

Quiz EL204 Transistor Amplifiers

Lucas Monteiro Nogueira

PROBLEM DISTRIBUTION

Problems	Subject		
1 – 4	Common-source configurations		
5 – 7	Common-emitter configurations		
8 – 11	Common-gate configurations		
12 - 14	Common-base configurations		
15 - 20	MOS cascode circuits		
21 - 23	BJT cascode circuits		

PROBLEMS

Problem 7 (Sedra and Smith, 2015, w/ permission)

Calculate the overall voltage gain of a common-source amplifier that is fed a 1.2-M Ω source and connected to a 15-k Ω load. The MOSFET has transconductance $g_m = 2$ mA/V, and a drain resistance $R_D = 10$ k Ω is utilized.

Related equation: eq. 1

Problem 2 (Sedra and Smith, 2015, w/ permission)

A MOSFET connected in the common-source configuration has a transconductance $g_m = 5$ mA/V. When a resistance R_s is connected in the source lead, the effective transconductance is reduced to 2 mA/V. What do you estimate the value of R_s to be?

Related equation: eq. 2

Problem 3 (Sedra and Smith, 2015, w/ permission)

A common-source amplifier utilizes a MOSFET operated at overdrive voltage $V_{OV} = 0.25$ V. The amplifier feeds a load resistance $R_L = 15$ k Ω . The designer selects a drain resistance $R_D = 2R_L$. If it is required to realize an overall voltage gain G_V of -10 V/V, what transconductance g_m is needed? Also specify the bias current I_D . If, to increase the output signal swing, R_D is reduced to $R_D = R_L$, what does G_V become?

Related equation: eq. 1

Problem 4 (Sedra and Smith, 2015, w/ permission)

The overall voltage gain of a CS amplifier with a resistance $R_s = 0.5 \text{ k}\Omega$ in the source lead was measured and found to be -10 V/V. When R_s was shorted, but the circuit operation remained linear, the gain doubled. What must the transconductance g_m be? What value of R_s is needed to obtain an overall voltage gain to -5 V/V?

Related equation: eq. 2

Problem 5 (Sedra and Smith, 2015, w/ permission)

A common-emitter amplifier utilizes a BJT with $\beta = 100$ biased at collector current $I_c = 0.5$ mA and has a collector resistance $R_c = 12$ k Ω and is connected to an emitter lead resistance $R_e = 250 \Omega$. Find the input resistance R_{in} , the open-circuit voltage gain A_{vo} , and the output lead resistance R_o . If the amplifier is fed with a signal source having a resistance of 10 k Ω , and a load resistance $R_L = 12$ k Ω is connected to the output terminal, find the resulting gain A_v with load resistance and the overall voltage gain G_v . If the peak voltage of the sine wave appearing between base and emitter is to be limited to 5 mV, what signal amplitude \hat{v}_{sig} is allowed, and what output voltage signal appears across the load?

Related equations: eqs. 3, 4, and 5

1

Problem 6 (Sedra and Smith, 2015, w/ permission)

Inclusion of an emitter resistance R_e reduces the variability of the gain G_v due to the inevitable wide variance in the value of current gain parameter β . Consider a common-emitter amplifier operating between a signal source with resistance $R_{sig} = 10 \text{ k}\Omega$ and a total collector resistance $R_c ||R_L$ of 10 k Ω . The BJT is biased at collector current $I_c = 1$ mA and its β is specified to be nominally 100 but can lie in the range of 50 to 150. First determine the nominal value and the range of overall voltage gain $|G_v|$ without resistance R_e . Then select a value of R_e that will ensure that $|G_v|$ be within $\pm 20\%$ of its new nominal value. Specify the value of R_e , the new nominal value of $|G_v|$.

Related equation: eq. 5

Problem 7 (Sedra and Smith, 2015, w/ permission)

In this problem we investigate the effect of the inevitable variability of β on the realized gain of the common-emitter amplifier. For this purpose, we write the overall voltage gain in a modified form of equation 5,

$$\left|G_{\nu}\right| = \frac{R_{L}}{\frac{R_{\text{sig}}}{\beta} + \frac{1}{g_{m}}}$$

where $R'_L = R_L || R_C$. Consider the case $R'_L = 10 \text{ k}\Omega$ and $R_{\text{sig}} = 10 \text{ k}\Omega$, and let the BJT be biased at $I_C = 1$ mA. The BJT has a nominal β of 100. Use 25 mV as the thermal voltage.

Problem 7.1: What is the nominal value of $|G_v|$?

Problem 7.2: If β can be anywhere between 50 and 150, what is the corresponding range of $|G_{\nu}|$?

Problem 7.3: If in a particular design, it is required to maintain $|G_v|$ within $\pm 20\%$ of its nominal value, what is the maximum allowable range of β ? **Problem 7.4:** If it is not possible to restrict β to the range found in Problem 7.3, and the designer has to contend with β in the range 50 to 150, what value of bias current I_c would result in $|G_v|$ falling in $|G_v|$ falling in a range of $\pm 20\%$ of a new nominal value? What is the nominal value of $|G_v|$ in this case?

Related equation: eq. 5

Problem 8 (Razavi, 2008, w/ permission)

A common-gate amplifier using an NMOS transistor for which $g_m = 2$ mA/V has a 5-k Ω drain resistance R_D and a 5-k Ω load resistance R_L . The amplifier is driven by a voltage source having a 750- Ω resistance. What is the input resistance of the amplifier? What is the overall voltage gain G_v ? By what factor must the bias current I_D of the MOSFET be changed so that input resistance R_{in} matches signal-source resistance R_{sig} ?

Related equation: eq. 6

Problem 9 (Sedra and Smith, 2015, w/ permission)

A common-gate amplifier when fed with a signal source having $R_{sig} = 100 \Omega$ is found to have an overall voltage gain of 12 V/V. When a $100-\Omega$ resistance was added in series with the signal generator the overall voltage gain decreased to 10 V/V. What must the transconductance g_m of the MOSFET be? If the MOSFET is biased at $I_D = 0.25$ mA, at what overdrive voltage must it be operating?

Related equation: eq. 6

Problem 10 (Sedra and Smith, 2015, w/ permission)

A common-gate amplifier operating with transconductance $g_m = 2$ mA/V and transistor output resistance $r_o = 20 \text{ k}\Omega$ is fed with a signal source having resistance $R_s = 1 \text{ k}\Omega$ and is loaded in a resistance $R_L = 20 \text{ k}\Omega$. Find input resistance R_{in} , output resistance R_{out} , and the voltage gain v_o/v_{sig} (output voltage/signal voltage).

Related equations: eqs. 7 and 8

Problem 11 (Sedra and Smith, 2015, w/ permission)

A common-gate amplifier operating with transconductance $g_m = 2$ mA/V and transistor output resistance $r_o = 20 \text{ k}\Omega$ is fed with a signal source having a Norton equivalent composed of a current signal i_{sig} and a signal source resistance $R_s = 20 \text{ k}\Omega$. The amplifier is loaded in a resistance $R_L = 20 \text{ k}\Omega$. Find the input resistance R_{in} and i_o/i_{sig} , where i_o is the current through the load R_L . If R_L increases by a factor of 10, by what percentage does the current gain change?

Related equation: eq. 7

Problem 12 (Sedra and Smith, 2015, w/ permission)

A common-base amplifier is operating with load resistance $R_L = 10 \text{ k}\Omega$, collector resistance $R_c = 10 \text{ k}\Omega$, and signal-source resistance $R_{sig} = 50 \Omega$. At what current I_c should the transistor be biased for the input resistance R_{in} to equal that of the signal source? What is the resulting overall voltage gain? Assume a common-base current gain $\alpha \approx 1$.

Related equation: eq. 8

Problem 13 (Sedra and Smith, 2015, w/ permission)

What value of load resistance R_{\perp} causes the input resistance of the common-base amplifier to be approximately double the value of emitter resistance r_e ?

Related equation: eq. 9

Problem 14 (Sedra and Smith, 2015, w/ permission)

Show that for a CB amplifier,

$$\frac{R_{\text{out}}}{r_e} \approx 1 + \frac{\beta \left(R_e / r_e \right)}{\beta + 1 + \left(R_e / r_e \right)}$$

Generate a table for output resistance R_{out} as a multiple of transistor emitter resistance r_e with entries for circuit emitter lead resistance $R_e = 0, r_e, 2r_e, 10r_e, (\beta/2)r_e, \beta r_e, and 1000r_e$. Let $\beta = 100$.

