx2D?usp=sharing

2
© 2022 Montogue Quiz

The number of words in the Shakespeare corpus is:

running_words = length(words)
running_words =

 930189

That is, the processed string amounts to approximately 930,000 words. This
is not a large number, as some corpora used in modern text mining applications can
easily contain dozens of millions of words. A second important computation
pertains to the diversity of vocabulary words; to obtain the number of unique words
in the shaks.pdf corpus, we employ the function unique:

vocabulary = unique(words);
vocabulary_words = length(vocabulary)
vocabulary_words =

 27224

The output, which is close to 27,200, is a mere 3 percent of the total number
of words; this indicates that the corpus of running words is constituted of a
relatively small number of words, and some words must occur several times over
the course of the text. The frequency of repetition of a given word can be obtained
by counting the number of times each word occurs in the whole data collection.
Following Banchs (2021), we can take advantage of functions unique and hist to
obtain the frequencies as follows:

[vocab, void, index] = unique(words);
freqs = hist(index, vocabulary_words);
whos index
whos freqs
Name Size Bytes Class Attributes
index 930189x1 7441512 double
Name Size Bytes Class Attributes
freqs 1x27224 217792 double

In the code snippet above, unique is used to extract the vocabulary. The
index variable contains pointers to the corresponding word in vocab. Then, the
function hist is used to construct a histogram with as many bins as the total amount
of words in the vocabulary. The ensuing numeric array freqs contains the total
number of times each word in the vocabulary occurs in the whole collection.

It remains to rank the frequency counts contained in freqs. To do so, we use
the sort command:

[ranked_freqs, ranking_index] = sort(freqs, 'descend');
ranked_vocab = vocab(ranking_index);

We are then ready to construct the plot of word frequencies versus rank for
the text data at hand:

set(figure, 'Color', [1,1,1], 'Name', 'Zipf''s Law');
loglog(ranked_freqs,'.'); grid on
xlabel('Rank'); ylabel('Word Frequency');

10 0 10 1 10 2 10 3 10 4 10 5

Rank

10 0

10 1

10 2

10 3

10 4

10 5

W
or

d
Fr

eq
ue

nc
y

3
© 2022 Montogue Quiz

The resulting plot is shown above. Notice that a linear trend holds in this
bilogarithmic word frequency versus rank plot, albeit with some deviation at the
upper and lower extremes. Such a linear trend is known as Zipf’s law1and appears to
hold for natural discourse in any language.

Inspecting the upper tail of the Zipf law plot, it is clear that there are a few
particularly important outlier words (points). To retrieve the, say, four uppermost
outlier words, we type:

ranked_vocab(1:4)
ans =
 4×1 string array
 "the"
 "and"
 "i"
 "to"

Thus, the four most frequent words in Shakespeare’s works seem to be the,
and, I, and to, in decreasing order. The second, third and fourth most common
words vary from document to document, but the is generally the most frequent
word in most English communication. Let us add up the total number of
occurrences of the four abovementioned most common words:

sum(ranked_freqs(1:4))
ans =
 96607

When combined, these four words alone occur nearly 100,000 times, which
is about 10.4% of the entire Shakespeare corpus. The following table summarizes
other cumulative statistics for increasingly larger subsets of the n most frequent
words.

Rank interval n = 1 to 4 n = 1 to 40 n = 1 to 400 n = 1 to 4000
Percentage of

vocabulary
0.015% 0.15% 1.5% 15.0%

Total No. of
occurrences

96,607 358,618 645,239 861,510

Percent of
whole collection

10.39% 38.55% 69.37% 92.62%

Notice from the table that a mere 15% of the Shakespeare vocabulary
accounts for over 92% of the entire corpus.

Another interesting observation, also due to Zipf, is that the most frequently
used words in a language are often the shortest ones. Indeed, if we sample the
words ranked, say, from 45 to 60 in the Shakespeare corpus and compare them
with words ranked, say, 3000 to 3015, we obtain the following:

ranked_vocab(45:60)'

ans =

 1×16 string array

"lord" "our" "o" "king" "good" "now" "sir"
"from" "they" "at" "come" "ll" "she" "let"
"enter" "here"

ranked_vocab(3000:3015)'

ans =

 1×16 string array

 Columns 1 through 12

"plebeians" "proceeding" "rebel" "rejoice" "repose"
"rightly" "roaring" "safely" "sandys" "setting" "sex"
"sheriff"

 Columns 13 through 16

 "signify" "siward" "stabs" "stopp"

1 In addition to linguistics, Zipf’s law also occurs in other areas of knowledge. For instance,
the ranked distribution of city populations within a country is also expected to follow a
bilogarithmic pattern.

