[Montogue

 Quiz EL204Transistor Amplifiers
Lucas Monteiro Nogueira

PROBLEM DISTRIBUTION

Problems	Subject
$1-4$	Common-source configurations
$5-7$	Common-emitter configurations
$8-11$	Common-gate configurations
$12-14$	Common-base configurations
$15-20$	MOS cascode circuits
$21-23$	BJT cascode circuits

$>$ PROBLEMS

M Problem 1 (Sedra and Smith, 2015, w/ permission)

Calculate the overall voltage gain of a common-source amplifier that is fed a $1.2-\mathrm{M} \Omega$ source and connected to a $15-\mathrm{k} \Omega$ load. The MOSFET has transconductance $g_{m}=2 \mathrm{~mA} / \mathrm{V}$, and a drain resistance $R_{D}=10 \mathrm{k} \Omega$ is utilized. Related equation: eq. 1

- Problem 2 (Sedra and Smith, 2015, w/ permission)

A MOSFET connected in the common-source configuration has a transconductance $g_{m}=5 \mathrm{~mA} / \mathrm{V}$. When a resistance R_{s} is connected in the source lead, the effective transconductance is reduced to $2 \mathrm{~mA} / \mathrm{V}$. What do you estimate the value of R_{s} to be?

Related equation: eq. 2
M Problem 3 (Sedra and Smith, 2015, w/ permission)
A common-source amplifier utilizes a MOSFET operated at overdrive voltage $V_{o v}=0.25 \mathrm{~V}$. The amplifier feeds a load resistance $R_{L}=15 \mathrm{k} \Omega$. The designer selects a drain resistance $R_{D}=2 R_{L}$. If it is required to realize an overall voltage gain G_{v} of $-10 \mathrm{~V} / \mathrm{V}$, what transconductance g_{m} is needed? Also specify the bias current I_{D}. If, to increase the output signal swing, R_{D} is reduced to $R_{D}=R_{L}$, what does G_{v} become?

Related equation: eq. 1
M Problem 4 (Sedra and Smith, 2015, w/ permission)
The overall voltage gain of a CS amplifier with a resistance $R_{s}=0.5 \mathrm{k} \Omega$ in the source lead was measured and found to be $-10 \mathrm{~V} / \mathrm{V}$. When R_{s} was shorted, but the circuit operation remained linear, the gain doubled. What must the transconductance g_{m} be? What value of R_{s} is needed to obtain an overall voltage gain to $-5 \mathrm{~V} / \mathrm{V}$?

Related equation: eq. 2
M Problem 5 (Sedra and Smith, 2015, w/ permission)
A common-emitter amplifier utilizes a BJT with $\beta=100$ biased at collector current $I_{C}=0.5 \mathrm{~mA}$ and has a collector resistance $R_{C}=12 \mathrm{k} \Omega$ and is connected to an emitter lead resistance $R_{e}=250 \Omega$. Find the input resistance $R_{i n}$, the open-circuit voltage gain $A_{v o}$, and the output lead resistance R_{0}. If the amplifier is fed with a signal source having a resistance of $10 \mathrm{k} \Omega$, and a load resistance $R_{L}=12 \mathrm{k} \Omega$ is connected to the output terminal, find the resulting gain A_{v} with load resistance and the overall voltage gain G_{v}. If the peak voltage of the sine wave appearing between base and emitter is to be limited to 5 mV , what signal amplitude $\hat{v}_{\text {sig }}$ is allowed, and what output voltage signal appears across the load?

Related equations: eqs. 3, 4, and 5

Problem 6 (Sedra and Smith, 2015, w/ permission)
Inclusion of an emitter resistance R_{e} reduces the variability of the gain G_{v} due to the inevitable wide variance in the value of current gain parameter β. Consider a common-emitter amplifier operating between a signal source with resistance $R_{\text {sig }}=10 \mathrm{k} \Omega$ and a total collector resistance $R_{C} \| R_{L}$ of $10 \mathrm{k} \Omega$. The BJT is biased at collector current $I_{C}=1 \mathrm{~mA}$ and its β is specified to be nominally 100 but can lie in the range of 50 to 150 . First determine the nominal value and the range of overall voltage gain $\left|G_{v}\right|$ without resistance R_{e}. Then select a value of R_{e} that will ensure that $\left|G_{v}\right|$ be within $\pm 20 \%$ of its new nominal value. Specify the value of R_{e}, the new nominal value of $\left|G_{v}\right|$, and the expected range of $\left|G_{v}\right|$.

Related equation: eq. 5

M Problem 7 (Sedra and Smith, 2015, w/ permission)

In this problem we investigate the effect of the inevitable variability of β on the realized gain of the common-emitter amplifier. For this purpose, we write the overall voltage gain in a modified form of equation 5 ,

$$
\left|G_{v}\right|=\frac{R_{L}^{\prime}}{\frac{R_{\mathrm{sig}}}{\beta}+\frac{1}{g_{m}}}
$$

where $R_{L}^{\prime}=R_{L} \| R_{C}$. Consider the case $R_{L}^{\prime}=10 \mathrm{k} \Omega$ and $R_{\text {sig }}=10 \mathrm{k} \Omega$, and let the BJT be biased at $I_{c}=1 \mathrm{~mA}$. The BJT has a nominal β of 100 . Use 25 mV as the thermal voltage.
Problem 7.1: What is the nominal value of $\left|G_{v}\right|$?
Problem 7.2: If β can be anywhere between 50 and 150 , what is the corresponding range of $\left|G_{V}\right|$?
Problem 7.3: If in a particular design, it is required to maintain $\left|G_{v}\right|$ within $\pm 20 \%$ of its nominal value, what is the maximum allowable range of β ?
Problem 7.4: If it is not possible to restrict β to the range found in Problem 7.3, and the designer has to contend with β in the range 50 to 150 , what value of bias current Ic would result in $\left|G_{v}\right|$ falling in $\left|G_{v}\right|$ falling in a range of $\pm 20 \%$ of a new nominal value? What is the nominal value of $\left|G_{v}\right|$ in this case?

Related equation: eq. 5
M Problem 8 (Razavi, 2008, w/ permission)
A common-gate amplifier using an NMOS transistor for which $g_{m}=2$ mA / V has a $5-\mathrm{k} \Omega$ drain resistance R_{D} and a $5-\mathrm{k} \Omega$ load resistance $R L$. The amplifier is driven by a voltage source having a $750-\Omega$ resistance. What is the input resistance of the amplifier? What is the overall voltage gain G_{v} ? By what factor must the bias current l_{0} of the MOSFET be changed so that input resistance $R_{\text {in }}$ matches signal-source resistance $R_{\text {sig }}$?

Related equation: eq. 6

- Problem 9 (Sedra and Smith, 2015, w/ permission)

A common-gate amplifier when fed with a signal source having $R_{\text {sig }}=$ 100Ω is found to have an overall voltage gain of $12 \mathrm{~V} / \mathrm{V}$. When a $100-\Omega$ resistance was added in series with the signal generator the overall voltage gain decreased to $10 \mathrm{~V} / \mathrm{V}$. What must the transconductance g_{m} of the MOSFET be? If the MOSFET is biased at $I_{D}=0.25 \mathrm{~mA}$, at what overdrive voltage must it be operating?

Related equation: eq. 6
M Problem 10 (Sedra and Smith, 2015, w/ permission)
A common-gate amplifier operating with transconductance $g_{m}=2$ mA / V and transistor output resistance $r_{o}=20 \mathrm{k} \Omega$ is fed with a signal source having resistance $R_{s}=1 \mathrm{k} \Omega$ and is loaded in a resistance $R_{L}=20 \mathrm{k} \Omega$. Find input resistance $R_{\text {in }}$, output resistance $R_{\text {out }}$, and the voltage gain $v_{o} / v_{\text {sig }}$ (output voltage/signal voltage).

Related equations: eqs. 7 and 8

Problem 11

 (Sedra and Smith, 2015, w/ permission)A common-gate amplifier operating with transconductance $g_{m}=2$ mA / V and transistor output resistance $r_{0}=20 \mathrm{k} \Omega$ is fed with a signal source having a Norton equivalent composed of a current signal $i_{\text {sig }}$ and a signal source resistance $R_{s}=20 \mathrm{k} \Omega$. The amplifier is loaded in a resistance $R_{L}=20 \mathrm{k} \Omega$. Find the input resistance $R_{\text {in }}$ and $i_{o} / i_{\text {sig }}$, where i_{o} is the current through the load R_{L}. If R_{L} increases by a factor of 10 , by what percentage does the current gain change?

Related equation: eq. 7
M Problem 12 (Sedra and Smith, 2015, w/ permission)
A common-base amplifier is operating with load resistance $R_{L}=10 \mathrm{k} \Omega$, collector resistance $R_{c}=10 \mathrm{k} \Omega$, and signal-source resistance $R_{\text {sig }}=50 \Omega$. At what current I_{c} should the transistor be biased for the input resistance $R_{i n}$ to equal that of the signal source? What is the resulting overall voltage gain? Assume a common-base current gain $\alpha \approx 1$.

Related equation: eq. 8
N Problem 13 (Sedra and Smith, 2015, w/ permission)
What value of load resistance $R_{\llcorner }$causes the input resistance of the common-base amplifier to be approximately double the value of emitter resistance r_{e} ?