Related equation: eq. 10

Problem 15 (Sedra and Smith, 2015, w/ permission)

Consider a MOS cascode amplifier for which the CS and CG transistors are identical and are biased to operate at bias current I_D = 0.15 mA with overdrive voltage V_{OV} = 0.2 V. Also let Early voltage V_A = 1.5 V. Find A_{v1} , A_{v2} , and A_v for two cases:

Problem 5.1: $R_L = 10 \text{ k}\Omega$

Problem 5.2: R_L = 150 kΩ

Problem 16 (Sedra and Smith, 2015, w/ permission)

Consider the cascade amplifier illustrated below with the dc component of the input, $V_1 = 0.7 \text{ V}$, $V_{G2} = 1.0 \text{ V}$, $V_{G3} = 0.8 \text{ V}$, $V_{G4} = 1.1 \text{ V}$, and $V_{DD} =$ 1.8 V. If all devices are matched (i.e., such that conduction parameters $k_{n1} = k_{n2}$ $= k_{p3} = k_{p4}$) and have ideal threshold voltages $|V_t|$ of 0.5 V, what is the overdrive voltage at which the transistors are operating? What is the allowable voltage range at the output?

Problem 17 (Sedra and Smith, 2015, w/ permission)

Suppose the cascade amplifier illustrated in Problem 16 is operated at a current of 0.2 mA with all devices operating at an overdrive voltage $|V_{ov}| = 0.2$ V. All devices have Early voltage $|V_A| = 2$ V. Find g_{m1} (the transconductance of transistor Q_1), the output resistance of the amplifier, R_{on} , and the output resistance of the current source, R_{op} . Also find the overall output resistance and the voltage gain realized.

Problem 18 (Sedra and Smith, 2015, w/ permission)

Reconsider the cascode amplifier introduced in Problem 16, taking $V_l = 0.6$ V as the dc component of the input, $V_{G2} = 0.9$ V, $V_{G3} = 0.4$ V, $V_{G4} = 0.7$ V, and $V_{DD} = 1.3$ V. If all devices are matched, that is, $k_{n1} = k_{n2} = k_{p3} = k_{p4}$, and have equal ideal threshold voltage $|V_t| = 0.4$ V, what is the overdrive voltage at which the four transistors are operating? What is the allowable voltage range at the output?

Problem 19 (Sedra and Smith, 2015, w/ permission)

Design the CMOS cascode amplifier illustrated in Problem 16 for the following specifications: transconductance $g_{m1} = 1 \text{ mA/V}$ and voltage gain $A_v = -280 \text{ V/V}$. Assume that for the available fabrication process, Early voltage $|V'_A| = 5 \text{ V/}\mu\text{m}$ for both NMOS and PMOS devices and process parameter $\mu_n C_{ox} = 4\mu_p C_{ox} = 400 \mu\text{A/V}^2$. Use the same channel length *L* for all devices and operate all four devices at $|V_{OV}| = 0.25 \text{ V}$. Determine the required channel length *L*, the bias current *I*, and the aspect ratio *W/L* for each of the four transistors. Assume that suitable bias voltages have been chosen, and neglect the Early effect in determining the *W/L* ratios.

Problem 20 (Sedra and Smith, 2015, w/ permission)

A CMOS cascode amplifier such as the one illustrated below has identical common-source and common-gate transistors that have aspect ratio $W/L = 5.4 \,\mu\text{m}/0.36 \,\mu\text{m}$ and are biased at $I = 0.2 \,\text{mA}$. The fabrication process has process parameter $\mu_n C_{\text{ox}} = 400 \,\mu\text{A}/\text{V}^2$ and Early voltage $V'_A = 5 \,\text{V}/\mu\text{m}$. At what value of load resistance R_L does the gain become $-100 \,\text{V}/\text{V}$? What is the voltage gain of the common-source stage?

Problem 21

A cascode current source formed of two *pnp* bipolar transistors for which current gain parameter β = 50 and Early voltage V_A = 5 V supplies a current of 0.2 mA. What is the output resistance?

Problem 22

Consider the BJT cascode amplifier illustrated below when biased at a current of 0.2 mA.

Problem 22.1: Assuming that the *npn* transistors have current gain parameter $\beta = 100$ and Early voltage $V_A = 5$ V, and that the *pnp* transistors have $\beta = 50$ and $|V_A| = 4$ V, find the output resistance of the amplifier, R_{on} , the output resistance of the current source, R_{op} . and the voltage gain, A_v . **Problem 22.2:** Show that the maximum voltage gain achieved by the BJT cascode illustrated below is given by

$$\left|A_{\nu,\max}\right| = g_{m1}\left(\beta_2 r_{o2} \parallel \beta_3 r_{o3}\right)$$

Using this relationship, compute $A_{v,max}$ for the amplifier introduced in Problem 22.1.

Problem 23

Consider the BJT cascode amplifier illustrated in Problem 22 for the case all transistors have equal current gain parameter β and transistor output resistance r_o . Show that the voltage gain A_v can be expressed in the form

$$A_{v} = -\frac{1}{2} \frac{|V_{A}|/V_{T}}{(V_{T}/|V_{A}|) + 1/\beta}$$

Evaluate A_v for the case $|V_A| = 5$ V and $\beta = 50$. Note that except for the fact that β depends on *I* as a second-order effect, the gain is independent of the bias current *I*!

ADDITIONAL INFORMATION

Figure 1 Basic transistor circuit configurations.

Table 1 Gain distribution in the MOS cascode for various values of loadresistance R_{L} .

Case	R_L	$R_{\rm in2}$	R_{d1}	A_{v1}	A_{v2}	A_v
1	∞	∞	r _o	$-g_m r_o$	$g_m r_o$	$-(g_m r_o)^2$
2	$(g_m r_o) r_o$	ro	$r_o/2$	$-\frac{1}{2}(g_m r_o)$	$g_m r_o$	$-\frac{1}{2}(g_m r_o)^2$
3	r_o	$\frac{2}{g_m}$	$\frac{2}{g_m}$	-2	$\frac{1}{2}(g_m r_o)$	$-(g_m r_o)$
4	0	$\frac{1}{g_m}$	$\frac{1}{g_m}$	-1	0	0

Equations

1 → Overall voltage gain of a common-source amplifier

$$G_{v} = -g_{m}\left(R_{D} \parallel R_{L}\right)$$

where g_m is device transconductance, R_D is drain resistance, and R_L is load resistance.

 $2 \rightarrow$ Voltage gain in a common-source amplifier with a resistance R_s connected to the source lead

$$G_{v(\text{with added source res.})} = -\frac{g_m(R_D \parallel R_L)}{1 + g_m R_s}$$

where g_m is device transconductance, R_D is drain resistance, R_L is load resistance, and R_s is the added source-lead resistance. **3** \rightarrow Resistance-reflection rule

 $R_{\rm in} = (1 + \beta) (r_e + R_e)$

where β is the BJT current gain parameter, r_e is the emitter resistance, and R_e is the added emitter resistance.

4 \rightarrow Open-circuit voltage gain in a common-emitter amplifier

$$A_{\rm vo} = -\frac{g_m R_C}{1 + g_m R_e}$$

where g_m is transconductance parameter, R_c is collector resistance, and R_e is the added emitter resistance.

5 → Overall voltage gain in a common-emitter amplifier

$$G_{v} = -\beta \frac{R_{C} \parallel R_{L}}{R_{sig} + (1 + \beta)(r_{e} + R_{e})}$$

where β is the BJT current gain parameter, R_c is collector resistance, R_L is load resistance, R_{sig} is the signal-source resistance, r_e is emitter resistance, R_e is added emitter resistance.

6 → Overall voltage gain in a common-gate amplifier

$$G_v = \frac{R_D \parallel R_L}{R_{\rm sig} + \frac{1}{g_m}}$$

where R_D is drain resistance, R_L is load resistance, R_{sig} is signal-source resistance, and g_m is transconductance parameter. **7** \rightarrow Input resistance in a common-gate amplifier

$$R_{\rm in} = \frac{r_o + R_L}{1 + g_m r_o}$$

where r_o is transistor output resistance, R_L is load resistance, and g_m is transconductance parameter.

8 → Overall voltage gain in a common-base amplifier as a function of input resistance

$$G_{v} = \frac{R_{\rm in}}{R_{\rm in} + R_{\rm sig}} g_{m} \left(R_{C} \parallel R_{L} \right)$$

where R_{in} is input resistance, R_{sig} is signal-source resistance, g_m is transconductance parameter, R_c is collector resistance, and R_L is load resistance.