4
© 2022 Montogue Quiz

Clearly, the average length of the words of rank 45 to 60, which includes sir,
at, and she, is generally less than the length of words ranking 3000 to 3015, which
includes proceeding, setting, and sheriff. We can obtain further evidence of this by
computing the average length of words at different points in the rank scale as
follows:

mean(strlength(ranked_vocab(45:90)))

ans =

 3.5652

mean(strlength(ranked_vocab(450:495)))

ans =

 6.0217

>> mean(strlength(ranked_vocab(3000:3045)))

ans =

 6.3478

As can be seen, the farther from 1 the rank range entered into MATLAB is,
the greater the average length of the corresponding words. This reflects an “auto-
compressing property” of language, whereby human communication has evolved to
become more efficient by relying primarily on short words.

A second interesting property of language that can be illustrated in a
MATLAB framework is the concept of burstiness. As noted by Banchs (2021), this
property has to do with the fact that words within a text sequence have the
tendency to repeat themselves following some specific patterns that resemble
bursts of occurrences. This means that when we first encounter a new word in a
given text sequence there is a high chance that we will find it again relatively close in
the following segments of text. To investigate this, let us compute and plot the
interval lengths between consecutive occurrences of the word the and make a
histogram of such intervals. To do so, we will be using MATLAB’s diff and hist
functions for computing the interval lengths and their histogram, respectively.

% Gets the indexes for the occurrences of the word 'the'
locations = find(strcmp(words,'the'));
% Computes the lengths of the repetition intervals
intervals = diff(locations);
% Computes a 100-bin histogram
histogram_the = hist(intervals, 100);
hf = figure(3); %Creates a new figure
set(hf, 'Color', [1,1,1], 'Name', 'Intermittency Property');
% Plots interval lengths between consecutive repetitions of 'the'
subplot(2,1,1);
nvals = length(intervals);
plot(1:nvals, intervals, '-b', [1,nvals], ones(1,2)*mean(intervals),
'--w');
limits = axis; axis([1, nvals, limits(3:4)]);
ylabel('Interval Length');
xlabel('Consecutive occurrences of word ''the''');
% Plots the histogram of interval lengths
subplot(2,2,3);
bar(histogram_the);
xlabel('Interval Length');
ylabel('Frequency');
% Plots the distribution (histogram) in logarithmic space
subplot(2,2,4);
loglog(1:length(histogram_the), histogram_the, '.k');
xlabel('Interval Length');
ylabel('Frequency');

0.5 1 1.5 2 2.5

Consecutive occurrences of word 'the' 10 4

0

100

200

300

400

500

600

In
te

rv
al

 L
en

gt
h

5
© 2022 Montogue Quiz

The figure shows the interval lengths between consecutive occurrences of
the word the and their corresponding histogram in linear space (bottom left) and
bilogarithmic space (bottom right). The upper plot illustrates our abovementioned
notion that occurrences of the are not periodic, but rather ‘bursty’ and intermittent.
The histogram on the lower left further illustrates that interval lengths between
occurrences of the same word are not uniform. Finally, the bilogarithmic plot on the
lower right shows that the ranked interval lengths for occurrences of the same
word are approximately linearly distributed; this is yet another instance of Zipf’s law
in corpus linguistics.

We close this section by generating interval length plots akin to those
obtained above, only this time considering two different words: hope, which is
ranked at No. 300 in vocab_words, and ring, which is ranked at No. 345. Notice how a
similarly intermittent behavior can be observed for both words.

% Writes words 'hope' and 'child' into a cell array
twoWords = {'hope','ring'};
% Retrieves their ranking positions
find(strcmp(ranked_vocab, twoWords{1}))
find(strcmp(ranked_vocab, twoWords{2}))
% Creates a new figure
set(hf, 'Color', [1,1,1], 'Name', 'Two additional interval length
plots');
% Generates the plots
for k = 1:2
 intervals = diff(find(strcmp(words, twoWords{k})));
 subplot(2,1,k);
 nvals = length(intervals);
 plot(1:nvals, intervals, '-b', [1, nvals],
ones(1,2)*mean(intervals), '--k');
 limits = axis;
 axis([1, nvals, limits(3:4)]);
 xlabel(sprintf('Consecutive Occurrences of Word ''%s''',
twoWords{k}));
 ylabel('Interval Length')
end

0 20 40 60 80 100

Interval Length

0

1000

2000

3000

4000

5000

6000

Fr
eq

ue
nc

y

10 0 10 1 10 2

Interval Length

10 0

10 1

10 2

10 3

10 4

Fr
eq

ue
nc

y

50 100 150 200 250 300 350

Consecutive Occurrences of Word 'hope'

0

0.5

1

1.5

2

2.5

In
te

rv
al

 L
en

gt
h

10 4

50 100 150 200 250 300

Consecutive Occurrences of Word 'ring'

0

1

2

3

4

5

In
te

rv
al

 L
en

gt
h

10 4

6
© 2022 Montogue Quiz

[Problem 2 – Keyword extraction – Preparing data
We now turn to an elementary task in text mining: keyword extraction. We

will be using three of the most influential novels of the nineteenth century: Melville’s
Moby Dick, Dostoyevsky’s Crime and Punishment, and Oscar Wilde’s The Picture of
Dorian Gray. These three works can be downloaded for free from the Project
Gutenberg website through the URLs listed below.