Related equation: eq. 9
M Problem 14 (Sedra and Smith, 2015, w/ permission)
Show that for a CB amplifier,

$$
\frac{R_{\text {out }}}{r_{e}} \approx 1+\frac{\beta\left(R_{e} / r_{e}\right)}{\beta+1+\left(R_{e} / r_{e}\right)}
$$

Generate a table for output resistance $R_{\text {out }}$ as a multiple of transistor emitter resistance r_{e} with entries for circuit emitter lead resistance $R_{e}=0, r_{e}$, $2 r_{e}, 10 r_{e},(\beta / 2) r_{e}, \beta r_{e}$, and $1000 r_{e}$. Let $\beta=100$.

Related equation: eq. 10

M Problem 15 (Sedra and Smith, 2015, w/ permission)

Consider a MOS cascode amplifier for which the CS and CG transistors are identical and are biased to operate at bias current $I_{D}=0.15 \mathrm{~mA}$ with overdrive voltage $\mathrm{V}_{o v}=0.2 \mathrm{~V}$. Also let Early voltage $\mathrm{V}_{\mathrm{A}}=1.5 \mathrm{~V}$. Find $A_{v}, A_{v 2}$, and A_{ν} for two cases:
Problem 5.1: $R_{L}=10 \mathrm{k} \Omega$
Problem 5.2: $R_{L}=150 \mathrm{k} \Omega$
M Problem 16 (Sedra and Smith, 2015, w/ permission)
Consider the cascade amplifier illustrated below with the dc component of the input, $V_{1}=0.7 \mathrm{~V}, V_{G 2}=1.0 \mathrm{~V}, V_{G 3}=0.8 \mathrm{~V}, V_{G 4}=1.1 \mathrm{~V}$, and $V_{D D}=$ 1.8 V . If all devices are matched (i.e., such that conduction parameters $k_{n 1}=k_{n 2}$ $\left.=k_{p 3}=k_{p 4}\right)$ and have ideal threshold voltages $\left|V_{t}\right|$ of 0.5 V , what is the overdrive voltage at which the transistors are operating? What is the allowable voltage range at the output?

N Problem 17 (Sedra and Smith, 2015, w/ permission)
Suppose the cascade amplifier illustrated in Problem 16 is operated at a current of 0.2 mA with all devices operating at an overdrive voltage $\left|\mathrm{V}_{\mathrm{ov}}\right|=$ 0.2 V . All devices have Early voltage $\left|V_{A}\right|=2 \mathrm{~V}$. Find $g_{m 1}$ (the transconductance of transistor Q_{1}), the output resistance of the amplifier, $R_{\text {on }}$, and the output resistance of the current source, $R_{o p}$. Also find the overall output resistance and the voltage gain realized.
M Problem 18 (Sedra and Smith, 2015, w/ permission)
Reconsider the cascode amplifier introduced in Problem 16, taking $V_{I}=$ 0.6 V as the dc component of the input, $V_{G 2}=0.9 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 3}=0.4 \mathrm{~V}, \mathrm{~V}_{\mathrm{G} 4}=0.7 \mathrm{~V}$, and $V_{D D}=1.3 \mathrm{~V}$. If all devices are matched, that is, $k_{n 1}=k_{n 2}=k_{p 3}=k_{p 4}$, and have equal ideal threshold voltage $\left|V_{t}\right|=0.4 \mathrm{~V}$, what is the overdrive voltage at which the four transistors are operating? What is the allowable voltage range at the output?

N Problem 19 (Sedra and Smith, 2015, w/ permission)

Design the CMOS cascode amplifier illustrated in Problem 16 for the following specifications: transconductance $g_{m l}=1 \mathrm{~mA} / \mathrm{V}$ and voltage gain $A_{v}=$ $-280 \mathrm{~V} / \mathrm{V}$. Assume that for the available fabrication process, Early voltage $\left|V_{A}^{\prime}\right|=5 \mathrm{~V} / \mu \mathrm{m}$ for both NMOS and PMOS devices and process parameter $\mu_{n} C_{o x}$ $=4 \mu_{p} C_{o x}=400 \mu \mathrm{~A} / \mathrm{V}^{2}$. Use the same channel length L for all devices and operate all four devices at $\left|V_{o v}\right|=0.25 \mathrm{~V}$. Determine the required channel length L, the bias current I, and the aspect ratio W / L for each of the four transistors. Assume that suitable bias voltages have been chosen, and neglect the Early effect in determining the W / L ratios.

N Problem 20 (Sedra and Smith, 2015, w/ permission)

A CMOS cascode amplifier such as the one illustrated below has identical common-source and common-gate transistors that have aspect ratio $W / L=5.4 \mu \mathrm{~m} / 0.36 \mu \mathrm{~m}$ and are biased at $I=0.2 \mathrm{~mA}$. The fabrication process has process parameter $\mu_{n} C_{o x}=400 \mu \mathrm{~A} / \mathrm{V}^{2}$ and Early voltage $V_{A}^{\prime}=5$ $\mathrm{V} / \mu \mathrm{m}$. At what value of load resistance $R_{\llcorner }$does the gain become $-100 \mathrm{~V} / \mathrm{V}$? What is the voltage gain of the common-source stage?

M Problem 21

A cascode current source formed of two pnp bipolar transistors for which current gain parameter $\beta=50$ and Early voltage $V_{A}=5 \mathrm{~V}$ supplies a current of 0.2 mA . What is the output resistance?

Problem 22

Consider the BJT cascode amplifier illustrated below when biased at a current of 0.2 mA .
Problem 22.1: Assuming that the $n p n$ transistors have current gain parameter $\beta=100$ and Early voltage $V_{A}=5 \mathrm{~V}$, and that the pnp transistors have $\beta=50$ and $\left|V_{A}\right|=4 \mathrm{~V}$, find the output resistance of the amplifier, $R_{\text {on }}$, the output resistance of the current source, $R_{o p}$. and the voltage gain, A_{v}.
Problem 22.2: Show that the maximum voltage gain achieved by the BJT cascode illustrated below is given by

$$
\left|A_{v, \max }\right|=g_{m 1}\left(\beta_{2} r_{o 2} \| \beta_{3} r_{o 3}\right)
$$

Using this relationship, compute $A_{v, \text { max }}$ for the amplifier introduced in Problem 22.1.

Problem 23

Consider the BJT cascode amplifier illustrated in Problem 22 for the case all transistors have equal current gain parameter β and transistor output resistance r_{o}. Show that the voltage gain A_{v} can be expressed in the form

$$
A_{v}=-\frac{1}{2} \frac{\left|V_{A}\right| / V_{T}}{\left(V_{T} /\left|V_{A}\right|\right)+1 / \beta}
$$

Evaluate A_{v} for the case $\left|V_{A}\right|=5 \mathrm{~V}$ and $\beta=50$. Note that except for the fact that β depends on I as a second-order effect, the gain is independent of the bias current I!

ADDITIONAL INFORMATION

Figure 1 Basic transistor circuit configurations.

Table 1 Gain distribution in the MOS cascode for various values of load resistance R_{L}.

Case	R_{L}	$R_{\text {in } 2}$	$R_{d 1}$	$A_{v 1}$	$A_{v 2}$	A_{v}
1	∞	∞	r_{o}	$-g_{m} r_{o}$	$g_{m} r_{o}$	$-\left(g_{m} r_{o}\right)^{2}$
2	$\left(g_{m} r_{o}\right) r_{o}$	r_{o}	$r_{o} / 2$	$-\frac{1}{2}\left(g_{m} r_{o}\right)$	$g_{m} r_{o}$	$-\frac{1}{2}\left(g_{m} r_{o}\right)^{2}$
3	r_{o}	$\frac{2}{g_{m}}$	$\frac{2}{g_{m}}$	-2	$\frac{1}{2}\left(g_{m} r_{o}\right)$	$-\left(g_{m} r_{o}\right)$
4	0	$\underline{g_{m}}$	$\frac{1}{g_{m}}$	-1	0	0

Notation:

R_{L} is the load resistance;
$R_{\text {in2 }}$ is the input resistance of the CG transistor Q_{2};
$R_{d 1}$ is the parallel resistance of $r_{o 1}$ (the transistor output resistance of Q_{1}) and $R_{\text {in } 2}$ (the input resistance of Q_{2});
$A_{v 1}$ is the voltage gain of Q_{1};
$A_{v 2}$ is the voltage gain of Q_{2};
A_{v} is the product of voltage gains $A_{v 1}$ and $A_{v 2}$;