9 → Input resistance in a common-base amplifier

$$R_{\rm in} \approx r_e \frac{r_o + R_L}{r_o + \frac{R_L}{\beta + 1}}$$

where r_o is transistor output resistance, R_{\perp} is load resistance, and β is the BJT current gain parameter.

10 → Approximate output resistance in a common-gate amplifier

$$R_{\text{out}} \approx r_o \left\lfloor 1 + g_m \left(R_e \parallel r_\pi \right) \right\rfloor$$

where r_o is transistor output resistance, g_m is transconductance parameter, R_e is added emitter resistance, and r_{π} is the internal base-emitter resistance.

SOLUTIONS

P.1 Solution

The overall voltage gain G_v of a common-source amplifier is given by equation 1,

$$G_{v} = -g_{m}(R_{D} || R_{L}) = -2.0 \times (10 || 15) = -2.0 \times \left(\frac{10 \times 15}{10 + 15}\right) = \boxed{-12.0 \text{ V/V}}$$

P.2 Solution

Adding a resistance R_s to the source lead decreases the effective transconductance, and by extension the voltage gain, by a factor $1 + g_m R_s$ (see equation 2). If g_{m1} is decreased to 2 mA/V from an initial g_m of 5 mA/V, the resistance connected to the source lead must be

$$g_{m1} = \frac{g_m}{1 + g_m R_s} \rightarrow g_{m1} \left(1 + g_m R_s \right) = g_m$$
$$\therefore g_{m1} + g_{m1} g_m R_s = g_m$$
$$\therefore R_s = \frac{g_m - g_{m1}}{g_m g_{m1}} = \frac{5 - 2}{5 \times 2} = 0.3 \,\mathrm{k\Omega} = \boxed{300 \,\mathrm{\Omega}}$$

P.3 Solution

Noting that $R_L = 15 \text{ k}\Omega$ and $R_D = 2R_L = 30 \text{ k}\Omega$, we can establish the required transconductance from the voltage gain $G_v = -10$,

$$G_{v} = -g_{m} \left(R_{D} \parallel R_{L} \right) = -10 \rightarrow g_{m} = \frac{10}{R_{D} \parallel R_{L}}$$
$$\therefore g_{m} = \frac{10}{30 \parallel 15} = \frac{10}{\frac{30 \times 15}{30 + 15}} = \boxed{1.0 \text{ mA/V}}$$

Referring to the definition of transconductance for a MOSFET, we write

$$g_m = \frac{2I_D}{V_{OV}} \rightarrow I_D = \frac{g_m V_{OV}}{2}$$
$$\therefore I_D = \frac{g_m V_{OV}}{2} = \frac{1.0 \times 0.25}{2} = \boxed{0.125 \text{ mA}}$$

If drain resistance $R_{\rm D}$ is halved to 15 kΩ, the overall voltage gain becomes

$$G_{v} = -g_{m}(R_{D} || R_{L}) = -1.0 \times (15 || 15) = -1.0 \times 7.5 = -7.5 \text{ V/V}$$

P.4 Solution

The overall voltage gain of a CS amplifier in the presence of a source lead resistance is expressed as (equation 2)

$$G_{\nu(\text{with added source res.})} = -\frac{g_m(R_D \parallel R_L)}{1 + g_m R_s} \rightarrow -10 = -\frac{g_m(R_D \parallel R_L)}{1 + g_m \times 0.5}$$
(I)

The overall voltage gain with no added source lead resistance is given by the now obvious relation

$$G_{\nu(\text{no added source res.})} = -g_m(R_D \parallel R_L) = 2G_{\nu(\text{with added source res.})} = -20 \text{ V}$$

Substituting in (I) and solving for transconductance,

$$-10 = \frac{-20}{1+0.5g_m} \to -10 - 5g_m = -20$$
$$\therefore g_m = \frac{20 - 10}{5} = \boxed{2 \text{ mA/V}}$$

Equipped with the value of g_m , the source lead resistance R_s needed to produce $G_v = -16$ V/V easily follows,

$$-16 = -\frac{g_m(R_D || R_L)}{1 + g_m R_s} \to -16 = \frac{-20}{1 + 2R_s}$$

$$\therefore -16 - 32R_s = -20$$

:
$$R_s = \frac{-20 + 16}{-32} = 0.125 \,\mathrm{k\Omega} = \boxed{125 \,\mathrm{\Omega}}$$

P.5 Solution

The transconductance of the device is

$$g_m = \frac{I_C}{V_T} = \frac{0.5}{25 \times 10^{-3}} = 20 \,\mathrm{mA/V}$$

The emitter resistance is then

$$r_e = \frac{1}{g_m} = \frac{1}{20 \times 10^{-3}} = 50\,\Omega$$

The input resistance is calculated to be (equation 3)

$$R_{\rm in} = (1+\beta)(r_e + R_e) = (1+100) \times (0.05+0.25) = 30.3 \,\mathrm{k\Omega}$$

For this simple CE amplifier, the output resistance coincides with the collector resistance,

$$R_c = 12 \,\mathrm{k}\Omega$$

The open-circuit voltage gain is (equation 4)

$$A_{\rm vo} = -\frac{g_m R_C}{1 + g_m R_e} = -\frac{\left(20 \times 10^{-3}\right) \times \left(12 \times 10^3\right)}{1 + \left(20 \times 10^{-3}\right) \times 250} = \boxed{-40 \,\rm V/V}$$

To determine the gain A_v with load resistance, we write

$$A_{v} = A_{vo} \left(\frac{R_{L}}{R_{L} + R_{o}} \right) = -40 \times \left(\frac{12}{12 + 12} \right) = -20 \text{ V/V}$$

As for the overall voltage gain G_v (equation 5),

$$G_{v} = -\beta \frac{R_{c} \parallel R_{L}}{R_{sig} + (1+\beta)(r_{e} + R_{e})} = -100 \times \frac{12 \parallel 12}{10 + (1+100) \times (0.05 + 0.25)} = \boxed{-14.9 \text{ V/V}}$$

If the peak voltage of the sine wave is to be no greater than 5 mV, the corresponding input signal voltage is, at most,

$$\frac{v_{\pi}}{v_i} = \frac{r_e}{r_e + R_e} \quad v_i = \left(\frac{r_e + R_e}{r_e}\right) v_{\pi}$$
$$\therefore v_i = \left(\frac{0.05 + 0.25}{0.05}\right) \times 5 = 30 \,\mathrm{mV}$$

so that, for the allowable signal voltage amplitude \hat{v}_{sig} ,

,

$$\hat{v}_{sig} = \left(\frac{R_{in} + R_{sig}}{R_{in}}\right) v_i = \left(\frac{30.3 + 10}{30.3}\right) \times 30 = \boxed{39.9 \text{ mV}}$$

Lastly, the output voltage signal that appears across the load is

$$\hat{v}_{o} = \hat{v}_{sig} |G_{v}| = 39.9 \times 14.9 = 595 \,\mathrm{mV} = 0.595 \,\mathrm{V}$$

P.6 Solution

Let us first state the usual relationship for overall current gain in a CE configuration (equation 5),

$$G_{v} = -\beta \frac{R_{C} \| R_{L}}{R_{sig} + (1+\beta)(r_{e} + R_{e})} = -\beta \frac{R_{C} \| R_{L}}{R_{sig} + (1+\beta)\left(\frac{V_{T}}{I_{E}} + R_{e}\right)}$$
(I)

Emitter current I_{E} can be determined from the nominal common-base current gain α , namely

$$\alpha = \frac{\beta}{\beta + 1} = \frac{100}{100 + 1} = 0.990$$

so that

$$I_E = \frac{I_C}{\alpha} = \frac{1.0}{0.990} = 1.01 \,\mathrm{mA}$$

9

The overall voltage gain with no added emitter resistance R_e is, substituting in (I),

$$G_{\rm v} = -100 \times \frac{10 \times 10^3}{\left(10 \times 10^3\right) + \left(1 + 100\right) \times \left(\frac{25 \times 10^{-3}}{1.01 \times 10^{-3}} + 0\right)} = -80 \text{ V/V}$$

Now, if β is set to vary between 50 and 150, the corresponding α will vary from 0.98 to 0.99. Current I_{ε} will attain a minimum value of

$$I_{E,\min} = \frac{I_C}{\alpha} = \frac{1.0}{0.990} = 1.01 \,\mathrm{mA}$$

and a maximum value of

$$I_{E,\max} = \frac{I_C}{\alpha} = \frac{1.0}{0.980} = 1.02 \,\mathrm{mA}$$

Taking β = 50, the nominal value of $|G_v|$ without resistance R_e is

$$G_{\rm v} = -50 \times \frac{10 \times 10^3}{\left(10 \times 10^3\right) + \left(1 + 50\right) \times \left(\frac{25 \times 10^{-3}}{1.02 \times 10^{-3}} + 0\right)} = -44.4 \, \text{V/V}$$

while for β = 150,

$$G_{\rm v} = -150 \times \frac{10 \times 10^3}{\left(10 \times 10^3\right) + \left(1 + 150\right) \times \left(\frac{25 \times 10^{-3}}{1.01 \times 10^{-3}} + 0\right)} = -109 \,\rm{V/V}$$