Book URL for HTML file

Moby Dick https://www.gutenberg.org/files/2701/2701-h/2701-h.htm
Crime and Punishment https://www.gutenberg.org/files/2554/2554-h/2554-h.htm

The Picture of Dorian Gray https://www.gutenberg.org/files/174/174-h/174-h.htm

The HTML files can be incorporated into MATLAB with the webread
function:

url = "https://www.gutenberg.org/files/2701/2701-h/2701-h.htm";
code = webread(url);

The HTML code contains the relevant text inside <p> (paragraph) elements.
To extract the relevant text, we may parse the HTML code using the htmlTree
function and then finding all the elements with the element name “p.”

tree = htmlTree(code);
selector = "p";
subtrees = findElement(tree, selector);

Lastly, we extract the text data from the HTML subtrees using the
extractHTMLText function and remove the empty elements.

subtrees = findElement(tree, selector);
textData_Moby = extractHTMLText(subtrees);

The procedure above applies to Moby Dick; the user may proceed similarly
with the other two novels, as the procedure is identical to the one outlined above.
In the sequel, we denote the text data obtained for Crime and Punishment and
Dorian Gray as textData_Crim and textData_Gray, respectively.

As the reader will have noticed, the procedure outlined just now
incorporates the entire text from each book, including portions of text such as
indexes and, for instance, the translator’s preface for Crime and Punishment. These
text data contribute nothing to the upcoming text mining procedure and can be
easily removed via MATLAB’s variable editor. To exclude the index and Translator’s
Preface from the Crime and Punishment string, for example, double-click the
textData_Crim variable in the workspace to open the variable editor; then, highlight
rows 1 to 64, right-click, and choose Delete Row(s). Follow the same procedure with
textData_Moby. The Dorian Gray string variable textData_Gray has no unwanted
index or translator’s preface.

7
© 2022 Montogue Quiz

Once the three texts have been processed, the
workspace should be populated with a 3900×1 string
textData_Crim, a 2547×1 string textData_Moby, and a
1498×1 string textData_Gray, as shown to the side.

As a cautionary step, it may be warranted to remove any empty string segments
from the string arrays we’ve constructed. To do so, we apply the following command to
each of the three textData objects.

textData_Moby = textData_Moby(~any(cellfun('isempty',
textData_Moby),2),:);
textData_Crim = textData_Crim(~any(cellfun('isempty',
textData_Crim),2),:);
textData_Gray = textData_Gray(~any(cellfun('isempty',
textData_Gray),2),:);

In the next step, we assemble a table containing the paragraphs in one
column and the name of the book they belong to in a second column. We first add a
second column to the textData variables containing the name of the book that
corresponds to each paragraph:

textData_Crim(:,2) = 'CRIME AND PUNISHMENT';
textData_Moby(:,2) = 'MOBY DICK';
textData_Gray(:,2) = 'DORIAN GRAY';

In the next step, we assemble a table containing the text segment (which we
call a document) in one column and the name of the book (variable book) in the
other:

dataset_prelim.book = [textData_Moby(:,2); textData_Crim(:,2);
textData_Gray(:,2)];
dataset_prelim.text = [textData_Moby(:,1); textData_Crim(:,1);
textData_Gray(:,1)];
dataset = struct2table(dataset_prelim);

Then, we reset the random number generator and randomize the data.

% Resets the random number generator
rng('default');
dataset = dataset(randperm(height(dataset)),:);

Then, we preprocess dataset by tokenizing it, erasing punctuation, and
lowercasing the text; the new variable is named docs; we also generate a variable
labels for the name of the book that corresponds to each document, a variable
nbooks containing the number of books, and a variable books containing the names
of the three novels.

% Preprocesses the data
docs = tokenizedDocument(dataset.text);
docs = erasePunctuation(docs);
docs = lower(docs);
labels = dataset.book;
nbooks = 3;
books = [‘MOBY DICK’, ‘CRIME AND PUNISHMENT’, ‘DORIAN GRAY’];

Then, we separate docs into three sets: a test set containing 1000
documents, a development set containing 1000 documents, and a train set
containing the remaining (=5810) samples.