Equations

$1 \rightarrow$ Overall voltage gain of a common-source amplifier

$$
G_{v}=-g_{m}\left(R_{D} \| R_{L}\right)
$$

where g_{m} is device transconductance, R_{D} is drain resistance, and R_{L} is load resistance.
$\mathbf{2} \rightarrow$ Voltage gain in a common-source amplifier with a resistance R_{S} connected to the source lead

$$
G_{v(\text { with added source res. })}=-\frac{g_{m}\left(R_{D} \| R_{L}\right)}{1+g_{m} R_{s}}
$$

where g_{m} is device transconductance, R_{D} is drain resistance, R_{L} is load resistance, and R_{s} is the added source-lead resistance.
$3 \rightarrow$ Resistance-reflection rule

$$
R_{\mathrm{in}}=(1+\beta)\left(r_{e}+R_{e}\right)
$$

where β is the BJT current gain parameter, r_{e} is the emitter resistance, and R_{e} is the added emitter resistance.
$4 \rightarrow$ Open-circuit voltage gain in a common-emitter amplifier

$$
A_{\mathrm{vo}}=-\frac{g_{m} R_{C}}{1+g_{m} R_{e}}
$$

where g_{m} is transconductance parameter, R_{c} is collector resistance, and R_{e} is the added emitter resistance.
$5 \rightarrow$ Overall voltage gain in a common-emitter amplifier

$$
G_{\mathrm{v}}=-\beta \frac{R_{C} \| R_{L}}{R_{\mathrm{sig}}+(1+\beta)\left(r_{e}+R_{e}\right)}
$$

where β is the BJT current gain parameter, R_{c} is collector resistance, R_{L} is load resistance, $R_{\text {sig }}$ is the signal-source resistance, r_{e} is emitter resistance, R_{e} is added emitter resistance.
$6 \rightarrow$ Overall voltage gain in a common-gate amplifier

$$
G_{v}=\frac{R_{D} \| R_{L}}{R_{\mathrm{sig}}+\frac{1}{g_{m}}}
$$

where R_{D} is drain resistance, R_{L} is load resistance, $R_{\text {sig }}$ is signal-source resistance, and g_{m} is transconductance parameter.
$7 \rightarrow$ Input resistance in a common-gate amplifier

$$
R_{\mathrm{in}}=\frac{r_{o}+R_{L}}{1+g_{m} r_{o}}
$$

where r_{o} is transistor output resistance, R_{L} is load resistance, and g_{m} is transconductance parameter.
$\mathbf{8} \rightarrow$ Overall voltage gain in a common-base amplifier as a function of input resistance

$$
G_{v}=\frac{R_{\mathrm{in}}}{R_{\mathrm{in}}+R_{\mathrm{sig}}} g_{m}\left(R_{C} \| R_{L}\right)
$$

where $R_{\text {in }}$ is input resistance, $R_{\text {sig }}$ is signal-source resistance, g_{m} is transconductance parameter, R_{C} is collector resistance, and R_{L} is load resistance.
$9 \rightarrow$ Input resistance in a common-base amplifier

$$
R_{\mathrm{in}} \approx r_{e} \frac{r_{o}+R_{L}}{r_{o}+\frac{R_{L}}{\beta+1}}
$$

where r_{o} is transistor output resistance, R_{L} is load resistance, and β is the BJT current gain parameter.
$10 \rightarrow$ Approximate output resistance in a common-gate amplifier

$$
R_{\mathrm{out}} \approx r_{o}\left[1+g_{m}\left(R_{e} \| r_{\pi}\right)\right]
$$

where r_{o} is transistor output resistance, g_{m} is transconductance parameter, R_{e} is added emitter resistance, and r_{π} is the internal base-emitter resistance.

SOLUTIONS

P. $1 \Rightarrow$ Solution

The overall voltage gain G_{v} of a common-source amplifier is given by equation 1 ,

$$
G_{v}=-g_{m}\left(R_{D} \| R_{L}\right)=-2.0 \times(10 \| 15)=-2.0 \times\left(\frac{10 \times 15}{10+15}\right)=-12.0 \mathrm{~V} / \mathrm{V}
$$

P. $2 \Rightarrow$ Solution

Adding a resistance R_{s} to the source lead decreases the effective transconductance, and by extension the voltage gain, by a factor $1+g_{m} R_{s}$ (see equation 2). If $g_{m l}$ is decreased to $2 \mathrm{~mA} / \mathrm{V}$ from an initial g_{m} of $5 \mathrm{~mA} / \mathrm{V}$, the resistance connected to the source lead must be

$$
\begin{gathered}
g_{m 1}=\frac{g_{m}}{1+g_{m} R_{s}} \rightarrow g_{m 1}\left(1+g_{m} R_{s}\right)=g_{m} \\
\quad \therefore g_{m 1}+g_{m 1} g_{m} R_{s}=g_{m} \\
\therefore R_{s}=\frac{g_{m}-g_{m 1}}{g_{m} g_{m 1}}=\frac{5-2}{5 \times 2}=0.3 \mathrm{k} \Omega=300 \Omega
\end{gathered}
$$

P. $3 \rightarrow$ Solution

Noting that $R_{L}=15 \mathrm{k} \Omega$ and $R_{D}=2 R_{L}=30 \mathrm{k} \Omega$, we can establish the required transconductance from the voltage gain $G_{v}=-10$,

$$
\begin{gathered}
G_{v}=-g_{m}\left(R_{D} \| R_{L}\right)=-10 \rightarrow g_{m}=\frac{10}{R_{D} \| R_{L}} \\
\therefore g_{m}=\frac{10}{30 \| 15}=\frac{10}{\frac{30 \times 15}{30+15}}=1.0 \mathrm{~mA} / \mathrm{V}
\end{gathered}
$$

Referring to the definition of transconductance for a MOSFET, we write

$$
\begin{gathered}
g_{m}=\frac{2 I_{D}}{V_{O V}} \rightarrow I_{D}=\frac{g_{m} V_{O V}}{2} \\
\therefore I_{D}=\frac{g_{m} V_{O V}}{2}=\frac{1.0 \times 0.25}{2}=0.125 \mathrm{~mA}
\end{gathered}
$$

If drain resistance R_{D} is halved to $15 \mathrm{k} \Omega$, the overall voltage gain becomes

$$
G_{v}=-g_{m}\left(R_{D} \| R_{L}\right)=-1.0 \times(15 \| 15)=-1.0 \times 7.5=-7.5 \mathrm{~V} / \mathrm{V}
$$

P. $4 \Rightarrow$ Solution

The overall voltage gain of a CS amplifier in the presence of a source lead resistance is expressed as (equation 2)

$$
\begin{equation*}
G_{v(\text { with added source res. })}=-\frac{g_{m}\left(R_{D} \| R_{L}\right)}{1+g_{m} R_{s}} \rightarrow-10=-\frac{g_{m}\left(R_{D} \| R_{L}\right)}{1+g_{m} \times 0.5} \tag{I}
\end{equation*}
$$

The overall voltage gain with no added source lead resistance is given by the now obvious relation

$$
G_{v(\text { no added source res. })}=-g_{m}\left(R_{D} \| R_{L}\right)=2 G_{v(\text { with added source res. })}=-20 \mathrm{~V}
$$

Substituting in (I) and solving for transconductance,

$$
\begin{gathered}
-10=\frac{-20}{1+0.5 g_{m}} \rightarrow-10-5 g_{m}=-20 \\
\therefore g_{m}=\frac{20-10}{5}=2 \mathrm{~mA} / \mathrm{V}
\end{gathered}
$$

Equipped with the value of g_{m}, the source lead resistance R_{s} needed to produce $G_{v}=-16 \mathrm{~V} / \mathrm{V}$ easily follows,

$$
\begin{gathered}
-16=-\frac{g_{m}\left(R_{D} \| R_{L}\right)}{1+g_{m} R_{s}} \rightarrow-16=\frac{-20}{1+2 R_{s}} \\
\therefore-16-32 R_{s}=-20
\end{gathered}
$$

$$
\therefore R_{s}=\frac{-20+16}{-32}=0.125 \mathrm{k} \Omega=125 \Omega
$$

P. $5 \Rightarrow$ Solution

The transconductance of the device is

$$
g_{m}=\frac{I_{C}}{V_{T}}=\frac{0.5}{25 \times 10^{-3}}=20 \mathrm{~mA} / \mathrm{V}
$$

The emitter resistance is then

$$
r_{e}=\frac{1}{g_{m}}=\frac{1}{20 \times 10^{-3}}=50 \Omega
$$

The input resistance is calculated to be (equation 3)

$$
R_{\mathrm{in}}=(1+\beta)\left(r_{e}+R_{e}\right)=(1+100) \times(0.05+0.25)=30.3 \mathrm{k} \Omega
$$

For this simple CE amplifier, the output resistance coincides with the collector resistance,

$$
R_{C}=12 \mathrm{k} \Omega
$$

The open-circuit voltage gain is (equation 4)

$$
A_{\mathrm{vo}}=-\frac{g_{m} R_{C}}{1+g_{m} R_{e}}=-\frac{\left(20 \times 10^{-3}\right) \times\left(12 \times 10^{3}\right)}{1+\left(20 \times 10^{-3}\right) \times 250}=-40 \mathrm{~V} / \mathrm{V}
$$

To determine the gain A_{v} with load resistance, we write

$$
A_{\mathrm{v}}=A_{v o}\left(\frac{R_{L}}{R_{L}+R_{o}}\right)=-40 \times\left(\frac{12}{12+12}\right)=-20 \mathrm{~V} / \mathrm{V}
$$

As for the overall voltage gain G_{v} (equation 5),

$$
G_{\mathrm{v}}=-\beta \frac{R_{C} \| R_{L}}{R_{\mathrm{sig}}+(1+\beta)\left(r_{e}+R_{e}\right)}=-100 \times \frac{12 \| 12}{10+(1+100) \times(0.05+0.25)}=-14.9 \mathrm{~V} / \mathrm{V}
$$

