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A PROBLEMS 
 [ Problem 1 – Basic corpus statistics 

In this tutorial, we explore some of MATLAB’s powerful capabilities for text 
processing tasks such as keyboard extraction and document classification. The 
tutorial draws heavily from the User’s Guide for MATLAB’s Text Analytics Toolbox™ 
and the second edition of Banchs’s (2021) textbook Text Mining with MATLAB. Before 
we delve in any specifics, however, I provide a quick rundown of interesting insights 
into corpus linguistics that can be derived and illustrated with MATLAB’s 
computational tools.  

We begin by loading a simple English-language corpus to work with. I chose 
to use The Complete Works of William Shakespeare, a 1994 compilation that can be 
downloaded from Project Gutenberg or directly from one of our Google Drive 
folders. (Please bear in mind that the book is to be utilized for personal or academic 
use only; not all books available on Project Gutenberg are available in the public 
domain.) We can load the file text via MATLAB’s extractFileText command:  

fileName = "shaks12.pdf"; 
str = extractFileText(fileName);  

Importantly, this PDF file contains junk text such as page numbers and legal 
reproduction disclaimers; while these pieces of text can be easily edited out for use 
in MATLAB, we will save time by leaving the PDF file unchanged. This has no effect 
on our initial analysis, which is corpus-based only. (We’ll be much more careful 
when handling text data for keyword extraction and doc classification; see below.) 

We proceed to lowercase the contents of the file: 

str = lower(str); 

Then, we replace all non-alphanumeric characters with whitespaces: 

str = regexprep(str, '\W', ' '); 
 

 Then, we eliminate leading and trailing whitespaces: 

str = strtrim(str); 
   

Lastly, we are ready to segment the string str into a sequence of 
words/tokens: 

words = split(str); 
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The number of words in the Shakespeare corpus is: 

running_words = length(words) 
running_words = 

      930189 

That is, the processed string amounts to approximately 930,000 words. This 
is not a large number, as some corpora used in modern text mining applications can 
easily contain dozens of millions of words. A second important computation 
pertains to the diversity of vocabulary words; to obtain the number of unique words 
in the shaks.pdf corpus, we employ the function unique: 

vocabulary = unique(words); 
vocabulary_words = length(vocabulary) 
vocabulary_words = 

       27224 

The output, which is close to 27,200, is a mere 3 percent of the total number 
of words; this indicates that the corpus of running words is constituted of a 
relatively small number of words, and some words must occur several times over 
the course of the text. The frequency of repetition of a given word can be obtained 
by counting the number of times each word occurs in the whole data collection. 
Following Banchs (2021), we can take advantage of functions unique and hist to 
obtain the frequencies as follows: 

[vocab, void, index] = unique(words); 
freqs = hist(index, vocabulary_words); 
whos index 
whos freqs 
Name            Size              Bytes   Class    Attributes 
index         930189x1           7441512  double               
Name            Size              Bytes   Class     Attributes 
freqs          1x27224           217792   double 

In the code snippet above, unique is used to extract the vocabulary. The 
index variable contains pointers to the corresponding word in vocab. Then, the 
function hist is used to construct a histogram with as many bins as the total amount 
of words in the vocabulary. The ensuing numeric array freqs contains the total 
number of times each word in the vocabulary occurs in the whole collection.  

It remains to rank the frequency counts contained in freqs. To do so, we use 
the sort command: 

[ranked_freqs, ranking_index] = sort(freqs, 'descend'); 
ranked_vocab = vocab(ranking_index); 

We are then ready to construct the plot of word frequencies versus rank for 
the text data at hand:  

set(figure, 'Color', [1,1,1], 'Name', 'Zipf''s Law'); 
loglog(ranked_freqs,'.'); grid on 
xlabel('Rank'); ylabel('Word Frequency'); 
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The resulting plot is shown above. Notice that a linear trend holds in this 
bilogarithmic word frequency versus rank plot, albeit with some deviation at the 
upper and lower extremes. Such a linear trend is known as Zipf’s law1and appears to 
hold for natural discourse in any language. 

Inspecting the upper tail of the Zipf law plot, it is clear that there are a few 
particularly important outlier words (points). To retrieve the, say, four uppermost 
outlier words, we type: 

ranked_vocab(1:4) 
ans =  
  4×1 string array 
    "the" 
    "and" 
    "i" 
    "to" 

Thus, the four most frequent words in Shakespeare’s works seem to be the, 
and, I, and to, in decreasing order. The second, third and fourth most common 
words vary from document to document, but the is generally the most frequent 
word in most English communication. Let us add up the total number of 
occurrences of the four abovementioned most common words:  

sum(ranked_freqs(1:4)) 
ans = 
       96607 

When combined, these four words alone occur nearly 100,000 times, which 
is about 10.4% of the entire Shakespeare corpus. The following table summarizes 
other cumulative statistics for increasingly larger subsets of the n most frequent 
words.  