Accordingly, with no added emitter resistance the absolute value of the overall current gain will lie in the interval [44.4, 109] V/V. Now, we aim to find an added emitter resistance R_e that will ensure that the $|G_v|$ be within 20% of its new nominal value $G_{v,nom}$. At the lower limit, we set $|G_v| = 0.8G_{v,nom}$ and write

$$|G_{v}| = 50 \times \frac{10 \times 10^{3}}{(10 \times 10^{3}) + (1 + 50) \times \left(\frac{25 \times 10^{-3}}{1.02 \times 10^{-3}} + R_{e}\right)} = 0.8G_{v,\text{nom}}$$

At the upper limit, with $|G_v| = 1.2G_{v,nom}$,

$$|G_{v}| = 150 \times \frac{10 \times 10^{3}}{(10 \times 10^{3}) + (1 + 150) \times \left(\frac{25 \times 10^{-3}}{1.01 \times 10^{-3}} + R_{e}\right)} = 1.2G_{v,\text{nom}}$$

Dividing one equation by the other and solving for R_e ,

$$\frac{150 \times \frac{10 \times 10^{3}}{(10 \times 10^{3}) + 151 \times (24.8 + R_{e})}}{50 \times \frac{10 \times 10^{3}}{(10 \times 10^{3}) + 51 \times (24.5 + R_{e})}} = \frac{1.2 \text{ Gr,now}}{0.8 \text{ Gr,now}}$$

$$\therefore 3 \times \frac{(10 \times 10^{3}) + 51 \times (24.5 + R_{e})}{(10 \times 10^{3}) + 151 \times (24.5 + R_{e})} = 1.5$$

$$\therefore 3 \times \frac{(10 \times 10^{3}) + 151 \times (24.8 + R_{e})}{(10 \times 10^{3}) + 151 \times (24.8 + R_{e})} = 0.5$$

$$\therefore 11,250 + 51R_{e} = 6870 + 75.5R_{e}$$

$$\therefore R_{e} = \frac{11,250 - 6870}{75.5 - 51} = \boxed{179\Omega}$$

Substituting this R_e into (I) yields the nominal voltage gain

$$G_{v,nom} = -\beta \frac{R_C \parallel R_L}{R_{sig} + (1+\beta)(r_e + R_e)} = -100 \times \frac{10 \times 10^3}{(10 \times 10^3) + (1+100) \times (\frac{25 \times 10^{-3}}{1.01 \times 10^{-3}} + 179)} = \boxed{-32.7 \text{ V/V}}$$

Using the R_e obtained above, we can establish the expected range of

Gv,

$$G_{v} = -50 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right) + \left(1 + 50\right) \times \left(\frac{25 \times 10^{-3}}{1.02 \times 10^{-3}} + 179\right)} = -24.5 \text{ V/V}$$

$$G_{v} = -150 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right) + \left(1 + 150\right) \times \left(\frac{25 \times 10^{-3}}{1.02 \times 10^{-3}} + 179\right)} = -36.8 \text{ V/V}$$

The overall voltage gain is expected to vary between -36.8 V/V and -24.5 V/V.

P.7 Solution

Problem 7.1: The nominal value of G_v is that which corresponds to the device's nominal β , which is 100. Noting that $g_m = I_c/V_T$ and substituting the pertaining variables into G_v , we obtain

$$\left|G_{\nu}\right| = \frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{100} + \frac{1}{\left(\frac{1.0 \times 10^{-3}}{25 \times 10^{-3}}\right)}} = \boxed{80 \text{ V/V}}$$

Problem 7.2: Assuming $|G_v|$ is monotonically increasing with $\beta \in [50, 150]$, we have, at one end,

$$\left|G_{\nu}\right| = \frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{50} + \frac{1}{\left(\frac{1.0 \times 10^{-3}}{25 \times 10^{-3}}\right)}} = \boxed{44.44 \,\mathrm{V/V}}$$

while at the other,

$$|G_{v}| = \frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{150}} + \frac{1}{\left(\frac{1.0 \times 10^{-3}}{25 \times 10^{-3}}\right)} = 109.10 \,\mathrm{V/V}$$

Thus, the overall voltage gain varies from about 44 V/V to about 109 V/V in the range of β-values considered.

Problem 7.3: The nominal value of G_v was calculated to be 80 V/V; if the device is allowed to vary within $\pm 20\%$ of this specification, we have $G_{v,min} = 64$ V/V and $G_{v,max} = 96$ V/V. In one extreme, the corresponding β is

$$\begin{aligned} \left| G_{\nu,\min} \right| &= 64 = \frac{10 \times 10^3}{\frac{10 \times 10^3}{\beta} + \frac{1}{\left(\frac{1.0 \times 10^{-3}}{25 \times 10^{-3}}\right)}} \to 64 = \frac{10,000}{\frac{10,000}{\beta} + 25} \\ &\stackrel{(10,000)}{\longrightarrow} + \frac{1000}{25 \times 10^{-3}} \to 64 = \frac{10,000}{\frac{10,000}{\beta}} \\ &\stackrel{(10,000)}{\longrightarrow} + \frac{25\beta}{\beta} = 10,000 \\ &\stackrel{(10,000)}{\longrightarrow} + \frac{25\beta}{\beta} = 10,000\beta \\ &\stackrel{(10,000)}{\longrightarrow} + \frac{640,000}{8400\beta} = 10,000\beta \\ &\stackrel{(10,000)}{\longrightarrow} + \frac{640,000}{8400} = 76.19 \end{aligned}$$

At the other extreme, using Mathematica to speed things up,

$$\ln[48]:= \text{Solve}\left[96 = \frac{10000}{\frac{10000}{\beta} + \frac{1}{1/25}}, \beta\right]$$

$$\mathsf{Out[48]=} \hspace{0.2cm} \{ \hspace{0.2cm} \{ \hspace{0.2cm} \beta \rightarrow \textbf{126.316} \hspace{0.2cm} \} \hspace{0.2cm} \} \hspace{0.2cm} \}$$

That is, $\beta_{\text{max}} = 126.32$. The allowable range of β is 76.19 $\leq \beta \leq 126.32$. **Problem 7.4:** Let the new nominal G_v be $|G_v|_{\text{nom}}$. With $\beta = 50$ and $|G_v| = 0.8 |G_v|_{\text{nom}}$, we write

$$\frac{\frac{10 \times 10^{3}}{10 \times 10^{3}} + \frac{1}{\left(\frac{I_{C}}{25 \times 10^{-3}}\right)} = 0.8 \left|G_{\nu}\right|_{\text{nom}} \quad \text{(I)}$$

With β = 150 and $|G_v|$ = 1.2 $|G_v|_{nom}$, we have

$$\frac{\frac{10 \times 10^{3}}{10 \times 10^{3}} + \frac{1}{\left(\frac{I_{C}}{25 \times 10^{-3}}\right)} = 1.2 \left|G_{\nu}\right|_{\text{nom}} \text{ (II)}$$

Dividing (II) by (I) and solving for bias current, we get

$$\frac{\frac{10 \times 10^{3}}{10 \times 10^{3}} + \frac{1}{\left(\frac{I_{C}}{25 \times 10^{-3}}\right)}}{\frac{10 \times 10^{3}}{50} + \frac{1}{\left(\frac{I_{C}}{25 \times 10^{-3}}\right)}} = \frac{1.2}{0.8}$$

$$\frac{10 \times 10^{3}}{10 \times 10^{3}} + \frac{1}{\left(\frac{I_{C}}{25 \times 10^{-3}}\right)}$$

$$\ln[52] = \text{Solve}\left[\frac{1.2}{0.8} = \frac{\frac{10000}{150} + \frac{25 \times 10^{-3}}{1c}}{\frac{10000}{50} + \frac{25 \times 10^{-3}}{1c}}, \text{ ic}\right]$$

Out[52]=
$$\{ \{ i_C \rightarrow 0.000125 \} \}$$

That is, the bias current that would have $|G_v|$ fall in a range of $\pm 20\%$ of the new nominal value is $I_c = 0.125$ mA. This new nominal voltage gain is

$$\left|G_{\nu}\right| = \frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{100} + \frac{25}{0.125}} = \boxed{33.33 \,\mathrm{V/V}}$$