% Prepares the test set partition (1000 samples)
tstidx = 1:1000; %Defines the index range
ntst = length(tstidx); %Sixe of the test set
tstdocs = docs(tstidx); %Test set documents
tstlbls = labels(tstidx); %Test set labels

% Prepares the development set partition (1000 samples)
devidx = 1001:2000;
ndev = length(devidx);
devdocs = docs(devidx);
devlbls = labels(devidx);

% Prepares the train set partition (5810 samples)
trnidx = 2001:length(docs);
ntrn = length(trnidx);
trndocs = docs(trnidx);
trnlbls = labels(trnidx);

8
© 2022 Montogue Quiz

Next, we use the available data to create a bag-of-words model for the
dataset. The BoW is created on the basis of the train set partition. In creating the
BoW object, we remove infrequent words (in this case, words appearing in the train
set 5 times or less) and frequent words (in this case, words ranking in place 1 to 40 in
terms of No. of occurrences).

trnbow = bagOfWords(trndocs); %Computes bag-of-words model
%Removes infrequent words (counts <= 5)
trnbow = removeInfrequentWords(trnbow, 5);
%Removes 40 most frequent words
frqwds = topkwords(trnbow,40).Word;
trnbow = removeWords(trnbow, frqwds);
vocab_bow = trnbow.Vocabulary; %Stores the vocabulary
vsize_bow = length(vocab_bow); %Vocabulary size

Then, we use the bag-of-words model created above to compute TF-IDF
matrices for all three partitions in the dataset:

%Computes TF-IDF matrices for train, development, and test
trntfidf = tfidf(trnbow);
tsttfidf = tfidf(trnbow, tstdocs);
devtfidf = tfidf(trnbow, devdocs);

Before we proceed, it is appropriate to save the variables we’ve generated
thus far; in the following code snippet, we save the pertaining variables in a file
txtMining.mat:

save textMining books nbooks dataset docs vocab_bow vsize_bow
ntst tstdocs tstlbls tsttfidf ndev devtfidf devdocs devlbls ntrn
trndocs trnlbls trnbow trntfidf

[Problem 3 – Keyword Extraction
Word clouds constitute the most intuitive tool for deriving important words

in a text. The MATLAB function wordcloud uses word frequency counts to create a
word cloud from a collection of strings. Let us create a word cloud for the Moby Dick
text data. We begin by creating a tokenized document variable from textData_Moby
and removing short words (in the present case, words with less than 5 characters)
and stop words.

%Creates an array of tokenized documents
tokdocs = tokenizedDocument(textData_Moby(:,1));
vocab_Moby = tokdocs.Vocabulary; %Extracts the vocabulary
%Identifies short words (words with less than 5 characters)
shortWords = vocab(strlength(vocab_Moby));
%Removes short words and stop words
prepDocs = removeWords(tokdocs, union(shortWords, stopWords));

Next, the command wordcloud can be used to create the eponymous plot
based on the list of most frequent words excluding short words and stop words.
The pertaining code is shown below.

hf = figure(1);
set(hf, 'Color', [1,1,1], 'Name', 'Word Cloud of Frequent Words');
wordcloud(prepDocs, 'Shape', 'oval', 'HighlightColor', 'red', ...
 'MaxDisplayWords', 150, 'SizePower', 0.2);

9
© 2022 Montogue Quiz

As shown, the sizes of the words in the word cloud are scaled according to
their frequency in the text; argument SizePower controls the scaling pattern. The
most prominent word in the cloud is whale, which is unsurprising.

There are several shortcomings in the word cloud constructed just now. For
instance, doing away with words containing less than 5 characters may exclude
important terms, such as sea or ship. Secondly, the code above processes simple
words only; phrases such as great whale and other multiword constructs are broken
down into individual words. Some of these shortcomings can be addressed with
two of MATLAB’s keyword extraction algorithms, RAKE and TextRank, which we
briefly introduce next.

The RAKE algorithm is implemented in the Text Analytics Toolbox™ function
rakeKeywords. Let us apply this command to the Moby Dick text data and count the
number of keywords extracted using height:

keywords_Moby = rakeKeywords(tokdocs);
keywords_Moby.Keyword = strip(join(keywords_Moby.Keyword));
height(keywords_Moby) %Number of keywords extracted
ans =
 66408

Since we have not specified the maximum number of keywords per
document, all candidate keywords found in each document have been returned. We
can see some candidate keywords in a certain document – say, document No. 10:

A few advantages relatively to the frequency-based text processing are
immediately apparent. First, RAKE generates keywords as phrases with a number of
individual words ranging anywhere from 1 to 5 or even more. Secondly, RAKE does
not necessarily reject all short words.

As important keywords are expected to be repeated across multiple
sentences in the book, we can compute frequency counts for the candidate
keywords over the entire dataset and rank them accordingly.