Rank interval n = 1 to 4 n = 1 to 40 n = 1 to 400 n = 1 to 4000 
Percentage of 

vocabulary 
0.015% 0.15% 1.5%  15.0% 

Total No. of 
occurrences 

96,607 358,618 645,239 861,510 

Percent of 
whole collection 

10.39% 38.55% 69.37% 92.62% 

Notice from the table that a mere 15% of the Shakespeare vocabulary 
accounts for over 92% of the entire corpus.  

Another interesting observation, also due to Zipf, is that the most frequently 
used words in a language are often the shortest ones. Indeed, if we sample the 
words ranked, say, from 45 to 60 in the Shakespeare corpus and compare them 
with words ranked, say, 3000 to 3015, we obtain the following:  

ranked_vocab(45:60)' 

ans =  

  1×16 string array 

"lord"    "our"    "o"    "king"    "good"    "now"    "sir"    
"from"    "they"    "at"    "come"    "ll"    "she"    "let"    
"enter"    "here" 

ranked_vocab(3000:3015)' 

ans =  

  1×16 string array 

  Columns 1 through 12 

"plebeians" "proceeding"  "rebel"    "rejoice"  "repose"    
"rightly"    "roaring"    "safely"    "sandys"    "setting"    "sex"    
"sheriff" 

  Columns 13 through 16 

 "signify"    "siward"    "stabs"    "stopp"  

 
1 In addition to linguistics, Zipf’s law also occurs in other areas of knowledge. For instance, 
the ranked distribution of city populations within a country is also expected to follow a 
bilogarithmic pattern. 
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Clearly, the average length of the words of rank 45 to 60, which includes sir, 
at, and she, is generally less than the length of words ranking 3000 to 3015, which 
includes proceeding, setting, and sheriff. We can obtain further evidence of this by 
computing the average length of words at different points in the rank scale as 
follows:  

mean(strlength(ranked_vocab(45:90))) 

ans = 

    3.5652 

mean(strlength(ranked_vocab(450:495))) 

ans = 

    6.0217 

>> mean(strlength(ranked_vocab(3000:3045))) 

ans = 

    6.3478 

As can be seen, the farther from 1 the rank range entered into MATLAB is, 
the greater the average length of the corresponding words. This reflects an “auto-
compressing property” of language, whereby human communication has evolved to 
become more efficient by relying primarily on short words.  

A second interesting property of language that can be illustrated in a 
MATLAB framework is the concept of burstiness. As noted by Banchs (2021), this 
property has to do with the fact that words within a text sequence have the 
tendency to repeat themselves following some specific patterns that resemble 
bursts of occurrences. This means that when we first encounter a new word in a 
given text sequence there is a high chance that we will find it again relatively close in 
the following segments of text. To investigate this, let us compute and plot the 
interval lengths between consecutive occurrences of the word the and make a 
histogram of such intervals. To do so, we will be using MATLAB’s diff and hist 
functions for computing the interval lengths and their histogram, respectively. 

% Gets the indexes for the occurrences of the word 'the' 
locations = find(strcmp(words,'the'));  
% Computes the lengths of the repetition intervals 
intervals = diff(locations); 
% Computes a 100-bin histogram 
histogram_the = hist(intervals, 100); 
hf = figure(3); %Creates a new figure 
set(hf, 'Color', [1,1,1], 'Name', 'Intermittency Property'); 
% Plots interval lengths between consecutive repetitions of 'the' 
subplot(2,1,1); 
nvals = length(intervals); 
plot(1:nvals, intervals, '-b', [1,nvals], ones(1,2)*mean(intervals), 
'--w'); 
limits = axis; axis([1, nvals, limits(3:4)]); 
ylabel('Interval Length'); 
xlabel('Consecutive occurrences of word ''the''');  
% Plots the histogram of interval lengths 
subplot(2,2,3);  
bar(histogram_the); 
xlabel('Interval Length'); 
ylabel('Frequency'); 
% Plots the distribution (histogram) in logarithmic space 
subplot(2,2,4); 
loglog(1:length(histogram_the), histogram_the, '.k'); 
xlabel('Interval Length'); 
ylabel('Frequency');  
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The figure shows the interval lengths between consecutive occurrences of 
the word the and their corresponding histogram in linear space (bottom left) and 
bilogarithmic space (bottom right). The upper plot illustrates our abovementioned 
notion that occurrences of the are not periodic, but rather ‘bursty’ and intermittent. 
The histogram on the lower left further illustrates that interval lengths between 
occurrences of the same word are not uniform. Finally, the bilogarithmic plot on the 
lower right shows that the ranked interval lengths for occurrences of the same 
word are approximately linearly distributed; this is yet another instance of Zipf’s law 
in corpus linguistics.  