P.8 Solution

The input resistance of a typical common-gate amplifier equals the reciprocal of the FET's transconductance:

$$R_{\rm in} = \frac{1}{g_m} = \frac{1}{2.0 \times 10^{-3}} = 500\,\Omega$$

To determine the overall voltage gain, we apply equation 6,

$$G_{v} = \frac{R_{D} \parallel R_{L}}{R_{sig} + \frac{1}{g_{m}}} = \frac{5.0 \parallel 5.0}{0.75 + 0.5} = \frac{\frac{5.0 \times 5.0}{5.0 + 5.0}}{1.25} = \frac{2.5}{1.25} = \boxed{2 \text{ V/V}}$$

Now, using the definition of transconductance, we may write

$$g_m = \sqrt{2k'_n I_{D,1}} = 2.0 \times 10^{-3}$$
 (I)

For the signal-source resistance R_{sig} to match the input resistance R_{in} , we must have

$$R_{\rm sig} = R_{\rm in} = \frac{1}{g_m} \rightarrow g_m = \frac{1}{R_{\rm in}} = \frac{1}{750}$$

 $\therefore \sqrt{2k'_n I_{D,2}} = \frac{1}{750}$ (II)

Dividing (II) by (I), we obtain the ratio

$$\sqrt{\frac{2}{2}} \frac{I_{D,2}}{I_{D,1}} = \frac{\frac{1}{750}}{2.0 \times 10^{-3}} = \frac{\frac{1}{750}}{\frac{1}{500}} = \frac{2}{3}$$

$$\therefore \frac{I_{D,2}}{I_{D,1}} = \left(\frac{2}{3}\right)^2 = \frac{4}{9}$$
$$\therefore \boxed{I_{D,2} = \frac{4}{9}I_{D,1}}$$

That is, the bias current must be multiplied by a factor of four-ninths in order to have the input resistance R_{in} match the signal-source resistance R_{sig} .

P.9 → Solution

Recall that the overall gain of a common-gate amplifier is expressed as (equation 6)

$$G_{v} = \frac{R_{D} \parallel R_{C}}{R_{\text{sig}} + \frac{1}{g_{m}}}$$

At first, $R_{sig} = 100 \Omega$ and $G_v = 12 V/V$, that is,

$$12 = \frac{R_D \parallel R_C}{100 + \frac{1}{g_m}}$$
(I)

After 100 Ω of resistance is added in series to the signal generator, $R_{\rm sig}'$ = 200 Ω and G_{ν}' = 10 V/V, so that

$$10 = \frac{R_D \parallel R_C}{200 + \frac{1}{g_m}}$$
(II)

Dividing (I) by (II) and solving for transconductance,

$$\frac{12}{10} = \frac{\frac{100 + \frac{1}{g_m}}{100 + \frac{1}{g_m}}}{\frac{100 + \frac{1}{g_m}}{200 + \frac{1}{g_m}}} = \frac{200 + \frac{1}{g_m}}{100 + \frac{1}{g_m}}$$
$$\therefore 12 \times \left(100 + \frac{1}{g_m}\right) = 10 \times \left(200 + \frac{1}{g_m}\right)$$
$$\therefore 1200 + \frac{12}{g_m} = 2000 + \frac{10}{g_m}$$
$$\therefore \frac{2}{g_m} = 800$$
$$\therefore g_m = \frac{2}{800} = \frac{1}{400} \text{ A/V} = \frac{1000}{400} \text{ mA/V}$$
$$\therefore g_m = 2.5 \text{ mA/V}$$

If the FET is biased at I_D = 0.25 mA, the overdrive voltage V_{OV} must be

$$g_m = \frac{2I_D}{V_{OV}} \rightarrow V_{OV} = \frac{2I_D}{g_m}$$
$$\therefore V_{OV} = \frac{2 \times 0.25}{2.5} = \boxed{0.2 \text{ V}}$$

P.10 Solution

The input resistance is given by equation 7,

$$R_{\rm in} = \frac{r_o + R_L}{1 + g_m r_o} = \frac{(20 + 20) \times 10^3}{1 + (2.0 \times 10^{-3}) \times (20 \times 10^3)} = \boxed{976\,\Omega}$$

The output resistance is, in turn (equation 8),

$$R_{\text{out}} = r_o + (1 + g_m r_o) R_s = (20 \times 10^3) + [1 + (2.0 \times 10^{-3}) \times (20 \times 10^3)] \times (1.0 \times 10^3) = 61,000 \Omega$$

$$\therefore R_{\text{out}} = 61.0 \,\text{k}\Omega$$

Lastly, the voltage gain is

$$\frac{v_o}{v_{\rm sig}} = \frac{R_L}{R_s + R_{\rm in}} = \frac{20}{1.0 + 0.976} = \boxed{10.1 \,\text{V/V}}$$

P.11 Solution

We have all the data needed to compute input resistance R_{in} (equation 7),

$$R_{\rm in} = \frac{r_o + R_L}{1 + g_m r_o} = \frac{(20 + 20) \times 10^3}{1 + (2.0 \times 10^{-3}) \times (20 \times 10^3)} = \boxed{976\Omega}$$

Now, current gain i_o/i_{sig} can be expressed as

$$\left(\frac{i_o}{i_{\rm sig}}\right)_0 = \frac{R_s}{R_{\rm in} + R_s} = \frac{20}{0.976 + 20} = 0.953 \,\text{A/A}$$

Once the load resistance is increased to $R'_L = 10R_L$, the current gain becomes

$$\left(\frac{i_o}{i_{\rm sig}}\right)_1 = \frac{R_s}{R'_{\rm in} + R_s} = \frac{20 \times 10^3}{\frac{(20 + 200) \times 10^3}{1 + (2.0 \times 10^{-3}) \times (20 \times 10^3)} + 20 \times 10^3} = 0.788 \,\text{A/A}$$

This amounts to a percentage change in current gain given by

$$\Delta = \frac{\left(i_o/i_{\rm sig}\right)_1 - \left(i_o/i_{\rm sig}\right)_0}{\left(i_o/i_{\rm sig}\right)_0} \times 100\% = \frac{0.788 - 0.953}{0.953} \times 100\% = -17.3\%$$

P.12 Solution

First, note that the input resistance R_{in} of a common-base amp can be estimated as

$$R_{\rm in} \approx \frac{1}{g_m}$$

For the input resistance R_{in} to equal the signal-source resistance $R_{sig} = 50 \Omega$, the transconductance must be

$$\frac{1}{g_m} = R_{in} = R_{sig} = 50 \rightarrow g_m = \frac{1}{50} = 20 \text{ mA/V}$$

Using the definition of g_m for a BJT, we establish the collector current

$$g_m = \frac{I_C}{V_T} \rightarrow I_C = g_m V_T$$

$$\therefore I_C = (20 \times 10^{-3}) \times (25 \times 10^{-3}) = 5.0 \times 10^{-4} \text{ A} = \boxed{0.5 \text{ mA}}$$

The overall voltage gain G_v is, in turn (equation 8),

$$G_{v} = \frac{R_{\text{in}}}{R_{\text{in}} + R_{\text{sig}}} g_{m} \left(R_{C} \parallel R_{L} \right) = \frac{50}{50 + 50} \times \left(20 \times 10^{-3} \right) \times \left[\left(10 \times 10^{3} \right) \parallel \left(10 \times 10^{3} \right) \right]$$

$$\therefore \overline{G_{v} = 50 \text{ V/V}}$$

P.13 Solution

First, note that the input resistance of a CB configuration is related to load resistance R_{L} and other resistance components by the expression (equation 9)

$$R_{\rm in} \approx r_e \frac{r_o + R_L}{r_o + \frac{R_L}{\beta + 1}}$$

Setting $R_{in} = 2r_e$ and solving for R_L , we obtain

$$\frac{r_o + R_L}{r_o + \frac{R_L}{\beta + 1}} = 2\gamma_{\delta} \rightarrow r_o + R_L = 2\left(r_o + \frac{R_L}{\beta + 1}\right)$$

$$\therefore r_o + R_L = 2r_o + \frac{2R_L}{\beta + 1}$$

$$\therefore R_L - \frac{2R_L}{\beta + 1} = r_o$$

$$\therefore \frac{R_L(\beta + 1) - 2R_L}{\beta + 1} = r_o$$

$$\therefore R_L(\beta + 1) - 2R_L = (\beta + 1)r_o$$

$$\therefore R_L(\beta - 1) = (\beta + 1)r_o$$

$$\therefore \left[R_L = \left(\frac{\beta + 1}{\beta - 1}\right)r_o\right]$$

Thus, if the load resistance were set to $(\beta + 1)/(\beta - 1)$ times the transistor output resistance r_o , the input resistance R_{in} would become twice the emitter resistance r_e . With $\beta = 50$, for example, the load resistance would have to be 51/49 \approx 1.04 times the value of r_e .