[uniqueKeywords, ~, uidx] = unique(keywords_Moby.Keyword);
keywordFreqs = hist(uidx, length(uniqueKeywords));
[rankedFreqs,ridx] = sort(keywordFreqs,'descend');
rankedKeywords = uniqueKeywords(ridx);

Then, we can use the top-ranked candidates and their frequencies to
generate the word cloud.

hf = figure(3);
set(hf, 'Color', [1,1,1], 'Name', 'Word Cloud of RAKE Keywords');
wordcloud(rankedKeywords, rankedFreqs, 'HighlightColor', 'red', ...
 'MaxDisplayWords', 150, 'SizePower', 0.2);

(The word cloud is shown on the next page.)

10
© 2022 Montogue Quiz

Some improvements are immediately apparent relatively to the frequency-
based word cloud. Firstly, there is a greater prevalence of nouns, to the detriment
of abstract words such as first or still. Secondly, short words such as man, ship and
sea, which were rejected in the previous word cloud, appear prominently in the
RAKE-based plot.

The TextRank keyword extraction tool, which is also part of the Text
Analytics Toolbox™, uses the same classification procedure as RAKE, but in a graph-
theoretical framework. Unidirected graphs are used to join words, and a famous
algorithm called PageRank is used to compute node centrality. (Importantly,
PageRank was the original algorithm used by Google’s search engine when it was
launched in 1998.) To illustrate the idea of centrality, we consider the names of the
characters in the plot of Moby Dick and compute the co-occurrence matrix over the
different sentences in the dataset. Such a co-occurrence matrix defines an
undirected graph of characters for which node centrality scores can be computed.

newtokdocs = addEntityDetails(tokdocs);
details = tokenDetails(newtokdocs);
nonpersons = details.Token(details.Entity~='person');

%Creates a bag-of-words model
bow = bagOfWords(newtokdocs);
bow = removeWords(bow, nonpersons); %Removes non-persons
bow = removeInfrequentWords(bow,5); %Removes infrequent persons

%Computes the co-occurrence matrix and builds the graph
counts = bow.Counts;
cooccurrencemtx = counts.'*counts;
pgraph = graph(cooccurrencemtx, bow.Vocabulary, 'omitselfloops');

hf = figure(2); %Plots the graph
figname = 'Graph of most frequent characters in Moby Dick';
set(hf, 'Color', [1,1,1], 'Name', figname);
plot(pgraph); axis off

Gabriel

Jonah

Christian

God

Adam

Hussey Elijah “ ManI.

Will

Dick

Hope

Don Sebastian

Sperm Whales
“ Cook

11
© 2022 Montogue Quiz

This graph network is rather uninteresting because Moby Dick doesn’t have
many recurring characters. Replacing the data with information from Dorian Gray
and running the same code leads to the following graph plot, which is much more
informative. Notice how many graphs are directed toward the ‘Dorian Gray’ graph,
corroborating the importance of this character in the plot (see what I did there?).
The plot is far from perfect, though, as there are separate graphs that actually refer
to the same character (e.g., ‘Alan’ and ‘Campbell’). Improvements on the quality of a
character graph are investigated in Exercise 14,4-3 of Banchs (2021).

Once the graphs have been established, we may create a table pgraph.Nodes
and compute different types of node centrality scores with the following
commands:

pgraph.Nodes.Degree = centrality(pgraph, 'degree');
pgraph.Nodes.Closeness = centrality(pgraph, 'closeness');
pgraph.Nodes.Betweenness = centrality(pgraph, 'betweenness');
pgraph.Nodes.PageRank = centrality(pgraph, 'pagerank');
disp(pgraph.Nodes)

As can be seen, for all flavors of character relatedness listed in the table,
Dorian Gray is the most important entity in the text data we’ve fed to MATLAB.
Henry (Wotton) is quite relevant, too.

Henry Wotton

Basil Hallward

Henry

Harry
Dorian Gray

Mr. Gray

God

Uncle

George

Erskine

Thomas

Sibyl Vane
Romeo

Juliet

Mother

James

Jim
James Vane

Mr. Hubbard

Adrian Singleton

Francis

Alan Campbell

Campbell

Alan

Geoffrey

12
© 2022 Montogue Quiz

Another way to search for the most representative words in a data
collection is through a geometrical approach. In vector space, the dimensions of
document vectors correspond to the vocabulary terms in the document collection,
and the distance scores used to assess similarities among document vectors rely on
word co-occurrences and distributions across documents. In a geometrical keyword
exploration framework, we first compute the average document vector for each of
the three categories (books) in our collection. We do this over the train set:

%Gets the 10 most relevant words in category 1 (Moby Dick)
[~,idx1] = sort(meanvect(1,:)-meanvect(2,:)-meanvect(3,:),
'descend');
disp(vocab(idx1(1:10)))
%Gets the 10 most relevant words in category 2 (Crime and
Punishment)
[~,idx2] = sort(meanvect(2,:)-meanvect(1,:)-meanvect(3,:),
'descend');
disp(vocab(idx2(1:10)))
%Gets the 10 most relevant words in category 3 (Dorian Gray)
[~,idx3] = sort(meanvect(3,:)-meanvect(1,:)-meanvect(2,:),
'descend');
disp(vocab(idx3(1:10)))
Columns 1 through 9
"ahab" "thou" "ye" "whale" "thee" "sea" "starbuck"
"aye" "boat"
 Column 10
 "ship"

 Columns 1 through 6
"raskolnikov" "sonia" "dounia" "razumihin" "ivanovna"
"petrovitch"
 Columns 7 through 10
 "katerina" "svidrigaã" "thats" "lov"

 Columns 1 through 8
"dorian" "henry" "lord" "gray" "harry" "basil"
"life" "sibyl"
 Columns 9 through 10
 "hallward" "picture"

Geometrically, the vectors computed in the code snippet above constitute
the centroid of their corresponding category’s set of vectors and, accordingly,
provide a vector-based representation of the whole category. Banchs (2021) notes
that we can think of these vectors as “average documents”, which are the most
representative documents of each category. To better illustrate the discriminative
power of these sets of words with respect to other words in the vocabulary, we
may construct dendrograms for different sets of words. In particular, we will be
considering three groups of words: the set of most discriminative words (ranks 1 to
7) for each category, and two sets of less discriminative words (ranks 31 to 37 and
ranks 301 to 307) for each category. In each case, a total amount of 21 words (7 from
each category ranking) are to be considered. For these computations, we operate
over the vector representations of words rather than documents:

%Selects the 7 most representative words from each category
words = [idx1(1:7), idx2(1:7), idx3(1:7)];
wordmtx = trntfidf(:,words)';
% Computes and plots the corresponding dendrogram
hf = figure(7);
ha = subplot(1,3,1);
set(hf, 'Color', [1,1,1], 'Name', 'Word dendrograms for different
word sets');
y = pdist(wordmtx, 'cosine');
z = linkage(y, 'average');
[h, t] = dendrogram(z, 0, 'labels', vocab(words), 'orientation',
'right');
temp = axis;
axis([0, 1, temp(3:4)]);
set(ha, 'Xcolor', [1,1,1]);
ylabel('Words in ranks 1 to 7 for each category');

%Selects words in ranks 101 to 107 from each category
words = [idx1(31:37), idx2(31:37), idx3(31:37)];
wordmtx = trntfidf(:,words)';
%Computes and plots the corresponding dendrogram
ha = subplot(1,3,2);
y = pdist(wordmtx, 'cosine');

13
© 2022 Montogue Quiz

z = linkage(y,'average');
[h, t] = dendrogram(z,0,'labels', vocab(words), 'orientation',
'right');
temp = axis;
axis([0, 1, temp(3:4)]);
set(ha, 'Xcolor', [1,1,1]);
ylabel('Words in ranks 31 to 37 for each category');

%Selects words in ranks 301 to 307 from each category
words = [idx1(301:307), idx2(301:307), idx3(301:307)];
wordmtx = trntfidf(:,words)';
%Computes and plots the corresponding dendrogram
ha = subplot(1,3,3);
y = pdist(wordmtx, 'cosine');
z = linkage(y, 'average');
[h, t] = dendrogram(z, 0, 'labels', vocab(words), 'orientation',
'right');
temp = axis;
axis([0, 1, temp(3:4)]);
set(ha, 'Xcolor', [1,1,1]);
ylabel('Words in ranks 301 to 307 for each category');

To resulting dendrograms are plotted above. As can be seen, when

considering the 7 most relevant words for each category, a clear distinction among
the three categories is noticeable (leftmost dendrogram); notice how the words
from Dorian Gray are mostly clustered in the upper part of the dendrogram,
whereas those from Moby Dick are clustered in the middle and those from Crime are
clustered in the lower part. There are also mildly noticeable patterns in the central
dendrogram, which refers to words ranked 31 to 37; indeed, the upper words
captain, sail and wind, which are located in the upper region, call to mind Moby Dick;
the words artist, painter and music, which are located in the middle, are related to
Dorian Gray; the character names Nastasya and Zametov (the latter one a surname),
which are located in the lower region, are related to Crime. However, when
considering words in ranks 301 to 307, no distinction among the three categories is
immediately apparent.