We close this section by generating interval length plots akin to those 
obtained above, only this time considering two different words: hope, which is 
ranked at No. 300 in vocab_words, and ring, which is ranked at No. 345. Notice how a 
similarly intermittent behavior can be observed for both words.  

% Writes words 'hope' and 'child' into a cell array 
twoWords = {'hope','ring'}; 
% Retrieves their ranking positions 
find(strcmp(ranked_vocab, twoWords{1})) 
find(strcmp(ranked_vocab, twoWords{2})) 
% Creates a new figure 
set(hf, 'Color', [1,1,1], 'Name', 'Two additional interval length 
plots'); 
% Generates the plots 
for k = 1:2 
    intervals = diff(find(strcmp(words, twoWords{k}))); 
    subplot(2,1,k);  
    nvals = length(intervals); 
    plot(1:nvals, intervals, '-b', [1, nvals], 
ones(1,2)*mean(intervals), '--k'); 
    limits = axis;  
    axis([1, nvals, limits(3:4)]); 
    xlabel(sprintf('Consecutive Occurrences of Word ''%s''', 
twoWords{k})); 
    ylabel('Interval Length') 
end 
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[ Problem 2 – Keyword extraction – Preparing data 
We now turn to an elementary task in text mining: keyword extraction. We 

will be using three of the most influential novels of the nineteenth century: Melville’s 
Moby Dick, Dostoyevsky’s Crime and Punishment, and Oscar Wilde’s The Picture of 
Dorian Gray. These three works can be downloaded for free from the Project 
Gutenberg website through the URLs listed below. 

Book URL for HTML file 

Moby Dick https://www.gutenberg.org/files/2701/2701-h/2701-h.htm 
Crime and Punishment https://www.gutenberg.org/files/2554/2554-h/2554-h.htm 

The Picture of Dorian Gray https://www.gutenberg.org/files/174/174-h/174-h.htm 
 

The HTML files can be incorporated into MATLAB with the webread 
function: 

url = "https://www.gutenberg.org/files/2701/2701-h/2701-h.htm"; 
code = webread(url); 

The HTML code contains the relevant text inside <p> (paragraph) elements. 
To extract the relevant text, we may parse the HTML code using the htmlTree 
function and then finding all the elements with the element name “p.” 

tree = htmlTree(code); 
selector = "p"; 
subtrees = findElement(tree, selector); 

Lastly, we extract the text data from the HTML subtrees using the 
extractHTMLText function and remove the empty elements. 

subtrees = findElement(tree, selector); 
textData_Moby = extractHTMLText(subtrees); 

The procedure above applies to Moby Dick; the user may proceed similarly 
with the other two novels, as the procedure is identical to the one outlined above. 
In the sequel, we denote the text data obtained for Crime and Punishment and 
Dorian Gray as textData_Crim and textData_Gray, respectively.  

As the reader will have noticed, the procedure outlined just now 
incorporates the entire text from each book, including portions of text such as 
indexes and, for instance, the translator’s preface for Crime and Punishment. These 
text data contribute nothing to the upcoming text mining procedure and can be 
easily removed via MATLAB’s variable editor. To exclude the index and Translator’s 
Preface from the Crime and Punishment string, for example, double-click the 
textData_Crim variable in the workspace to open the variable editor; then, highlight 
rows 1 to 64,  right-click, and choose Delete Row(s). Follow the same procedure with 
textData_Moby. The Dorian Gray string variable textData_Gray has no unwanted 
index or translator’s preface.   
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Once the three texts have been processed, the 
workspace should be populated with a 3900×1 string 
textData_Crim, a 2547×1 string textData_Moby, and a 
1498×1 string textData_Gray, as shown to the side.  

As a cautionary step, it may be warranted to remove any empty string segments 
from the string arrays we’ve constructed. To do so, we apply the following command to 
each of the three textData objects.  

textData_Moby = textData_Moby(~any(cellfun('isempty', 
textData_Moby),2),:);  
textData_Crim = textData_Crim(~any(cellfun('isempty', 
textData_Crim),2),:); 
textData_Gray = textData_Gray(~any(cellfun('isempty', 
textData_Gray),2),:); 

In the next step, we assemble a table containing the paragraphs in one 
column and the name of the book they belong to in a second column. We first add a 
second column to the textData variables containing the name of the book that 
corresponds to each paragraph: 

textData_Crim(:,2) = 'CRIME AND PUNISHMENT'; 
textData_Moby(:,2) = 'MOBY DICK'; 
textData_Gray(:,2) = 'DORIAN GRAY'; 

In the next step, we assemble a table containing the text segment (which we 
call a document) in one column and the name of the book (variable book) in the 
other:  

dataset_prelim.book = [textData_Moby(:,2); textData_Crim(:,2); 
textData_Gray(:,2)]; 
dataset_prelim.text = [textData_Moby(:,1); textData_Crim(:,1); 
textData_Gray(:,1)]; 
dataset = struct2table(dataset_prelim); 

Then, we reset the random number generator and randomize the data. 