P.14 Solution

Starting with the equation for output resistance R_{out} (equation 10), we write

$$R_{\text{out}} \approx r_o + g_m r_o \left(R_e \parallel r_\pi \right) \to R_{\text{out}} \approx r_o \left[1 + g_m \left(R_e \parallel r_\pi \right) \right]$$
$$\therefore R_{\text{out}} = r_o \left(1 + \frac{\beta}{r_\pi} \frac{R_e r_\pi}{R_e + r_\pi} \right)$$
$$\therefore R_{\text{out}} = r_o \left(1 + \frac{\beta R_e}{R_e + r_\pi} \right)$$
$$\therefore R_{\text{out}} = r_o \left[1 + \frac{\beta R_e}{R_e + (\beta + 1)r_e} \right]$$
$$\therefore \frac{R_{\text{out}}}{r_o} = \left(1 + \frac{\beta R_e}{\beta r_e + r_e + R_e} \right)$$
$$\therefore \frac{R_{\text{out}}}{r_o} = \left[1 + \frac{\beta \left(R_e / r_e \right)}{\beta + 1 + \left(R_e / r_e \right)} \right]$$

The desired relationship has been demonstrated. We proceed to tabulate values of R_{out}/r_o as a function of different emitter lead resistances R_e . One way to go is to apply Mathematica's *Table* function,

 $\ln[524]:= \text{SetPrecision}\left[\text{Table}\left[1 + \frac{100.*r}{101 + r}, \{r, \{0, 1, 2, 10, 50, 100, 1000.\}\}\right], 3\right]$

Out[524]= {1.00, 1.98, 2.94, 10.0, 34.1, 50.8, 91.8}

The results are tabulated below.

R_{e}	R _{out} /r _o
0	1.0
r _e	1.98
2re	2.94
10re	10.0
50re	34.1
100r _e	50.8
1000r _e	91.8

P.15 Solution

Problem 5.1: We first determine the transconductance *g*_{*m*},

$$g_m = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.15}{0.2} = 1.5 \,\mathrm{mA/V}$$

The transistor output resistance ro is given by

$$r_o = \frac{|V_A|}{I_D} = \frac{1.5}{0.15 \times 10^{-3}} = 10 \,\mathrm{k}\Omega$$

Note that $r_0 = R_{\perp} = 10 \text{ k}\Omega$; referring to Table 1, the present system fits into MOS cascode amplifier case 3. The voltage gain of transistor Q_1 is fixed as

$$A_{v1} = -2.0 \,\mathrm{V/V}$$

The voltage gain of Q_2 is, in turn,

$$A_{v2} = \frac{1}{2}g_m r_o = -\frac{1}{2} \times (1.5 \times 10^{-3}) \times (10 \times 10^3) = \overline{7.5 \text{ V/V}}$$

The overall gain can be expressed as the product of the voltage gains of Q_1 and Q_2 ,

$$A_{v} = A_{v1}A_{v2} = -2.0 \times 7.5 = -15 \,\mathrm{V/V}$$

Problem 5.2: Note that

$$(g_m r_o) r_o = (1.5 \times 10^{-3}) \times (10 \times 10^3) \times (10 \times 10^3) = 150 \text{ k}\Omega$$

which happens to be the value of R_L ; accordingly, we are now in gain distribution case 2. The voltage gain of Q_1 then becomes

$$A_{v1} = -\frac{1}{2} (g_m r_o) = -\frac{1}{2} \times \left[(1.5 \times 10^{-3}) \times (10 \times 10^3) \right] = \boxed{-7.5 \,\mathrm{V/V}}$$

while the gain of Q_2 is found as

$$A_{v2} = g_m r_o = (1.5 \times 10^{-3}) \times (10 \times 10^3) = 15 \text{ V/V}$$

Lastly, the overall gain is

$$A_{v} = A_{v1}A_{v2} = -7.5 \times 15 = -113 \,\mathrm{V/V}$$

P.16 Solution

The overdrive voltage Vov for a PMOS transistor is of course

$$V_{OV} = V_{SG} - V_t = V_S - V_G - V_t$$

With reference to transistor Q_4 , we may write

$$V_{OV} = V_{DD} - V_{G,4} - V_t = 1.8 - 1.1 - 0.5 = 0.2 \text{ V}$$

Now, the minimum output voltage is given by

$$V_{o,\min} = V_{D,1} + V_{OV} = \left(V_{G,2} - V_{GS,2}\right) + V_{OV} \quad (I)$$

Noting that

$$V_{GS,1} = V_{GS,2} = V_{SG,3} = V_{SG,4} = V_{OV} + |V_t| = 0.2 + 0.5 = 0.7 \text{ V}$$

we can substitute in (I) to obtain

$$V_{o,\min} = V_{G,2} - V_{GS,2} + V_{OV} = 1.0 - 0.7 + 0.2 = 0.5 \text{ V}$$

In turn, the maximum output voltage is

$$V_{o,\text{max}} = V_{DD} - V_t = 1.8 - 0.5 = 1.3 \text{ V}$$

The allowable voltage range at the output is $0.5 \le V_{\circ} \le 1.3$ V.

P.17 Solution

To find the transconductance of the transistors, simply substitute the operating conditions $I_D = 0.2$ mA and $|V_{OV}| = 0.2$ V into the usual definition,

$$g_{m1} = \frac{2I_D}{V_{OV}} = \frac{2 \times 0.2}{0.2} = \boxed{2.0 \text{ mA/V}}$$

To establish the output resistance R_{on} of the amplifier, we first compute the transistor output resistance r_o , which is assumed to be the same for all four FETs,

$$r_o = \frac{|V_A|}{I_D} = \frac{2.0}{0.2 \times 10^{-3}} = 10 \,\mathrm{k\Omega}$$

Accordingly,

$$R_{on} = (g_{m1}r_{o1})r_{o2} = (2.0 \times 10^{-3}) \times (10 \times 10^{3}) \times (10 \times 10^{3}) = \boxed{200 \,\mathrm{k\Omega}}$$

Likewise, the output resistance R_{op} of the current source is

$$R_{op} = (g_{m1}r_{o3})r_{o4} = (2.0 \times 10^{-3}) \times (10 \times 10^{3}) \times (10 \times 10^{3}) = 200 \,\mathrm{k\Omega}$$

The overall output resistance is then

$$R_o = R_{on} || R_{op} = \frac{200 \times 200}{200 + 200} = \boxed{100 \,\mathrm{k}\Omega}$$

Lastly, we compute the voltage gain realized by the cascode amp,

$$A_{v} = -g_{m1} \left(R_{on} \parallel R_{op} \right) = -\left(2.0 \times 10^{-3} \right) \times \left(100 \times 10^{3} \right) = \boxed{-200 \,\mathrm{V/V}}$$

P.18 Solution

To establish the overdrive voltage of transistor operation, simply subtract the threshold voltage, $|V_t| = 0.4$ V, from the dc component of input voltage, $V_t = 0.6$ V,

$$V_{OV} = V_I - V_t = 0.6 - 0.4 = 0.2 \text{ V}$$

Next, we determine the minimum output voltage on the basis of transistor Q_2 ; that is,

$$V_{o,\min} = V_{S,2} + V_{OV,2}$$
 (I)

Here, V_{s,2} is given by

$$V_{S,2} = V_{G,2} - V_{GS,2} = V_{G,2} - (V_{OV} + V_t) = V_{G,2} - V_{OV} - V_t$$

$$\therefore V_{S,2} = 0.9 - 0.2 - 0.4 = 0.3 \text{ V}$$

Substituting in (I),

$$V_{o,\min} = 0.3 + 0.2 = 0.5 \text{ V}$$

The maximum output voltage, in turn, is calculated on the basis of transistor Q_3 ,

$$V_{o,\max} = V_{S,3} - V_{OV,3}$$
 (II)

To determine source voltage V_{5,3}, we write

$$V_{S,3} = V_{G,3} + V_{GS,3} = V_{G,3} + (V_{OV} + V_t)$$

$$\therefore V_{S,2} = 0.4 + 0.2 + 0.4 = 1.0 \text{ V}$$

Substituting in (II),

$$V_{o,\text{max}} = 1.0 - 0.2 = 0.8 \text{ V}$$

Thus, the output voltage range is $V_o \in [0.5, 0.8]$ V.