If the peak voltage of the sine wave is to be no greater than 5 mV , the corresponding input signal voltage is, at most,

$$
\begin{aligned}
& \frac{v_{\pi}}{v_{i}}=\frac{r_{e}}{r_{e}+R_{e}} v_{i}=\left(\frac{r_{e}+R_{e}}{r_{e}}\right) v_{\pi} \\
& \therefore v_{i}=\left(\frac{0.05+0.25}{0.05}\right) \times 5=30 \mathrm{mV}
\end{aligned}
$$

so that, for the allowable signal voltage amplitude $\hat{v}_{\text {sig }}$,

$$
\hat{v}_{\text {sig }}=\left(\frac{R_{\text {in }}+R_{\text {sig }}}{R_{\text {in }}}\right) v_{i}=\left(\frac{30.3+10}{30.3}\right) \times 30=39.9 \mathrm{mV}
$$

Lastly, the output voltage signal that appears across the load is

$$
\hat{v}_{\mathrm{o}}=\hat{v}_{\mathrm{sig}}\left|G_{v}\right|=39.9 \times 14.9=595 \mathrm{mV}=0.595 \mathrm{~V}
$$

P. $6 \Rightarrow$ Solution

Let us first state the usual relationship for overall current gain in a CE configuration (equation 5),

$$
\begin{equation*}
G_{\mathrm{v}}=-\beta \frac{R_{C} \| R_{L}}{R_{\mathrm{sig}}+(1+\beta)\left(r_{e}+R_{e}\right)}=-\beta \frac{R_{C} \| R_{L}}{R_{\mathrm{sig}}+(1+\beta)\left(\frac{V_{T}}{I_{E}}+R_{e}\right)} \tag{I}
\end{equation*}
$$

Emitter current I_{E} can be determined from the nominal common-base current gain α, namely

$$
\alpha=\frac{\beta}{\beta+1}=\frac{100}{100+1}=0.990
$$

so that

$$
I_{E}=\frac{I_{C}}{\alpha}=\frac{1.0}{0.990}=1.01 \mathrm{~mA}
$$

The overall voltage gain with no added emitter resistance R_{e} is, substituting in (I),

$$
G_{v}=-100 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+(1+100) \times\left(\frac{25 \times 10^{-3}}{1.01 \times 10^{-3}}+0\right)}=-80 \mathrm{~V} / \mathrm{V}
$$

Now, if β is set to vary between 50 and 150, the corresponding α will vary from 0.98 to 0.99 . Current I_{E} will attain a minimum value of

$$
I_{E, \min }=\frac{I_{C}}{\alpha}=\frac{1.0}{0.990}=1.01 \mathrm{~mA}
$$

and a maximum value of

$$
I_{E, \max }=\frac{I_{C}}{\alpha}=\frac{1.0}{0.980}=1.02 \mathrm{~mA}
$$

Taking $\beta=50$, the nominal value of $\left|G_{v}\right|$ without resistance R_{e} is

$$
G_{\mathrm{v}}=-50 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+(1+50) \times\left(\frac{25 \times 10^{-3}}{1.02 \times 10^{-3}}+0\right)}=-44.4 \mathrm{~V} / \mathrm{V}
$$

while for $\beta=150$,

$$
G_{\mathrm{v}}=-150 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+(1+150) \times\left(\frac{25 \times 10^{-3}}{1.01 \times 10^{-3}}+0\right)}=-109 \mathrm{~V} / \mathrm{V}
$$

Accordingly, with no added emitter resistance the absolute value of the overall current gain will lie in the interval [44.4, 109] V/V. Now, we aim to find an added emitter resistance R_{e} that will ensure that the $\left|G_{v}\right|$ be within 20% of its new nominal value $G_{v, \text { nom }}$. At the lower limit, we set $\left|G_{v}\right|=0.8 G_{v, n o m}$ and write

$$
\left|G_{\mathrm{v}}\right|=50 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+(1+50) \times\left(\frac{25 \times 10^{-3}}{1.02 \times 10^{-3}}+R_{e}\right)}=0.8 G_{v, \text { nom }}
$$

At the upper limit, with $\left|G_{v}\right|=1.2 G_{v, \text { nom }}$,

$$
\left|G_{\mathrm{v}}\right|=150 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+(1+150) \times\left(\frac{25 \times 10^{-3}}{1.01 \times 10^{-3}}+R_{e}\right)}=1.2 G_{v, \text { nom }}
$$

Dividing one equation by the other and solving for R_{e},

$$
\begin{gathered}
150 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+151 \times\left(24.8+R_{e}\right)} \\
50 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+51 \times\left(24.5+R_{e}\right)}
\end{gathered}=\frac{1.2}{0.8}=1.5
$$

Substituting this R_{e} into (I) yields the nominal voltage gain

$$
G_{\mathrm{v}, \text { nom }}=-\beta \frac{R_{C} \| R_{L}}{R_{\mathrm{sig}}+(1+\beta)\left(r_{e}+R_{e}\right)}=-100 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+(1+100) \times\left(\frac{25 \times 10^{-3}}{1.01 \times 10^{-3}}+179\right)}=-32.7 \mathrm{~V} / \mathrm{V}
$$

Using the R_{e} obtained above, we can establish the expected range of G_{v},

$$
\begin{aligned}
& G_{\mathrm{v}}=-50 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+(1+50) \times\left(\frac{25 \times 10^{-3}}{1.02 \times 10^{-3}}+179\right)}=-24.5 \mathrm{~V} / \mathrm{V} \\
& G_{\mathrm{v}}=-150 \times \frac{10 \times 10^{3}}{\left(10 \times 10^{3}\right)+(1+150) \times\left(\frac{25 \times 10^{-3}}{1.02 \times 10^{-3}}+179\right)}=-36.8 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

The overall voltage gain is expected to vary between $-36.8 \mathrm{~V} / \mathrm{V}$ and $-24.5 \mathrm{~V} / \mathrm{V}$.

P. $7 \Rightarrow$ Solution

Problem 7.1: The nominal value of G_{v} is that which corresponds to the device's nominal β, which is 100 . Noting that $g_{m}=I_{c} / V_{T}$ and substituting the pertaining variables into G_{v}, we obtain

$$
\left|G_{v}\right|=\frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{100}+\frac{1}{\left(\frac{1.0 \times 10^{-3}}{25 \times 10^{-3}}\right)}}=80 \mathrm{~V} / \mathrm{V}
$$

Problem 7.2: Assuming $\left|G_{V}\right|$ is monotonically increasing with $\beta \in[50$, 150], we have, at one end,

$$
\left|G_{v}\right|=\frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{50}+\frac{1}{\left(\frac{1.0 \times 10^{-3}}{25 \times 10^{-3}}\right)}}=44.44 \mathrm{~V} / \mathrm{V}
$$

while at the other,

$$
\left|G_{v}\right|=\frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{150}+\frac{1}{\left(\frac{1.0 \times 10^{-3}}{25 \times 10^{-3}}\right)}}=109.10 \mathrm{~V} / \mathrm{V}
$$

Thus, the overall voltage gain varies from about $44 \mathrm{~V} / \mathrm{V}$ to about 109 V / V in the range of β-values considered.

Problem 7.3: The nominal value of G_{v} was calculated to be $80 \mathrm{~V} / \mathrm{V}$; if the device is allowed to vary within $\pm 20 \%$ of this specification, we have $G_{v, m i n}$ $=64 \mathrm{~V} / \mathrm{V}$ and $G_{v, \text { max }}=96 \mathrm{~V} / \mathrm{V}$. In one extreme, the corresponding β is

$$
\begin{gathered}
\left|G_{v, \text { min }}\right|=64= \\
\frac{10 \times 10^{3}}{\beta}+\frac{1}{\left(\frac{1.0 \times 10^{-3}}{25 \times 10^{-3}}\right)} \rightarrow 64=\frac{10,000}{\frac{10,000}{\beta}+25} \\
\therefore 64\left(\frac{10,000}{\beta}+\frac{25 \beta}{\beta}\right)=10,000 \\
\therefore 640,000+1600 \beta=10,000 \beta \\
\therefore 640,000=8400 \beta \\
\therefore \beta_{\min }=\frac{640,000}{8400}=76.19
\end{gathered}
$$

At the other extreme, using Mathematica to speed things up,

$$
\begin{aligned}
& \ln [48]:=\text { Solve }\left[96=\frac{10000 .}{\frac{10000}{\beta}+\frac{1}{1 / 25}}, \beta\right] \\
& \text { Out }[48]=\{\{\beta \rightarrow 126.316\}\}
\end{aligned}
$$

That is, $\beta_{\max }=126.32$. The allowable range of β is $76.19 \leq \beta \leq 126.32$.
Problem 7.4: Let the new nominal G_{v} be $\left|G_{v}\right|$ nom. With $\beta=50$ and $\left|G_{v}\right|=$ $0.8\left|G_{V}\right|_{\text {nom }}$, we write

$$
\begin{equation*}
\frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{50}+\frac{1}{\left(\frac{I_{C}}{25 \times 10^{-3}}\right)}}=0.8\left|G_{v}\right|_{\mathrm{nom}} \tag{I}
\end{equation*}
$$

With $\beta=150$ and $\left|G_{v}\right|=1.2\left|G_{v}\right|_{\text {nom, }}$, we have

$$
\begin{equation*}
\frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{150}+\frac{1}{\left(\frac{I_{C}}{25 \times 10^{-3}}\right)}}=1.2\left|G_{v}\right|_{\mathrm{nom}} \tag{II}
\end{equation*}
$$