[Problem 4 – Document categorization
Document categorization goes beyond keyword extraction procedures. In

addition to knowing important words within a text, we may also need to classify
different texts within specific groups or categories. Document categorization
algorithms designed for this purpose occur in the form of unsupervised learning (or
simply clustering) and supervised learning. In unsupervised clustering, we
automatically group objects in a given collection according to the similarities and
differences of their salient features. Elements within each group or cluster are
expected to exhibit substantial similarities among them, whereas elements across
different groups or clusters are expected to exhibit large differences among them.
The process is said to be unsupervised because no information about the categories
coexisting in the collection is known beforehand. In supervised categorization, on
the other hand, we have access to some sort of useful information about the

0 0 5 1

ivanovna

katerina

sonia

raskolnikov

razumihin

dounia

petrovitch

ahab

starbuck

whale

sea

thou

thee

ye

dorian

gray

life

harry

henry

lord

basil

W
or

ds
 in

 ra
nk

s
1

to
 7

 fo
r e

ac
h

ca
te

go
ry

0 0 5 1

petrovna

dear

why

never

youve

zametov

nastasya

brother

music

tonight

painter

merely

artist

sofya

line

oars

whales

instant

wind

sail

captain

W
or

ds
 in

 ra
nk

s
31

 to
 3

7
fo

r e
ac

h
ca

te
go

ry

0 0 5 1

whirling

regard

capable

extraordinary

daylight

laughter

lift

realised

offended

preliminary

anger

mothers

uncertain

politics

finely

steadily

everybody

intensity

mirrors

perfume

plays

W
or

ds
 in

 ra
nk

s
30

1
to

 3
07

 fo
r e

ac
h

ca
te

go
ry

14
© 2022 Montogue Quiz

different categories in the data collection. In the present tutorial, we illustrate
unsupervised learning through a technique called k-means clustering and
unsupervised learning through the so-called k-nearest neighbors algorithm. We’ll be
using the same dataset prepared in Problem 2.

The MATLAB function kmeans implements the k-means clustering algorithm.
The basic syntax is [class, centroids] = kmeans(dataset, k), where the input variable
dataset is a matrix representation of the object collection, the rows being the
observations (documents) and the columns being the variables (terms), and k is the
desired number of clusters. The output variable class is a numeric array containing
the index of the cluster to which each element in the collection has been assigned;
the output variable centroids is a matrix containing the corresponding cluster
centroid locations.

Crucially, the k-means algorithm requires the number of clusters k to be
specified beforehand. This choice is highly subjective, but there are a few metrics,
such as the Dunn index, that may help the modeler to make a more informed
decision on this regard. Since we’re working with three novels, an obvious choice
on the number of clusters would be 3.

At this point, we should realize the problem of mapping the cluster indexes
indx into the three books in the collection. As the clustering performed above is
unsupervised in nature, we have no knowledge about the three books associated to
the resulting clusters that relates the cluster indexes to the books. In order to
proceed to evaluate classification accuracy, we must infer this mapping. As pointed
out by Banchs (2021), one way to infer the mapping between cluster indices and
books is by creating a cross-plot of index × books for the samples in the test set. As
we expect the resulting clusters to be mainly aligned with the three book categories,
we should be able to observe a larger concentration of samples in those cases in
which the cluster index and the book correspond to each other. We create the
cross-plot by using the following procedure (following Banchs, we add a small
amount of noise for visualization purposes):

hf = figure(4);
figtitle = 'Cross-Plot Between Cluster Indexes and Category Labels';
set(hf, 'Color', [1,1,1], 'Name', figtitle);
for n = 1:length(tstlbls) %Gets book labels of samples in the test
set
 nlbl(n,1) = find(tstlbls(n)==books);
end
plot(nlbl+randn(size(nlbl))/10, idxs+randn(size(idxs))/10, '.');
xlabel('Actual Category Labels');
ylabel('Cluster Indexes');
xticks([1,2,3]); xticklabels(books);

The resulting cross-plot is shown below. The figure is not nearly as
suggestive as we hoped it’d be; cluster number 3 is quite dense for all three books,
while cluster 1 is sparsely populated for all three novels.

MOBY DICK

CRIME AND PUNISHMENT

DORIAN GRAY

Actual Category Labels

0.5

1

1.5

2

2.5

3

3.5

C
lu

st
er

 In
de

xe
s

15
© 2022 Montogue Quiz

As an alternative, we may seek a mapping between clusters and books via a
brute-force exploration of the amount of overlap between clusters and books
across all possible mappings. This is illustrated by the following code:

%Considers all possible mappings
permutations = perms([1,2,3]);

%Computes cluster-book overlaps for all possible mappings
for n = 1:size(permutations,1)
 temp = 0;
 for k = 1:nbooks
 clusters = idxs'==k;
 permutedBooks = tstlbls==books(permutations(n,k));
 temp = temp + sum(clusters & permutedBooks);
 end
 overlaps(n) = temp;
end
%Gets the best mapping (i.e., maximum overlap)
[~,best] = max(overlaps);
books(permutations(best,:))

ans =

 1×3 string array

 "DORIAN GRAY" "MOBY DICK" "CRIME AND PUNISHMENT"

As shown, per the brute force approach we should assign cluster 1 to Dorian
Gray, cluster 2 to Moby Dick, and cluster 3 to Crime and Punishment.