P.19 Solution

Using the specified gain $A_v = -280$ V/V and transconductance $g_{m1} = 1$ mA/V, we can estimate the circuit output resistance R_o of the cascode network,

$$A_{\nu} = -g_m R_o \rightarrow R_o = -\frac{A_{\nu}}{g_{m1}}$$
$$\therefore R_o = -\frac{(-280)}{1.0 \times 10^{-3}} = 280 \,\mathrm{k\Omega}$$

Using R_o , we can determine the transistor output resistances r_o , which are assumed equal for the four transistors,

$$R_{o} = \left[\left(g_{o2}r_{o2}\right)r_{o1} \| \left(g_{o3}r_{o3}\right)r_{o4} \right] = \left[\left(1.0 \times 10^{-3}\right) \times r_{o}^{2} \right] \| \left[\left(1.0 \times 10^{-3}\right) \times r_{o}^{2} \right] = 280 \times 10^{3}$$
$$\therefore \frac{\left[\left(1.0 \times 10^{-3}\right) \times r_{o}^{2} \right] \times \left[\left(1.0 \times 10^{-3}\right) \times r_{o}^{2} \right]}{\left(1.0 \times 10^{-3}\right) \times r_{o}^{2} + \left(1.0 \times 10^{-3}\right) \times r_{o}^{2}} = 280 \times 10^{3}$$
$$\therefore r_{o} = \sqrt{\frac{280 \times 10^{3}}{5.0 \times 10^{-4}}} = 23.7 \,\mathrm{k\Omega}$$

Now, recall that r_o for a FET can be expressed as

$$r_o = \frac{V_A}{I} = \frac{V_A'L}{I} \to L = \frac{r_o I}{V_A'}$$

In order to determine the channel length *L*, we require the bias current *I*,

$$g_m = \frac{2I}{V_{OV}} \rightarrow I = \frac{g_m |V_{OV}|}{2}$$
$$\therefore I = \frac{(1.0 \times 10^{-3}) \times 0.25}{2} = \boxed{0.125 \text{ mA}}$$

Thus,

$$L = \frac{r_o I}{V_A'} = \frac{\left(23.7 \times 10^3\right) \times \left(0.125 \times 10^{-3}\right)}{5.0 \times 10^6} = \boxed{0.593\,\mu\text{m}}$$

Next, we write the usual relationship for bias current in a FET and solve for width-to-length ratio,

$$I = \frac{1}{2} \mu_n C_{ox} \left(\frac{W}{L}\right)_1 V_{OV}^2 \rightarrow \left(\frac{W}{L}\right)_1 = \frac{2I}{\mu_n C_{ox} V_{OV}^2}$$
$$\therefore \left(\frac{W}{L}\right)_1 = \frac{2 \times (0.125 \times 10^{-3})}{(400 \times 10^{-6}) \times 0.25^2} = \boxed{10}$$

The width-to-length ratio of the NMOS labeled as 2 is the same as that of Q_1 ,

$$\left(\frac{W}{L}\right)_2 = \left(\frac{W}{L}\right)_1 = 10$$

The width-to-length ratio of the PMOS transistors is, noting that $\mu_p C_{\text{ox}}$ = 100 $\mu\text{A/V}^2\text{,}$

$$I = \frac{1}{2} \mu_p C_{ox} \left(\frac{W}{L}\right)_3 V_{OV}^2 \rightarrow \left(\frac{W}{L}\right)_3 = \frac{2I}{\mu_p C_{ox} V_{OV}^2}$$
$$\therefore \left(\frac{W}{L}\right)_3 = \frac{2 \times (0.125 \times 10^{-3})}{(100 \times 10^{-6}) \times 0.25^2} = \boxed{40}$$

Finally,

$$\left(\frac{W}{L}\right)_4 = \left(\frac{W}{L}\right)_3 = 40$$

P.20 Solution

The information given suffices for us to compute the transconductance g_{m2} ,

$$g_{m2} = \sqrt{2k_p \left(\frac{W}{L}\right) I_D} = \sqrt{2 \times \left(400 \times 10^{-6}\right) \times \frac{5.4}{0.36} \times \left(0.2 \times 10^{-3}\right)} = 1.55 \,\mathrm{mA/V}$$

Also, the device has $0.36-\mu m$ effective length, therefore $V_A = 5 \times 0.36$ = 1.8 V. We proceed to determine the transistor output resistance r_o ,

$$r_o = \frac{V_A}{I_D} = \frac{1.8}{0.2 \times 10^{-3}} = 9 \,\mathrm{k}\Omega$$

and from there the circuit output resistance R_o ,

$$R_o = (g_{m2}r_{o2})r_{o1} = (1.55 \times 10^{-3}) \times (9.0 \times 10^{3}) \times (9.0 \times 10^{3}) = 126 \,\mathrm{k\Omega}$$

100

Now, setting the voltage gain to -100 V/V,

$$A_{v} = -g_{m1} \left(R_{o} \parallel R_{L} \right) = -100 \rightarrow R_{o} \parallel R_{L} = \frac{100}{1.55 \times 10^{-3}}$$
$$\therefore \frac{\left(126 \times 10^{3} \right) R_{L}}{\left(126 \times 10^{3} \right) + R_{L}} = \frac{100}{\underbrace{1.55 \times 10^{-3}}_{=64.5 \times 10^{3}}}$$
$$\therefore \left(126 \times 10^{3} \right) R_{L} = \left(64.5 \times 10^{3} \right) \times \left[\left(126 \times 10^{3} \right) + R_{L} \right]$$
$$\therefore \left(126 \times 10^{3} \right) R_{L} = 8.13 \times 10^{9} + \left(64.5 \times 10^{3} \right) R_{L}$$
$$\therefore R_{L} = \frac{8.13 \times 10^{9}}{126 \times 10^{3} - 64.5 \times 10^{3}} = \underbrace{132 \, \mathrm{k\Omega}}$$

The gain attained will equal -100 V/V if the load resistance utilized is close to 130 k Ω . We finish by determining the voltage gain of the CS amplifier,

$$A_v = g_m r_o = (1.55 \times 10^{-3}) \times (9.0 \times 10^3) = 14.0 \,\mathrm{V/V}$$

P.21 Solution

The output resistance of a BJT cascode is given by

$$R_o \approx (g_{m2}r_{o2})(r_{o1} \parallel r_{\pi 2})$$

Before proceeding, we need the transconductance g_m , the transistor output resistance r_o , and the input resistance r_π . The value of g_m is

$$g_m = \frac{I}{V_T} = \frac{0.2 \times 10^{-3}}{0.025} = 8 \,\mathrm{mA/V}$$

The value of r_o is

$$r_o = \frac{V_A}{I} = \frac{5.0}{0.2 \times 10^{-3}} = 25 \,\mathrm{k}\Omega$$

The value of r_{π} is

$$r_{\pi} = \frac{\beta}{g_m} = \frac{50}{8.0 \times 10^{-3}} = 6.25 \,\mathrm{k\Omega}$$

Gleaning our results, the value of R_o is calculated to be

$$R_{o} = \left\lfloor \left(8.0 \times 10^{-3} \right) \times \left(25 \times 10^{3} \right) \right\rfloor \times \left(25 \times 10^{3} \parallel 6.25 \times 10^{3} \right)$$
$$\therefore R_{o} = 200 \times \frac{\left(25 \times 10^{3} \right) \times \left(6.25 \times 10^{3} \right)}{\left(25 \times 10^{3} \right) + \left(6.25 \times 10^{3} \right)} = 1.0 \times 10^{6} \,\Omega = \boxed{1.0 \,\mathrm{M}\Omega}$$

P.22 Solution

Problem 22.1: The output resistance *R*on of the amplifier is given by

$$R_{\rm on} = (g_{m2}r_{o2})(r_{o1} || r_{\pi 2})$$
(I)

where subscripts 1 and 2 refer to the npn transistors in the cascode. Transconductance g_{m2} is

$$g_{m2} = \frac{I_C}{V_T} = \frac{0.2 \times 10^{-3}}{25 \times 10^{-3}} = 8.0 \,\mathrm{mA/V}$$

The transistor output resistance $r_{o1} = r_{o2}$ is

$$r_{o1} = r_{o2} = \frac{V_A}{I_C} = \frac{5.0}{0.2 \times 10^{-3}} = 25 \,\mathrm{k}\Omega$$