Dividing (II) by (I) and solving for bias current, we get

$$
\begin{aligned}
& \frac{\frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{150}+\frac{1}{\left(\frac{I_{C}}{25 \times 10^{-3}}\right)}}}{\frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{50}+\frac{1}{\left(\frac{I_{C}}{25 \times 10^{-3}}\right)}}}=\frac{1.2)}{0.8) \text { GInown }} \\
& \operatorname{In}[52]=\text { Solve }\left[\frac{1.2}{0.8}=\frac{\frac{10 \theta 00 .}{\frac{1000 \theta}{159}+\frac{25+10^{-3}}{i_{c}}}}{\frac{10 \theta 0 \theta .}{\frac{10000}{5 \theta}+\frac{25+10^{-3}}{i_{c}}}}, i_{C}\right] \\
& \text { Out[52]= }\left\{\left\{\mathbf{i}_{C} \rightarrow \boldsymbol{0} .000125\right\}\right\}
\end{aligned}
$$

That is, the bias current that would have $\left|G_{v}\right|$ fall in a range of $\pm 20 \%$ of the new nominal value is $I_{C}=0.125 \mathrm{~mA}$. This new nominal voltage gain is

$$
\left|G_{v}\right|=\frac{10 \times 10^{3}}{\frac{10 \times 10^{3}}{100}+\frac{25}{0.125}}=33.33 \mathrm{~V} / \mathrm{V}
$$

P. $8 \Rightarrow$ Solution

The input resistance of a typical common-gate amplifier equals the reciprocal of the FET's transconductance:

$$
R_{\mathrm{in}}=\frac{1}{g_{m}}=\frac{1}{2.0 \times 10^{-3}}=500 \Omega
$$

To determine the overall voltage gain, we apply equation 6 ,

$$
G_{v}=\frac{R_{D} \| R_{L}}{R_{\text {sig }}+\frac{1}{g_{m}}}=\frac{5.0 \| 5.0}{0.75+0.5}=\frac{\frac{5.0 \times 5.0}{5.0+5.0}}{1.25}=\frac{2.5}{1.25}=2 \mathrm{~V} / \mathrm{V}
$$

Now, using the definition of transconductance, we may write

$$
g_{m}=\sqrt{2 k_{n}^{\prime} I_{D, 1}}=2.0 \times 10^{-3}
$$

For the signal-source resistance $R_{\text {sig }}$ to match the input resistance $R_{\text {in }}$, we must have

$$
\begin{gathered}
R_{\mathrm{sig}}=R_{\mathrm{in}}=\frac{1}{g_{m}} \rightarrow g_{m}=\frac{1}{R_{\mathrm{in}}}=\frac{1}{750} \\
\therefore \sqrt{2 k_{n}^{\prime} I_{D, 2}}=\frac{1}{750} \text { (II) }
\end{gathered}
$$

Dividing (II) by (I), we obtain the ratio

$$
\sqrt{\frac{2 I_{D, 2}}{2 I_{D, 1}}}=\frac{\frac{1}{750}}{2.0 \times 10^{-3}}=\frac{\frac{1}{750}}{\frac{1}{500}}=\frac{2}{3}
$$

$$
\begin{aligned}
& \therefore \frac{I_{D, 2}}{I_{D, 1}}=\left(\frac{2}{3}\right)^{2}=\frac{4}{9} \\
& \therefore I_{D, 2}=\frac{4}{9} I_{D, 1}
\end{aligned}
$$

That is, the bias current must be multiplied by a factor of four-ninths in order to have the input resistance $R_{\text {in }}$ match the signal-source resistance $R_{\text {sig. }}$.

P. $9 \rightarrow$ Solution

Recall that the overall gain of a common-gate amplifier is expressed as (equation 6)

$$
G_{v}=\frac{R_{D} \| R_{C}}{R_{\mathrm{sig}}+\frac{1}{g_{m}}}
$$

At first, $R_{\text {sig }}=100 \Omega$ and $G_{v}=12 \mathrm{~V} / \mathrm{V}$, that is,

$$
12=\frac{R_{D} \| R_{C}}{100+\frac{1}{g_{m}}}(\mathrm{I})
$$

After 100Ω of resistance is added in series to the signal generator, $R_{\mathrm{sig}}^{\prime}=200 \Omega$ and $G_{v}^{\prime}=10 \mathrm{~V} / \mathrm{V}$, so that

$$
10=\frac{R_{D} \| R_{C}}{200+\frac{1}{g_{m}}}
$$

Dividing (I) by (II) and solving for transconductance,

$$
\begin{gathered}
\frac{12}{10}=\frac{\frac{1}{100+\frac{1}{g_{m}}}}{\frac{R_{D} \not R_{C}}{200+\frac{1}{g_{m}}}}=\frac{200+\frac{1}{g_{m}}}{100+\frac{1}{g_{m}}} \\
\therefore 12 \times\left(100+\frac{1}{g_{m}}\right)=10 \times\left(200+\frac{1}{g_{m}}\right) \\
\therefore 1200+\frac{12}{g_{m}}=2000+\frac{10}{g_{m}} \\
\therefore \frac{2}{g_{m}}=800 \\
\therefore g_{m}=\frac{2}{800}=\frac{1}{400} \mathrm{~A} / \mathrm{V}=\frac{1000}{400} \mathrm{~mA} / \mathrm{V} \\
\therefore g_{m}=2.5 \mathrm{~mA} / \mathrm{V}
\end{gathered}
$$

If the FET is biased at $I_{D}=0.25 \mathrm{~mA}$, the overdrive voltage V ov must be

$$
\begin{aligned}
& g_{m}=\frac{2 I_{D}}{V_{O V}} \rightarrow V_{O V}=\frac{2 I_{D}}{g_{m}} \\
& \therefore V_{O V}=\frac{2 \times 0.25}{2.5}=0.2 \mathrm{~V}
\end{aligned}
$$

P. $10 \Rightarrow$ Solution

The input resistance is given by equation 7 ,

$$
R_{\mathrm{in}}=\frac{r_{o}+R_{L}}{1+g_{m} r_{o}}=\frac{(20+20) \times 10^{3}}{1+\left(2.0 \times 10^{-3}\right) \times\left(20 \times 10^{3}\right)}=976 \Omega
$$

The output resistance is, in turn (equation 8),

$$
\begin{gathered}
R_{\mathrm{out}}=r_{o}+\left(1+g_{m} r_{o}\right) R_{s}=\left(20 \times 10^{3}\right)+\left[1+\left(2.0 \times 10^{-3}\right) \times\left(20 \times 10^{3}\right)\right] \times\left(1.0 \times 10^{3}\right)=61,000 \Omega \\
\therefore R_{\mathrm{out}}=61.0 \mathrm{k} \Omega
\end{gathered}
$$

Lastly, the voltage gain is

$$
\frac{v_{o}}{v_{\text {sig }}}=\frac{R_{L}}{R_{s}+R_{\text {in }}}=\frac{20}{1.0+0.976}=10.1 \mathrm{~V} / \mathrm{V}
$$

P. $11 \Rightarrow$ Solution

We have all the data needed to compute input resistance $R_{\text {in }}$ (equation 7),

$$
R_{\mathrm{in}}=\frac{r_{o}+R_{L}}{1+g_{m} r_{o}}=\frac{(20+20) \times 10^{3}}{1+\left(2.0 \times 10^{-3}\right) \times\left(20 \times 10^{3}\right)}=976 \Omega
$$

Now, current gain $i_{o} / i_{\text {sig }}$ can be expressed as

$$
\left(\frac{i_{o}}{i_{\text {sig }}}\right)_{0}=\frac{R_{s}}{R_{\mathrm{in}}+R_{s}}=\frac{20}{0.976+20}=0.953 \mathrm{~A} / \mathrm{A}
$$

Once the load resistance is increased to $R_{L}^{\prime}=10 R_{L}$, the current gain becomes

$$
\left(\frac{i_{o}}{i_{\text {sig }}}\right)_{1}=\frac{R_{s}}{R_{\mathrm{in}}^{\prime}+R_{s}}=\frac{20 \times 10^{3}}{\frac{(20+200) \times 10^{3}}{1+\left(2.0 \times 10^{-3}\right) \times\left(20 \times 10^{3}\right)}+20 \times 10^{3}}=0.788 \mathrm{~A} / \mathrm{A}
$$

This amounts to a percentage change in current gain given by

$$
\Delta=\frac{\left(i_{o} / i_{\text {sig }}\right)_{1}-\left(i_{o} / i_{\text {sig }}\right)_{0}}{\left(i_{o} / i_{\text {sig }}\right)_{0}} \times 100 \%=\frac{0.788-0.953}{0.953} \times 100 \%=-17.3 \%
$$

P. $12 \rightarrow$ Solution

First, note that the input resistance $R_{\text {in }}$ of a common-base amp can be estimated as

$$
R_{\mathrm{in}} \approx \frac{1}{g_{m}}
$$

For the input resistance $R_{\text {in }}$ to equal the signal-source resistance $R_{\text {sig }}=$ 50Ω, the transconductance must be

$$
\frac{1}{g_{m}}=R_{\mathrm{in}}=R_{\mathrm{sig}}=50 \rightarrow g_{m}=\frac{1}{50}=20 \mathrm{~mA} / \mathrm{V}
$$