Now that we have established the appropriate mapping between the
generated cluster indexes and the actual categories in the collection, we may
evaluate the quality of the performed categorization over the test set. The main
metric in this regard is the accuracy of the clustering scheme, which is defined as the
ratio of the percentage of successful categorizations to the total amount of
elements being categorized:

Correct casesAccuracy 100%
All cases

= ×

To compute the accuracy, we apply the mapping established above to all
cluster indexes idxs assigned to the samples in the test set:

predictions = books(permutations(best,idxs))';

In this way, the indexes can be directly compared to the array of test set
labels tstlbls:

accuracy = sum(predictions==tstlbls)/ntst*100
accuracy =

 41.7000

As shown, the resulting accuracy is 41.7%, which is mediocre but still better
than random selection. The k-means algorithm has exploited the implicit structure
of the dataset for generating a partition that approximates to a good extent the
actual categories in the dataset. Notice that, aside from the number of categories
coexisting in the dataset, no previous knowledge about the nature of the dataset
has been used.

A better comparison between the resulting partition and the original
document categories can be achieved through confusion matrices. Similarly to the
cross-plot obtained above, the confusion matrix provides useful information about
the degree of overlap among different clusters and categories.

confusion_mtx = confusionmat(predictions, tstlbls, 'ORDER', books);
cmtx = array2table(confusion_mtx, 'VariableNames', string(books));
cmtx.('Classified as') = string(books)';
disp(cmtx)

16
© 2022 Montogue Quiz

Entries in the main diagonal refer to the number of documents that were
classified correctly. For example, 340 documents from Crime and Punishment were
classified correctly, whereas 250 were mistakenly classified in Moby Dick and
another 144 were interpreted to belong to Dorian Gray.

Next, we turn to an example of supervised classification: the k-nearest
neighbors or knn algorithm. This method is a remarkably simple but robust
classification algorithm that, similarly to k-means clustering, operates over a vector
space model. In the present application, we first train the knn model using the train
set and evaluate it over the test set. Before the model can be trained, however, we
want to select an optimal value for k. For this purpose, we use the development set
and the commands fitcknn and predict for the training and inference tasks,
respectively.

kvals = 3:10;
for k = 1:length(kvals)
 knn_model = fitcknn(trntfidf, trnlbls, 'NumNeighbors',
kvals(k));
 predictions = predict(knn_model, devtfidf);
 accuracy(k) = sum(devlbls==predictions)/ndev*100;
end
[maxaccuracy, idxoptim] = max(accuracy);
koptim = kvals(idxoptim); %Optimum value of k
fprintf('koptim = %d, maxacc = %5.2f\n', koptim, maxaccuracy)

>> koptim = 3, maxacc = 64.1

Once an optimal value for the parameter k has been established, we may
train the knn algorithm with the train set clusters and evaluate its performance over
the test set. As before, we use functions fitcknn and predict for the training and
inference tasks, respectively:

%Trains a new knn model over the train set with k = koptim
knn_model = fitcknn(trntfidf, trnlbls, 'NumNeighbors', koptim);
%Computes accuracy of the generated model over the test set
predictions = predict(knn_model, tsttfidf);
accuracy = sum(predictions==categorical(tstlbls))/ntst*100

 The lattermost code outputs accuracy = 62.2, which is significantly better
than the value of 41.7 obtained with k-means clustering.

Using the same two algorithms we’ve employed in this part of the tutorial,
Banchs (2021) obtained substantially greater accuracy values. The reason, possibly,
is that Banchs worked with much larger documents, segmenting his data into large
chapters instead of individual paragraphs, as we have done herein. Classification
algorithms such as k-means or k nearest neighbors afford more efficient results
when handling few, large chunks of text data than when handling many, short
chunks of text data. Banchs goes on to show that multilayer perceptron (MLP), an
algorithm based on artificial neural networks (ANNs), may yield better accuracy
than either k-means of knn classification. This algorithm is beyond the scope of the
present tutorial; the interested reader is referred to Banchs (2021).

A REFERENCE
• BANCHS, R.E. (2021). Text Mining with MATLAB. 2nd edition.

Berlin/Heidelberg: Springer.

Visit www.montoguequiz.com for more free MATLAB tutorials
and all things science and engineering!

http://www.montoguequiz.com/