% Resets the random number generator  
rng('default'); 
dataset = dataset(randperm(height(dataset)),:); 

Then, we preprocess dataset by tokenizing it, erasing punctuation, and 
lowercasing the text; the new variable is named docs; we also generate a variable 
labels for the name of the book that corresponds to each document, a variable 
nbooks containing the number of books, and a variable books containing the names 
of the three novels.  

% Preprocesses the data 
docs = tokenizedDocument(dataset.text); 
docs = erasePunctuation(docs); 
docs = lower(docs); 
labels = dataset.book; 
nbooks = 3;  
books = [‘MOBY DICK’, ‘CRIME AND PUNISHMENT’, ‘DORIAN GRAY’];  

Then, we separate docs into three sets: a test set containing 1000 
documents, a development set containing 1000 documents, and a train set 
containing the remaining (=5810) samples.  

% Prepares the test set partition (1000 samples) 
tstidx = 1:1000; %Defines the index range 
ntst = length(tstidx); %Sixe of the test set 
tstdocs = docs(tstidx); %Test set documents 
tstlbls = labels(tstidx); %Test set labels 

% Prepares the development set partition (1000 samples) 
devidx = 1001:2000;  
ndev = length(devidx); 
devdocs = docs(devidx); 
devlbls = labels(devidx); 
 
% Prepares the train set partition (5810 samples) 
trnidx = 2001:length(docs); 
ntrn = length(trnidx); 
trndocs = docs(trnidx); 
trnlbls = labels(trnidx); 
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Next, we use the available data to create a bag-of-words model for the 
dataset. The BoW is created on the basis of the train set partition. In creating the 
BoW object, we remove infrequent words (in this case, words appearing in the train 
set 5 times or less) and frequent words (in this case, words ranking in place 1 to 40 in 
terms of No. of occurrences).  

trnbow = bagOfWords(trndocs); %Computes bag-of-words model 
%Removes infrequent words (counts <= 5) 
trnbow = removeInfrequentWords(trnbow, 5); 
%Removes 40 most frequent words  
frqwds = topkwords(trnbow,40).Word; 
trnbow = removeWords(trnbow, frqwds); 
vocab_bow = trnbow.Vocabulary; %Stores the vocabulary 
vsize_bow = length(vocab_bow); %Vocabulary size 

Then, we use the bag-of-words model created above to compute TF-IDF 
matrices for all three partitions in the dataset:  

%Computes TF-IDF matrices for train, development, and test 
trntfidf = tfidf(trnbow); 
tsttfidf = tfidf(trnbow, tstdocs); 
devtfidf = tfidf(trnbow, devdocs);  
 

Before we proceed, it is appropriate to save the variables we’ve generated 
thus far; in the following code snippet, we save the pertaining variables in a file 
txtMining.mat:  

save textMining books nbooks dataset docs vocab_bow vsize_bow 
ntst tstdocs tstlbls tsttfidf ndev devtfidf devdocs devlbls ntrn 
trndocs trnlbls trnbow trntfidf  

   

[ Problem 3 – Keyword Extraction 
Word clouds constitute the most intuitive tool for deriving important words 

in a text. The MATLAB function wordcloud uses word frequency counts to create a 
word cloud from a collection of strings. Let us create a word cloud for the Moby Dick 
text data. We begin by creating a tokenized document variable from textData_Moby 
and removing short words (in the present case, words with less than 5 characters) 
and stop words.  

%Creates an array of tokenized documents 
tokdocs = tokenizedDocument(textData_Moby(:,1)); 
vocab_Moby = tokdocs.Vocabulary; %Extracts the vocabulary 
%Identifies short words (words with less than 5 characters) 
shortWords = vocab(strlength(vocab_Moby)); 
%Removes short words and stop words 
prepDocs = removeWords(tokdocs, union(shortWords, stopWords)); 
 

Next, the command wordcloud can be used to create the eponymous plot 
based on the list of most frequent words excluding short words and stop words. 
The pertaining code is shown below.  

hf = figure(1); 
set(hf, 'Color', [1,1,1], 'Name', 'Word Cloud of Frequent Words'); 
wordcloud(prepDocs, 'Shape', 'oval', 'HighlightColor', 'red', ... 
    'MaxDisplayWords', 150, 'SizePower', 0.2);  
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As shown, the sizes of the words in the word cloud are scaled according to 
their frequency in the text; argument SizePower controls the scaling pattern. The 
most prominent word in the cloud is whale, which is unsurprising. 