Using the definition of g_{m} for a BJT, we establish the collector current

$$
\begin{gathered}
g_{m}=\frac{I_{C}}{V_{T}} \rightarrow I_{C}=g_{m} V_{T} \\
\therefore I_{C}=\left(20 \times 10^{-3}\right) \times\left(25 \times 10^{-3}\right)=5.0 \times 10^{-4} \mathrm{~A}=0.5 \mathrm{~mA}
\end{gathered}
$$

The overall voltage gain G_{v} is, in turn (equation 8),

$$
\begin{aligned}
& G_{v}=\frac{R_{\mathrm{in}}}{R_{\mathrm{in}}+R_{\mathrm{sig}}} g_{m}\left(R_{C} \| R_{L}\right)=\frac{50}{50+50} \times\left(20 \times 10^{-3}\right) \times\left[\left(10 \times 10^{3}\right) \|\left(10 \times 10^{3}\right)\right] \\
& \therefore G_{v}=50 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

P. $13 \rightarrow$ Solution

First, note that the input resistance of a CB configuration is related to load resistance R_{L} and other resistance components by the expression (equation 9)

$$
R_{\mathrm{in}} \approx r_{e} \frac{r_{o}+R_{L}}{r_{o}+\frac{R_{L}}{\beta+1}}
$$

Setting $R_{i n}=2 r_{e}$ and solving for R_{L}, we obtain

$$
\begin{gathered}
\frac{r_{o}+R_{L}}{r_{o}+\frac{R_{L}}{\beta+1}}=2 \nmid r_{o}+R_{L}=2\left(r_{o}+\frac{R_{L}}{\beta+1}\right) \\
\therefore r_{o}+R_{L}=2 r_{o}+\frac{2 R_{L}}{\beta+1} \\
\therefore R_{L}-\frac{2 R_{L}}{\beta+1}=r_{o} \\
\therefore \frac{R_{L}(\beta+1)-2 R_{L}}{\beta+1}=r_{o} \\
\therefore R_{L}(\beta+1)-2 R_{L}=(\beta+1) r_{o} \\
\therefore R_{L}(\beta-1)=(\beta+1) r_{o} \\
\therefore R_{L}=\left(\frac{\beta+1}{\beta-1}\right) r_{o}
\end{gathered}
$$

Thus, if the load resistance were set to $(\beta+1) /(\beta-1)$ times the transistor output resistance r_{0}, the input resistance $R_{\text {in }}$ would become twice the emitter resistance r_{e}. With $\beta=50$, for example, the load resistance would have to be $51 / 49 \approx 1.04$ times the value of r_{e}.

P. $14 \rightarrow$ Solution

Starting with the equation for output resistance $R_{\text {out }}$ (equation 10), we write

$$
\begin{aligned}
& R_{\text {out }} \approx r_{o}+g_{m} r_{o}\left(R_{e} \| r_{\pi}\right) \rightarrow R_{\text {out }} \approx r_{o}\left[1+g_{m}\left(R_{e} \| r_{\pi}\right)\right] \\
& \therefore R_{\text {out }}=r_{o}\left(1+\frac{\beta}{r_{\pi}} \frac{R_{e} r_{\pi}}{R_{e}+r_{\pi}}\right) \\
& \therefore R_{\text {out }}=r_{o}\left(1+\frac{\beta R_{e}}{R_{e}+r_{\pi}}\right) \\
& \therefore R_{\text {out }}=r_{o}\left[1+\frac{\beta R_{e}}{R_{e}+(\beta+1) r_{e}}\right] \\
& \therefore \frac{R_{\text {out }}}{r_{o}}=\left(1+\frac{\beta R_{e}}{\beta r_{e}+r_{e}+R_{e}}\right) \\
& \therefore \frac{R_{\text {out }}}{r_{o}}=\left[1+\frac{\beta\left(R_{e} / r_{e}\right)}{\beta+1+\left(R_{e} / r_{e}\right)}\right]
\end{aligned}
$$

The desired relationship has been demonstrated. We proceed to tabulate values of $R_{\text {out }} / r_{o}$ as a function of different emitter lead resistances R_{e}. One way to go is to apply Mathematica's Table function,
$\ln [524]=\operatorname{SetPrecision}\left[\operatorname{Table}\left[1+\frac{100 . * r}{101+r},\{r,\{0,1,2,10,50,100,1000\}\}.\right], 3\right]$
$O_{t[524]}=\{1.00,1.98,2.94,10.0,34.1,50.8,91.8\}$
The results are tabulated below.

R_{e}	$R_{\text {out }} / r_{o}$
0	1.0
r_{e}	1.98
$2 r_{e}$	2.94
$10 r_{e}$	10.0
$50 r_{e}$	34.1
$100 r_{e}$	50.8
$1000 r_{e}$	91.8

P. $15 \Rightarrow$ Solution

Problem 5.1: We first determine the transconductance g_{m},

$$
g_{m}=\frac{2 I_{D}}{V_{O V}}=\frac{2 \times 0.15}{0.2}=1.5 \mathrm{~mA} / \mathrm{V}
$$

The transistor output resistance r_{o} is given by

$$
r_{o}=\frac{\left|V_{A}\right|}{I_{D}}=\frac{1.5}{0.15 \times 10^{-3}}=10 \mathrm{k} \Omega
$$

Note that $r_{o}=R_{L}=10 \mathrm{k} \Omega$; referring to Table 1 , the present system fits into MOS cascode amplifier case 3 . The voltage gain of transistor Q_{1} is fixed as

$$
A_{v 1}=-2.0 \mathrm{~V} / \mathrm{V}
$$

The voltage gain of Q_{2} is, in turn,

$$
A_{v 2}=\frac{1}{2} g_{m} r_{o}=-\frac{1}{2} \times\left(1.5 \times 10^{-3}\right) \times\left(10 \times 10^{3}\right)=7.5 \mathrm{~V} / \mathrm{V}
$$

The overall gain can be expressed as the product of the voltage gains of Q_{1} and Q_{2},

$$
A_{v}=A_{v 1} A_{v 2}=-2.0 \times 7.5=-15 \mathrm{~V} / \mathrm{V}
$$

Problem 5.2: Note that

$$
\left(g_{m} r_{o}\right) r_{o}=\left(1.5 \times 10^{-3}\right) \times\left(10 \times 10^{3}\right) \times\left(10 \times 10^{3}\right)=150 \mathrm{k} \Omega
$$

which happens to be the value of R_{L}; accordingly, we are now in gain distribution case 2 . The voltage gain of Q_{1} then becomes

$$
A_{v 1}=-\frac{1}{2}\left(g_{m} r_{o}\right)=-\frac{1}{2} \times\left[\left(1.5 \times 10^{-3}\right) \times\left(10 \times 10^{3}\right)\right]=-7.5 \mathrm{~V} / \mathrm{V}
$$

while the gain of Q_{2} is found as

$$
A_{v 2}=g_{m} r_{o}=\left(1.5 \times 10^{-3}\right) \times\left(10 \times 10^{3}\right)=15 \mathrm{~V} / \mathrm{V}
$$

Lastly, the overall gain is

$$
A_{v}=A_{v 1} A_{v 2}=-7.5 \times 15=-113 \mathrm{~V} / \mathrm{V}
$$

P. $16 \Rightarrow$ Solution

The overdrive voltage Vov for a PMOS transistor is of course

$$
V_{O V}=V_{S G}-V_{t}=V_{S}-V_{G}-V_{t}
$$

With reference to transistor Q_{4}, we may write

$$
V_{O V}=V_{D D}-V_{G, 4}-V_{t}=1.8-1.1-0.5=0.2 \mathrm{~V}
$$

Now, the minimum output voltage is given by

$$
V_{o, \min }=V_{D, 1}+V_{O V}=\left(V_{G, 2}-V_{G S, 2}\right)+V_{O V} \quad(\mathrm{I})
$$

Noting that

$$
V_{G S, 1}=V_{G S, 2}=V_{S G, 3}=V_{S G, 4}=V_{O V}+\left|V_{t}\right|=0.2+0.5=0.7 \mathrm{~V}
$$

we can substitute in (I) to obtain

$$
V_{o, \min }=V_{G, 2}-V_{G S, 2}+V_{O V}=1.0-0.7+0.2=\underline{0.5 \mathrm{~V}}
$$

In turn, the maximum output voltage is

$$
V_{o, \max }=V_{D D}-V_{t}=1.8-0.5=1.3 \mathrm{~V}
$$

The allowable voltage range at the output is $0.5 \leq \mathrm{V}_{0} \leq 1.3 \mathrm{~V}$.