Input resistance $r_{\pi 2}$ is

$$r_{\pi^2} = \frac{\beta_2}{g_{m^2}} = \frac{100}{8.0 \times 10^{-3}} = 12.5 \,\mathrm{k\Omega}$$

Substituting in (I), we get

$$R_{\rm on} = \left[\left(8.0 \times 10^{-3} \right) \times \left(25 \times 10^{3} \right) \right] \times \left[\left(25 \times 10^{3} \right) \| \left(12.5 \times 10^{3} \right) \right]$$

$$\therefore R_{\rm on} = 200 \times \frac{\left(25 \times 10^{3} \right) \times \left(12.5 \times 10^{3} \right)}{\left(25 \times 10^{3} \right) + \left(12.5 \times 10^{3} \right)} = \boxed{1.67 \,\mathrm{M\Omega}}$$

The output resistance R_{op} of the current source is stated by the similar formula

$$R_{\rm op} = (g_{m3}r_{o3})(r_{o4} || r_{\pi3})$$
(II)

Here, transconductance g_{m3} is

$$g_{m3} = \frac{I_C}{V_T} = \frac{0.2 \times 10^{-3}}{25 \times 10^{-3}} = 8.0 \,\mathrm{mA/V}$$

The transistor output resistance $r_{o3} = r_{o4}$ is

$$r_{o3} = r_{o4} = \frac{V_A}{I_C} = \frac{4.0}{0.2 \times 10^{-3}} = 20 \,\mathrm{k}\Omega$$

Input resistance $r_{\pi 3}$ is

$$r_{\pi 3} = \frac{\beta_3}{g_{m3}} = \frac{50}{8.0 \times 10^{-3}} = 6.25 \,\mathrm{k\Omega}$$

Substituting in (II), we get

$$R_{\rm op} = \left[\left(8.0 \times 10^{-3} \right) \times \left(20 \times 10^{3} \right) \right] \times \left[\left(20 \times 10^{3} \right) \| \left(6.25 \times 10^{3} \right) \right]$$

$$\therefore R_{\rm op} = 200 \times \frac{\left(20 \times 10^{3} \right) \times \left(6.25 \times 10^{3} \right)}{\left(20 \times 10^{3} \right) + \left(6.25 \times 10^{3} \right)} = \boxed{762 \,\mathrm{k\Omega}}$$

We proceed to compute voltage gain A_{ν} ,

$$A_{\nu} = -g_{m1} \left(R_{\text{on}} \parallel R_{\text{op}} \right) = -8.0 \times (1670 \parallel 762)$$

$$\therefore A_{\nu} = -8.0 \times \frac{1670 \times 762}{1670 + 762} = \boxed{-4190 \text{ V/V}}$$

Problem 22.2: To show the relationship posited in the problem statement, we write, using the definitions of R_{on} and R_{op} for a BJT cascode amp,

$$A_{v} = -g_{m1} \left(R_{on} \parallel R_{op} \right) = -g_{m1} \left\{ \left[\left(g_{m2} r_{o2} \right) \left(r_{o1} \parallel r_{\pi 2} \right) \right] \parallel \left[\left(g_{m3} r_{o3} \right) \left(r_{o4} \parallel r_{\pi 3} \right) \right] \right\}$$

Here, $r_{o4} || r_{\pi 3} \rightarrow r_{\pi 3}$ because $r_{o4} \gg r_{\pi 3}$ and $r_{o1} || r_{\pi 2} \rightarrow r_{\pi 2}$ because $r_{o1} \gg r_{\pi 2}$, giving

$$A_{v} = -g_{m1} \left\{ \left[\left(g_{m2} r_{o2} \right) r_{\pi 2} \right] \| \left[\left(g_{m3} r_{o3} \right) r_{\pi 3} \right] \right\}$$

$$\therefore A_{v} = -g_{m1} \left\{ \left[\left(g_{m2} r_{\pi 2} \right) r_{o2} \right] \| \left[\left(g_{m3} r_{\pi 3} \right) r_{o3} \right] \right\}$$

Note that the products in parentheses $g_{m2} r_{n2} = \beta_2$ and $g_{m3} r_{n3} = \beta_3$, hence

$$\left|A_{\nu,\max}\right| = -g_{m1}\left(\beta_2 r_{o2} \parallel \beta_3 r_{o3}\right)$$

as we intended to show.

In the case at hand, $g_{m1} = g_{m2} = 8.0$ mA/V, $\beta_2 = 100$, $r_{o2} = 25$ k Ω , $\beta_3 = 50$, and $r_{o3} = 20$ k Ω , so that

$$|A_{\nu,\max}| = -(8.0 \times 10^{-3}) \times \left\{ \left[100 \times (25 \times 10^{3}) \right] \| \left[50 \times (20 \times 10^{3}) \right] \right\}$$

$$\therefore |A_{\nu,\max}| = -(8.0 \times 10^{-3}) \times \left[(2.5 \times 10^{6}) \| (1.0 \times 10^{6}) \right]$$

$$\therefore |A_{\nu,\max}| = -(8.0 \times 10^{-3}) \times \frac{(2.5 \times 10^{6}) \times (1.0 \times 10^{6})}{(2.5 \times 10^{6}) + (1.0 \times 10^{6})} = \boxed{-5710 \text{ V/V}}$$

P.23 Solution

The voltage gain of a BJT cascode is given by

$$A_{v} = -g_{m}\left(R_{\rm on} \parallel R_{\rm op}\right) \ (\mathrm{I})$$

Here, the output resistance R_{on} of the amplifier and the output resistance R_{op} of the current source are given by

$$R_{on} = (g_{m2}r_{o2})(r_{o1} || r_{\pi 2}) = (g_{m}r_{o})(r_{o} || r_{\pi})$$

$$R_{op} = (g_{m3}r_{o3})(r_{o4} || r_{\pi 3}) = (g_{m}r_{o})(r_{o} || r_{\pi})$$

$$\therefore R_{on} = R_{op} = (g_{m}r_{o}) \times \frac{r_{o} \times r_{\pi}}{r_{o} + r_{\pi}} = \frac{I_{C}}{V_{T}} \times \frac{|V_{A}|}{I_{C}} \times \frac{\frac{|V_{A}|}{I_{C}} \times \frac{\beta V_{T}}{I_{C}}}{\frac{|V_{A}|}{I_{C}} + \frac{\beta V_{T}}{I_{C}}}$$

$$\therefore R_{on} = R_{op} = \frac{|V_{A}|}{N_{X}} \times \frac{|V_{A}|\beta N_{X}}{I_{C}(|V_{A}| + \beta V_{T})} = \frac{\beta |V_{A}|^{2}}{I_{C}(|V_{A}| + \beta V_{T})}$$

$$\therefore R_{on} = R_{op} = \frac{\beta |V_{A}|^{2}}{I_{C}\beta |V_{A}| \left(\frac{1}{\beta} + \frac{V_{T}}{|V_{A}|}\right)} = \frac{|V_{A}|}{I_{C}\left(\frac{V_{T}}{|V_{A}| + \frac{1}{\beta}\right)}}$$

Substituting in (I), we get

20

$$A_{v} = -g_{m} \left(R_{on} \parallel R_{op} \right) = -\frac{I_{C}}{V_{T}} \times \left\{ \begin{bmatrix} |V_{A}| \\ I_{C} \left(\frac{V_{T}}{|V_{A}|} + \frac{1}{\beta} \right) \end{bmatrix} \parallel \begin{bmatrix} |V_{A}| \\ I_{C} \left(\frac{V_{T}}{|V_{A}|} + \frac{1}{\beta} \right) \end{bmatrix} \right\}$$
$$\therefore A_{v} = -\frac{\chi_{e}}{V_{T}} \times \frac{|V_{A}|}{2\chi_{e}} \left(\frac{V_{T}}{|V_{A}|} + \frac{1}{\beta} \right) = \begin{bmatrix} -\frac{1}{2} \frac{|V_{A}|/V_{T}}{|V_{A}| + 1/\beta} \end{bmatrix}$$

Substituting $|V_A| = 5$ V and $\beta = 50$ brings to

$$\therefore A_{\nu} = -\frac{1}{2} \frac{5.0/0.025}{(0.025/5.0) + 1/50} = \boxed{-4000 \text{ V/V}}$$

• SEDRA, A.S. and SMITH, K.C. (2015). *Microelectronic Circuits*. 7th edition. Oxford: Oxford University Press.

Was this material helpful to you? If so, please consider donating a small amount to our project at <u>www.montoguequiz.com/donate</u> so we can keep posting free, high-quality materials like this one on a regular basis.