There are several shortcomings in the word cloud constructed just now. For 
instance, doing away with words containing less than 5 characters may exclude 
important terms, such as sea or ship. Secondly, the code above processes simple 
words only; phrases such as great whale and other multiword constructs are broken 
down into individual words. Some of these shortcomings can be addressed with 
two of MATLAB’s keyword extraction algorithms, RAKE and TextRank, which we 
briefly introduce next. 

The RAKE algorithm is implemented in the Text Analytics Toolbox™ function 
rakeKeywords.  Let us apply this command to the Moby Dick text data and count the 
number of keywords extracted using height: 

keywords_Moby = rakeKeywords(tokdocs); 
keywords_Moby.Keyword = strip(join(keywords_Moby.Keyword)); 
height(keywords_Moby) %Number of keywords extracted  
ans = 
       66408 

Since we have not specified the maximum number of keywords per 
document, all candidate keywords found in each document have been returned. We 
can see some candidate keywords in a certain document – say, document No. 10:  

 

A few advantages relatively to the frequency-based text processing are 
immediately apparent. First, RAKE generates keywords as phrases with a number of 
individual words ranging anywhere from 1 to 5 or even more. Secondly, RAKE does 
not necessarily reject all short words.  

As important keywords are expected to be repeated across multiple 
sentences in the book, we can compute frequency counts for the candidate 
keywords over the entire dataset and rank them accordingly.  

[uniqueKeywords, ~, uidx] = unique(keywords_Moby.Keyword); 
keywordFreqs = hist(uidx, length(uniqueKeywords)); 
[rankedFreqs,ridx] = sort(keywordFreqs,'descend'); 
rankedKeywords = uniqueKeywords(ridx); 

Then, we can use the top-ranked candidates and their frequencies to 
generate the word cloud.  

hf = figure(3); 
set(hf, 'Color', [1,1,1], 'Name', 'Word Cloud of RAKE Keywords'); 
wordcloud(rankedKeywords, rankedFreqs, 'HighlightColor', 'red', ... 
    'MaxDisplayWords', 150, 'SizePower', 0.2); 

(The word cloud is shown on the next page.)  
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Some improvements are immediately apparent relatively to the frequency-
based word cloud. Firstly, there is a greater prevalence of nouns, to the detriment 
of abstract words such as first or still. Secondly, short words such as man, ship and 
sea, which were rejected in the previous word cloud, appear prominently in the 
RAKE-based plot.   

The TextRank keyword extraction tool, which is also part of the Text 
Analytics Toolbox™, uses the same classification procedure as RAKE, but in a graph-
theoretical framework. Unidirected graphs are used to join words, and a famous 
algorithm called PageRank is used to compute node centrality. (Importantly, 
PageRank was the original algorithm used by Google’s search engine when it was 
launched in 1998.) To illustrate the idea of centrality, we consider the names of the 
characters in the plot of Moby Dick and compute the co-occurrence matrix over the 
different sentences in the dataset. Such a co-occurrence matrix defines an 
undirected graph of characters for which node centrality scores can be computed. 

newtokdocs = addEntityDetails(tokdocs); 
details = tokenDetails(newtokdocs); 
nonpersons = details.Token(details.Entity~='person'); 
 
%Creates a bag-of-words model 
bow = bagOfWords(newtokdocs); 
bow = removeWords(bow, nonpersons); %Removes non-persons 
bow = removeInfrequentWords(bow,5); %Removes infrequent persons 
 
%Computes the co-occurrence matrix and builds the graph 
counts = bow.Counts; 
cooccurrencemtx = counts.'*counts; 
pgraph = graph(cooccurrencemtx, bow.Vocabulary, 'omitselfloops'); 
 
hf = figure(2); %Plots the graph 
figname = 'Graph of most frequent characters in Moby Dick';  
set(hf, 'Color', [1,1,1], 'Name', figname); 
plot(pgraph); axis off 
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This graph network is rather uninteresting because Moby Dick doesn’t have 
many recurring characters. Replacing the data with information from Dorian Gray 
and running the same code leads to the following graph plot, which is much more 
informative. Notice how many graphs are directed toward the ‘Dorian Gray’ graph, 
corroborating the importance of this character in the plot (see what I did there?). 
The plot is far from perfect, though, as there are separate graphs that actually refer 
to the same character (e.g., ‘Alan’ and ‘Campbell’). Improvements on the quality of a 
character graph are investigated in Exercise 14,4-3 of Banchs (2021).  