P. $17 \rightarrow$ Solution

To find the transconductance of the transistors, simply substitute the operating conditions $I_{D}=0.2 \mathrm{~mA}$ and $|\mathrm{Vov}|=0.2 \mathrm{~V}$ into the usual definition,

$$
g_{m 1}=\frac{2 I_{D}}{V_{O V}}=\frac{2 \times 0.2}{0.2}=2.0 \mathrm{~mA} / \mathrm{V}
$$

To establish the output resistance $R_{\text {on }}$ of the amplifier, we first compute the transistor output resistance r_{o}, which is assumed to be the same for all four FETs,

$$
r_{o}=\frac{\left|V_{A}\right|}{I_{D}}=\frac{2.0}{0.2 \times 10^{-3}}=10 \mathrm{k} \Omega
$$

Accordingly,

$$
R_{o n}=\left(g_{m 1} r_{o 1}\right) r_{o 2}=\left(2.0 \times 10^{-3}\right) \times\left(10 \times 10^{3}\right) \times\left(10 \times 10^{3}\right)=200 \mathrm{k} \Omega
$$

Likewise, the output resistance $R_{o p}$ of the current source is

$$
R_{o p}=\left(g_{m 1} r_{o 3}\right) r_{o 4}=\left(2.0 \times 10^{-3}\right) \times\left(10 \times 10^{3}\right) \times\left(10 \times 10^{3}\right)=200 \mathrm{k} \Omega
$$

The overall output resistance is then

$$
R_{o}=R_{o n} \| R_{o p}=\frac{200 \times 200}{200+200}=100 \mathrm{k} \Omega
$$

Lastly, we compute the voltage gain realized by the cascode amp,

$$
A_{v}=-g_{m 1}\left(R_{\mathrm{on}} \| R_{\mathrm{op}}\right)=-\left(2.0 \times 10^{-3}\right) \times\left(100 \times 10^{3}\right)=-200 \mathrm{~V} / \mathrm{V}
$$

P. $18 \Rightarrow$ Solution

To establish the overdrive voltage of transistor operation, simply subtract the threshold voltage, $\left|V_{t}\right|=0.4 \mathrm{~V}$, from the dc component of input voltage, $\mathrm{V}_{1}=0.6 \mathrm{~V}$,

$$
V_{O V}=V_{I}-V_{t}=0.6-0.4=0.2 \mathrm{~V}
$$

Next, we determine the minimum output voltage on the basis of transistor Q_{2}; that is,

$$
V_{o, \min }=V_{S, 2}+V_{O V, 2}(\mathrm{I})
$$

Here, $V_{s, 2}$ is given by

$$
\begin{gathered}
V_{S, 2}=V_{G, 2}-V_{G S, 2}=V_{G, 2}-\left(V_{O V}+V_{t}\right)=V_{G, 2}-V_{O V}-V_{t} \\
\therefore V_{S, 2}=0.9-0.2-0.4=0.3 \mathrm{~V}
\end{gathered}
$$

Substituting in (I),

$$
V_{o, \min }=0.3+0.2=\underline{0.5 \mathrm{~V}}
$$

The maximum output voltage, in turn, is calculated on the basis of transistor Q_{3},

$$
V_{o, \max }=V_{S, 3}-V_{O V, 3}(\mathrm{II})
$$

To determine source voltage $V_{s, 3}$, we write

$$
\begin{gathered}
V_{S, 3}=V_{G, 3}+V_{G S, 3}=V_{G, 3}+\left(V_{O V}+V_{t}\right) \\
\therefore V_{S, 2}=0.4+0.2+0.4=1.0 \mathrm{~V}
\end{gathered}
$$

Substituting in (II),

$$
V_{o, \max }=1.0-0.2=\underline{0.8 \mathrm{~V}}
$$

Thus, the output voltage range is $V_{o} \in[0.5,0.8] \mathrm{V}$.

P. $19 \rightarrow$ Solution

Using the specified gain $A_{v}=-280 \mathrm{~V} / \mathrm{V}$ and transconductance $\mathrm{g}_{\mathrm{m} 1}=1$ mA / V, we can estimate the circuit output resistance R_{o} of the cascode network,

$$
\begin{aligned}
& A_{v}=-g_{m} R_{o} \rightarrow R_{o}=-\frac{A_{v}}{g_{m 1}} \\
& \therefore R_{o}=-\frac{(-280)}{1.0 \times 10^{-3}}=280 \mathrm{k} \Omega
\end{aligned}
$$

Using R_{o}, we can determine the transistor output resistances r_{o}, which are assumed equal for the four transistors,

$$
\begin{gathered}
R_{o}=\left[\left(g_{o 2} r_{o 2}\right) r_{o 1} \|\left(g_{o 3} r_{o 3}\right) r_{o 4}\right]=\left[\left(1.0 \times 10^{-3}\right) \times r_{o}^{2}\right] \|\left[\left(1.0 \times 10^{-3}\right) \times r_{o}^{2}\right]=280 \times 10^{3} \\
\therefore \frac{\left[\left(1.0 \times 10^{-3}\right) \times r_{o}^{2}\right] \times\left[\left(1.0 \times 10^{-3}\right) \times r_{o}^{2}\right]}{\left(1.0 \times 10^{-3}\right) \times r_{o}^{2}+\left(1.0 \times 10^{-3}\right) \times r_{o}^{2}}=280 \times 10^{3} \\
\therefore r_{o}=\sqrt{\frac{280 \times 10^{3}}{5.0 \times 10^{-4}}}=23.7 \mathrm{k} \Omega
\end{gathered}
$$

Now, recall that r_{0} for a FET can be expressed as

$$
r_{o}=\frac{V_{A}}{I}=\frac{V_{A}^{\prime} L}{I} \rightarrow L=\frac{r_{o} I}{V_{A}^{\prime}}
$$

In order to determine the channel length L, we require the bias current I,

$$
\begin{aligned}
& g_{m}=\frac{2 I}{V_{O V}} \rightarrow I=\frac{g_{m}\left|V_{O V}\right|}{2} \\
\therefore I= & \frac{\left(1.0 \times 10^{-3}\right) \times 0.25}{2}=0.125 \mathrm{~mA}
\end{aligned}
$$

Thus,

$$
L=\frac{r_{o} I}{V_{A}^{\prime}}=\frac{\left(23.7 \times 10^{3}\right) \times\left(0.125 \times 10^{-3}\right)}{5.0 \times 10^{6}}=0.593 \mu \mathrm{~m}
$$

Next, we write the usual relationship for bias current in a FET and solve for width-to-length ratio,

$$
\begin{aligned}
I= & \frac{1}{2} \mu_{n} C_{o x}\left(\frac{W}{L}\right)_{1} V_{O V}^{2} \rightarrow\left(\frac{W}{L}\right)_{1}=\frac{2 I}{\mu_{n} C_{o x} V_{O V}^{2}} \\
& \therefore\left(\frac{W}{L}\right)_{1}=\frac{2 \times\left(0.125 \times 10^{-3}\right)}{\left(400 \times 10^{-6}\right) \times 0.25^{2}}=10
\end{aligned}
$$

The width-to-length ratio of the NMOS labeled as 2 is the same as that of Q_{1},

$$
\left(\frac{W}{L}\right)_{2}=\left(\frac{W}{L}\right)_{1}=10
$$

The width-to-length ratio of the PMOS transistors is, noting that $\mu_{p} C_{o x}=100 \mu \mathrm{~A} / \mathrm{V}^{2}$,

$$
\begin{aligned}
I= & \frac{1}{2} \mu_{p} C_{o x}\left(\frac{W}{L}\right)_{3} V_{o V}^{2} \rightarrow\left(\frac{W}{L}\right)_{3}=\frac{2 I}{\mu_{p} C_{o x} V_{O V}^{2}} \\
& \therefore\left(\frac{W}{L}\right)_{3}=\frac{2 \times\left(0.125 \times 10^{-3}\right)}{\left(100 \times 10^{-6}\right) \times 0.25^{2}}=40
\end{aligned}
$$

Finally,

$$
\left(\frac{W}{L}\right)_{4}=\left(\frac{W}{L}\right)_{3}=40
$$

P. $20 \Rightarrow$ Solution

The information given suffices for us to compute the transconductance $g_{m 2}$,

$$
g_{m 2}=\sqrt{2 k_{p}\left(\frac{W}{L}\right) I_{D}}=\sqrt{2 \times\left(400 \times 10^{=6}\right) \times \frac{5.4}{0.36} \times\left(0.2 \times 10^{-3}\right)}=1.55 \mathrm{~mA} / \mathrm{V}
$$

Also, the device has $0.36-\mu \mathrm{m}$ effective length, therefore $V_{A}=5 \times 0.36$ $=1.8 \mathrm{~V}$. We proceed to determine the transistor output resistance r_{0},

$$
r_{o}=\frac{V_{A}}{I_{D}}=\frac{1.8}{0.2 \times 10^{-3}}=9 \mathrm{k} \Omega
$$

and from there the circuit output resistance R_{o},

$$
R_{o}=\left(g_{m 2} r_{o 2}\right) r_{o 1}=\left(1.55 \times 10^{-3}\right) \times\left(9.0 \times 10^{3}\right) \times\left(9.0 \times 10^{3}\right)=126 \mathrm{k} \Omega
$$

Now, setting the voltage gain to $-100 \mathrm{~V} / \mathrm{V}$,

$$
\begin{gathered}
A_{v}=-g_{m 1}\left(R_{o} \| R_{L}\right)=-100 \rightarrow R_{o} \| R_{L}=\frac{100}{1.55 \times 10^{-3}} \\
\therefore \frac{\left(126 \times 10^{3}\right) R_{L}}{\left(126 \times 10^{3}\right)+R_{L}}=\frac{100}{\underbrace{1.55 \times 10^{-3}}_{=64.5 \times 10^{3}}} \\
\therefore\left(126 \times 10^{3}\right) R_{L}=\left(64.5 \times 10^{3}\right) \times\left[\left(126 \times 10^{3}\right)+R_{L}\right] \\
\therefore\left(126 \times 10^{3}\right) R_{L}=8.13 \times 10^{9}+\left(64.5 \times 10^{3}\right) R_{L} \\
\therefore R_{L}=\frac{8.13 \times 10^{9}}{126 \times 10^{3}-64.5 \times 10^{3}}=132 \mathrm{k} \Omega
\end{gathered}
$$