 

Once the graphs have been established, we may create a table pgraph.Nodes 
and compute different types of node centrality scores with the following 
commands:  

pgraph.Nodes.Degree = centrality(pgraph, 'degree'); 
pgraph.Nodes.Closeness = centrality(pgraph, 'closeness'); 
pgraph.Nodes.Betweenness = centrality(pgraph, 'betweenness'); 
pgraph.Nodes.PageRank = centrality(pgraph, 'pagerank');  
disp(pgraph.Nodes) 

 

As can be seen, for all flavors of character relatedness listed in the table, 
Dorian Gray is the most important entity in the text data we’ve fed to MATLAB. 
Henry (Wotton) is quite relevant, too. 
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Another way to search for the most representative words in a data 
collection is through a geometrical approach. In vector space, the dimensions of 
document vectors correspond to the vocabulary terms in the document collection, 
and the distance scores used to assess similarities among document vectors rely on 
word co-occurrences and distributions across documents. In a geometrical keyword 
exploration framework, we first compute the average document vector for each of 
the three categories (books) in our collection. We do this over the train set: 

%Gets the 10 most relevant words in category 1 (Moby Dick) 
[~,idx1] = sort(meanvect(1,:)-meanvect(2,:)-meanvect(3,:), 
'descend'); 
disp(vocab(idx1(1:10))) 
%Gets the 10 most relevant words in category 2 (Crime and 
Punishment)  
[~,idx2] = sort(meanvect(2,:)-meanvect(1,:)-meanvect(3,:), 
'descend'); 
disp(vocab(idx2(1:10))) 
%Gets the 10 most relevant words in category 3 (Dorian Gray)  
[~,idx3] = sort(meanvect(3,:)-meanvect(1,:)-meanvect(2,:), 
'descend'); 
disp(vocab(idx3(1:10))) 
Columns 1 through 9 
"ahab"    "thou"    "ye"    "whale"    "thee"    "sea"    "starbuck"    
"aye"    "boat" 
  Column 10 
  "ship" 

  Columns 1 through 6 
"raskolnikov"    "sonia"    "dounia"    "razumihin"    "ivanovna"    
"petrovitch" 
  Columns 7 through 10 
    "katerina"    "svidrigaã"    "thats"    "lov" 

  Columns 1 through 8 
"dorian"    "henry"    "lord"    "gray"    "harry"    "basil"    
"life"    "sibyl" 
  Columns 9 through 10 
 "hallward"    "picture" 
 

Geometrically, the vectors computed in the code snippet above constitute 
the centroid of their corresponding category’s set of vectors and, accordingly, 
provide a vector-based representation of the whole category. Banchs (2021) notes 
that we can think of these vectors as “average documents”, which are the most 
representative documents of each category. To better illustrate the discriminative 
power of these sets of words with respect to other words in the vocabulary, we 
may construct dendrograms for different sets of words. In particular, we will be 
considering three groups of words: the set of most discriminative words (ranks 1 to 
7) for each category, and two sets of less discriminative words (ranks 31 to 37 and 
ranks 301 to 307) for each category. In each case, a total amount of 21 words (7 from 
each category ranking) are to be considered. For these computations, we operate 
over the vector representations of words rather than documents: 

%Selects the 7 most representative words from each category 
words = [idx1(1:7), idx2(1:7), idx3(1:7)];  
wordmtx = trntfidf(:,words)'; 
% Computes and plots the corresponding dendrogram 
hf = figure(7); 
ha = subplot(1,3,1);  
set(hf, 'Color', [1,1,1], 'Name', 'Word dendrograms for different 
word sets'); 
y = pdist(wordmtx, 'cosine'); 
z = linkage(y, 'average'); 
[h, t] = dendrogram(z, 0, 'labels', vocab(words), 'orientation', 
'right'); 
temp = axis; 
axis([0, 1, temp(3:4)]); 
set(ha, 'Xcolor', [1,1,1]); 
ylabel('Words in ranks 1 to 7 for each category'); 
 
%Selects words in ranks 101 to 107 from each category 
words = [idx1(31:37), idx2(31:37), idx3(31:37)]; 
wordmtx = trntfidf(:,words)'; 
%Computes and plots the corresponding dendrogram 
ha = subplot(1,3,2); 
y = pdist(wordmtx, 'cosine'); 
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z = linkage(y,'average'); 
[h, t] = dendrogram(z,0,'labels', vocab(words), 'orientation', 
'right'); 
temp = axis; 
axis([0, 1, temp(3:4)]);  
set(ha, 'Xcolor', [1,1,1]); 
ylabel('Words in ranks 31 to 37 for each category'); 
 
%Selects words in ranks 301 to 307 from each category 
words = [idx1(301:307), idx2(301:307), idx3(301:307)]; 
wordmtx = trntfidf(:,words)';  
%Computes and plots the corresponding dendrogram 
ha = subplot(1,3,3); 
y = pdist(wordmtx, 'cosine'); 
z = linkage(y, 'average'); 
[h, t] = dendrogram(z, 0, 'labels', vocab(words), 'orientation', 
'right'); 
temp = axis; 
axis([0, 1, temp(3:4)]); 
set(ha, 'Xcolor', [1,1,1]); 
ylabel('Words in ranks 301 to 307 for each category'); 

 
To resulting dendrograms are plotted above. As can be seen, when 

considering the 7 most relevant words for each category, a clear distinction among 
the three categories is noticeable (leftmost dendrogram); notice how the words 
from Dorian Gray are mostly clustered in the upper part of the dendrogram, 
whereas those from Moby Dick are clustered in the middle and those from Crime are 
clustered in the lower part. There are also mildly noticeable patterns in the central 
dendrogram, which refers to words ranked 31 to 37; indeed, the upper words 
captain, sail and wind, which are located in the upper region, call to mind Moby Dick; 
the words artist, painter and music, which are located in the middle, are related to 
Dorian Gray; the character names Nastasya and Zametov (the latter one a surname), 
which are located in the lower region, are related to Crime. However, when 
considering words in ranks 301 to 307, no distinction among the three categories is 
immediately apparent.  

[ Problem 4 – Document categorization 
Document categorization goes beyond keyword extraction procedures. In 

addition to knowing important words within a text, we may also need to classify 
different texts within specific groups or categories. Document categorization 
algorithms designed for this purpose occur in the form of unsupervised learning (or 
simply clustering) and supervised learning. In unsupervised clustering, we 
automatically group objects in a given collection according to the similarities and 
differences of their salient features. Elements within each group or cluster are 
expected to exhibit substantial similarities among them, whereas elements across 
different groups or clusters are expected to exhibit large differences among them. 
The process is said to be unsupervised because no information about the categories 
coexisting in the collection is known beforehand. In supervised categorization, on 
the other hand, we have access to some sort of useful information about the 
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different categories in the data collection. In the present tutorial, we illustrate 
unsupervised learning through a technique called k-means clustering and 
unsupervised learning through the so-called k-nearest neighbors algorithm. We’ll be 
using the same dataset prepared in Problem 2.  

The MATLAB function kmeans implements the k-means clustering algorithm. 
The basic syntax is [class, centroids] = kmeans(dataset, k), where the input variable 
dataset is a matrix representation of the object collection, the rows being the 
observations (documents) and the columns being the variables (terms), and k is the 
desired number of clusters. The output variable class is a numeric array containing 
the index of the cluster to which each element in the collection has been assigned; 
the output variable centroids is a matrix containing the corresponding cluster 
centroid locations.  

Crucially, the k-means algorithm requires the number of clusters k to be 
specified beforehand. This choice is highly subjective, but there are a few metrics, 
such as the Dunn index, that may help the modeler to make a more informed 
decision on this regard. Since we’re working with three novels, an obvious choice 
on the number of clusters would be 3.  

At this point, we should realize the problem of mapping the cluster indexes 
indx into the three books in the collection. As the clustering performed above is 
unsupervised in nature, we have no knowledge about the three books associated to 
the resulting clusters that relates the cluster indexes to the books. In order to 
proceed to evaluate classification accuracy, we must infer this mapping. As pointed 
out by Banchs (2021), one way to infer the mapping between cluster indices and 
books is by creating a cross-plot of index × books for the samples in the test set. As 
we expect the resulting clusters to be mainly aligned with the three book categories, 
we should be able to observe a larger concentration of samples in those cases in 
which the cluster index and the book correspond to each other. We create the 
cross-plot by using the following procedure (following Banchs, we add a small 
amount of noise for visualization purposes):  

hf = figure(4); 
figtitle = 'Cross-Plot Between Cluster Indexes and Category Labels'; 
set(hf, 'Color', [1,1,1], 'Name', figtitle);  
for n = 1:length(tstlbls) %Gets book labels of samples in the test 
set 
    nlbl(n,1) = find(tstlbls(n)==books); 
end 
plot(nlbl+randn(size(nlbl))/10, idxs+randn(size(idxs))/10, '.'); 
xlabel('Actual Category Labels'); 
ylabel('Cluster Indexes'); 
xticks([1,2,3]); xticklabels(books); 

The resulting cross-plot is shown below. The figure is not nearly as 
suggestive as we hoped it’d be; cluster number 3 is quite dense for all three books, 
while cluster 1 is sparsely populated for all three novels.  

 

MOBY DICK

CRIME AND PUNISHMENT

DORIAN GRAY

Actual Category Labels

0.5

1

1.5

2

2.5

3

3.5

C
lu

st
er

 In
de

xe
s



15 
© 2022 Montogue Quiz 

As an alternative, we may seek a mapping between clusters and books via a 
brute-force exploration of the amount of overlap between clusters and books 
across all possible mappings. This is illustrated by the following code:  

%Considers all possible mappings 
permutations = perms([1,2,3]); 
 
%Computes cluster-book overlaps for all possible mappings 
for n = 1:size(permutations,1) 
    temp = 0; 
    for k = 1:nbooks 
        clusters = idxs'==k; 
        permutedBooks = tstlbls==books(permutations(n,k)); 
        temp = temp + sum(clusters & permutedBooks); 
    end 
    overlaps(n) = temp; 
end 
%Gets the best mapping (i.e., maximum overlap) 
[~,best] = max(overlaps);  
books(permutations(best,:)) 

ans =  

  1×3 string array 

    "DORIAN GRAY"    "MOBY DICK"    "CRIME AND PUNISHMENT" 

As shown, per the brute force approach we should assign cluster 1 to Dorian 
Gray, cluster 2 to Moby Dick, and cluster 3 to Crime and Punishment.  

Now that we have established the appropriate mapping between the 
generated cluster indexes and the actual categories in the collection, we may 
evaluate the quality of the performed categorization over the test set. The main 
metric in this regard is the accuracy of the clustering scheme, which is defined as the 
ratio of the percentage of successful categorizations to the total amount of 
elements being categorized:  

Correct casesAccuracy 100%
All cases

= ×  

To compute the accuracy, we apply the mapping established above to all 
cluster indexes idxs assigned to the samples in the test set:  

predictions = books(permutations(best,idxs))'; 

In this way, the indexes can be directly compared to the array of test set 
labels tstlbls:  

accuracy = sum(predictions==tstlbls)/ntst*100 
accuracy = 

   41.7000 

As shown, the resulting accuracy is 41.7%, which is mediocre but still better 
than random selection. The k-means algorithm has exploited the implicit structure 
of the dataset for generating a partition that approximates to a good extent the 
actual categories in the dataset. Notice that, aside from the number of categories 
coexisting in the dataset, no previous knowledge about the nature of the dataset 
has been used.  

A better comparison between the resulting partition and the original 
document categories can be achieved through confusion matrices. Similarly to the 
cross-plot obtained above, the confusion matrix provides useful information about 
the degree of overlap among different clusters and categories.  

confusion_mtx = confusionmat(predictions, tstlbls, 'ORDER', books); 
cmtx = array2table(confusion_mtx, 'VariableNames', string(books)); 
cmtx.('Classified as') = string(books)'; 
disp(cmtx) 
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Entries in the main diagonal refer to the number of documents that were 
classified correctly. For example, 340 documents from Crime and Punishment were 
classified correctly, whereas 250 were mistakenly classified in Moby Dick and 
another 144 were interpreted to belong to Dorian Gray.  

Next, we turn to an example of supervised classification: the k-nearest 
neighbors or knn algorithm. This method is a remarkably simple but robust 
classification algorithm that, similarly to k-means clustering, operates over a vector 
space model. In the present application, we first train the knn model using the train 
set and evaluate it over the test set. Before the model can be trained, however, we 
want to select an optimal value for k. For this purpose, we use the development set 
and the commands fitcknn and predict for the training and inference tasks, 
respectively.  

kvals = 3:10; 
for k = 1:length(kvals) 
    knn_model = fitcknn(trntfidf, trnlbls, 'NumNeighbors', 
kvals(k)); 
    predictions = predict(knn_model, devtfidf); 
    accuracy(k) = sum(devlbls==predictions)/ndev*100; 
end 
[maxaccuracy, idxoptim] = max(accuracy); 
koptim = kvals(idxoptim); %Optimum value of k 
fprintf('koptim = %d, maxacc = %5.2f\n', koptim, maxaccuracy) 

>> koptim = 3, maxacc = 64.1 

Once an optimal value for the parameter k has been established, we may 
train the knn algorithm with the train set clusters and evaluate its performance over 
the test set. As before, we use functions fitcknn and predict for the training and 
inference tasks, respectively:  

%Trains a new knn model over the train set with k = koptim 
knn_model = fitcknn(trntfidf, trnlbls, 'NumNeighbors', koptim); 
%Computes accuracy of the generated model over the test set 
predictions = predict(knn_model, tsttfidf); 
accuracy = sum(predictions==categorical(tstlbls))/ntst*100 

 The lattermost code outputs accuracy = 62.2, which is significantly better 
than the value of 41.7 obtained with k-means clustering.  

Using the same two algorithms we’ve employed in this part of the tutorial, 
Banchs (2021) obtained substantially greater accuracy values. The reason, possibly, 
is that Banchs worked with much larger documents, segmenting his data into large 
chapters instead of individual paragraphs, as we have done herein. Classification 
algorithms such as k-means or k nearest neighbors afford more efficient results 
when handling few, large chunks of text data than when handling many, short 
chunks of text data. Banchs goes on to show that multilayer perceptron (MLP), an 
algorithm based on artificial neural networks (ANNs), may yield better accuracy 
than either k-means of knn classification. This algorithm is beyond the scope of the 
present tutorial; the interested reader is referred to Banchs (2021).   
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