The gain attained will equal $-100 \mathrm{~V} / \mathrm{V}$ if the load resistance utilized is close to $130 \mathrm{k} \Omega$. We finish by determining the voltage gain of the CS amplifier,

$$
A_{v}=g_{m} r_{o}=\left(1.55 \times 10^{-3}\right) \times\left(9.0 \times 10^{3}\right)=14.0 \mathrm{~V} / \mathrm{V}
$$

P. $21 \Rightarrow$ Solution

The output resistance of a BJT cascode is given by

$$
R_{o} \approx\left(g_{m 2} r_{o 2}\right)\left(r_{o 1} \| r_{\pi 2}\right)
$$

Before proceeding, we need the transconductance g_{m}, the transistor output resistance r_{0}, and the input resistance r_{π}. The value of g_{m} is

$$
g_{m}=\frac{I}{V_{T}}=\frac{0.2 \times 10^{-3}}{0.025}=8 \mathrm{~mA} / \mathrm{V}
$$

The value of r_{o} is

$$
r_{o}=\frac{V_{A}}{I}=\frac{5.0}{0.2 \times 10^{-3}}=25 \mathrm{k} \Omega
$$

The value of r_{π} is

$$
r_{\pi}=\frac{\beta}{g_{m}}=\frac{50}{8.0 \times 10^{-3}}=6.25 \mathrm{k} \Omega
$$

Gleaning our results, the value of R_{o} is calculated to be

$$
\begin{gathered}
R_{o}=\left[\left(8.0 \times 10^{-3}\right) \times\left(25 \times 10^{3}\right)\right] \times\left(25 \times 10^{3} \| 6.25 \times 10^{3}\right) \\
\therefore R_{o}= \\
=200 \times \frac{\left(25 \times 10^{3}\right) \times\left(6.25 \times 10^{3}\right)}{\left(25 \times 10^{3}\right)+\left(6.25 \times 10^{3}\right)}=1.0 \times 10^{6} \Omega=1.0 \mathrm{M} \Omega
\end{gathered}
$$

P. $22 \Rightarrow$ Solution

Problem 22.1: The output resistance $R_{\text {on }}$ of the amplifier is given by

$$
R_{\mathrm{on}}=\left(g_{m 2} r_{o 2}\right)\left(r_{o 1} \| r_{\pi 2}\right)
$$

where subscripts 1 and 2 refer to the npn transistors in the cascode.
Transconductance $g_{m 2}$ is

$$
g_{m 2}=\frac{I_{C}}{V_{T}}=\frac{0.2 \times 10^{-3}}{25 \times 10^{-3}}=8.0 \mathrm{~mA} / \mathrm{V}
$$

The transistor output resistance $r_{01}=r_{02}$ is

$$
r_{o 1}=r_{o 2}=\frac{V_{A}}{I_{C}}=\frac{5.0}{0.2 \times 10^{-3}}=25 \mathrm{k} \Omega
$$

Input resistance $r_{\pi 2}$ is

$$
r_{\pi 2}=\frac{\beta_{2}}{g_{m 2}}=\frac{100}{8.0 \times 10^{-3}}=12.5 \mathrm{k} \Omega
$$

Substituting in (I), we get

$$
\begin{aligned}
R_{\mathrm{on}} & =\left[\left(8.0 \times 10^{-3}\right) \times\left(25 \times 10^{3}\right)\right] \times\left[\left(25 \times 10^{3}\right) \|\left(12.5 \times 10^{3}\right)\right] \\
& \therefore R_{\mathrm{on}}=200 \times \frac{\left(25 \times 10^{3}\right) \times\left(12.5 \times 10^{3}\right)}{\left(25 \times 10^{3}\right)+\left(12.5 \times 10^{3}\right)}=1.67 \mathrm{M} \Omega
\end{aligned}
$$

The output resistance $R_{o p}$ of the current source is stated by the similar formula

$$
\begin{equation*}
R_{\mathrm{op}}=\left(g_{m 3} r_{o 3}\right)\left(r_{o 4} \| r_{\pi 3}\right) \tag{II}
\end{equation*}
$$

Here, transconductance $g_{m 3}$ is

$$
g_{m 3}=\frac{I_{C}}{V_{T}}=\frac{0.2 \times 10^{-3}}{25 \times 10^{-3}}=8.0 \mathrm{~mA} / \mathrm{V}
$$

The transistor output resistance $r_{03}=r_{04}$ is

$$
r_{o 3}=r_{o 4}=\frac{V_{A}}{I_{C}}=\frac{4.0}{0.2 \times 10^{-3}}=20 \mathrm{k} \Omega
$$

Input resistance $r_{\pi 3}$ is

$$
r_{\pi 3}=\frac{\beta_{3}}{g_{m 3}}=\frac{50}{8.0 \times 10^{-3}}=6.25 \mathrm{k} \Omega
$$

Substituting in (II), we get

$$
\begin{aligned}
R_{\mathrm{op}}= & {\left[\left(8.0 \times 10^{-3}\right) \times\left(20 \times 10^{3}\right)\right] \times\left[\left(20 \times 10^{3}\right) \|\left(6.25 \times 10^{3}\right)\right] } \\
& \therefore R_{\mathrm{op}}=200 \times \frac{\left(20 \times 10^{3}\right) \times\left(6.25 \times 10^{3}\right)}{\left(20 \times 10^{3}\right)+\left(6.25 \times 10^{3}\right)}=762 \mathrm{k} \Omega
\end{aligned}
$$

We proceed to compute voltage gain A_{v},

$$
\begin{aligned}
& A_{v}=-g_{m 1}\left(R_{\mathrm{on}} \| R_{\mathrm{op}}\right)=-8.0 \times(1670 \| 762) \\
& \therefore A_{v}=-8.0 \times \frac{1670 \times 762}{1670+762}=-4190 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

Problem 22.2: To show the relationship posited in the problem statement, we write, using the definitions of $R_{\text {on }}$ and $R_{\text {op }}$ for a BJT cascode amp,

$$
A_{v}=-g_{m 1}\left(R_{\mathrm{on}} \| R_{\mathrm{op}}\right)=-g_{m 1}\left\{\left[\left(g_{m 2} r_{o 2}\right)\left(r_{o 1} \| r_{\pi 2}\right)\right] \|\left[\left(g_{m 3} r_{o 3}\right)\left(r_{o 4} \| r_{\pi 3}\right)\right]\right\}
$$

Here, $r_{04} \| r_{\pi 3} \rightarrow r_{\pi 3}$ because $r_{04} \gg r_{\pi 3}$ and $r_{01} \| r_{\pi 2} \rightarrow r_{\pi 2}$ because $r_{01} \gg r_{\pi 2}$, giving

$$
\begin{aligned}
& A_{v}=-g_{m 1}\left\{\left[\left(g_{m 2} r_{o 2}\right) r_{\pi 2}\right] \|\left[\left(g_{m 3} r_{o 3}\right) r_{\pi 3}\right]\right\} \\
& \therefore A_{v}=-g_{m 1}\left\{\left[\left(g_{m 2} r_{\pi 2}\right) r_{o 2}\right] \|\left[\left(g_{m 3} r_{\pi 3}\right) r_{o 3}\right]\right\}
\end{aligned}
$$

Note that the products in parentheses $g_{m 2} r_{\pi 2}=\beta_{2}$ and $g_{m 3} r_{\pi 3}=\beta_{3}$, hence

$$
\left|A_{v, \max }\right|=-g_{m 1}\left(\beta_{2} r_{o 2} \| \beta_{3} r_{o 3}\right)
$$

as we intended to show.
In the case at hand, $g_{m 1}=g_{m 2}=8.0 \mathrm{~mA} / \mathrm{V}, \beta_{2}=100, r_{o 2}=25 \mathrm{k} \Omega, \beta_{3}=50$, and $r_{03}=20 \mathrm{k} \Omega$, so that

$$
\begin{aligned}
& \left|A_{v, \max }\right|=-\left(8.0 \times 10^{-3}\right) \times\left\{\left[100 \times\left(25 \times 10^{3}\right)\right] \|\left[50 \times\left(20 \times 10^{3}\right)\right]\right\} \\
& \therefore\left|A_{v, \text { max }}\right|=-\left(8.0 \times 10^{-3}\right) \times\left[\left(2.5 \times 10^{6}\right) \|\left(1.0 \times 10^{6}\right)\right] \\
& \therefore\left|A_{v, \max }\right|=-\left(8.0 \times 10^{-3}\right) \times \frac{\left(2.5 \times 10^{6}\right) \times\left(1.0 \times 10^{6}\right)}{\left(2.5 \times 10^{6}\right)+\left(1.0 \times 10^{6}\right)}=-5710 \mathrm{~V} / \mathrm{V}
\end{aligned}
$$

P. $23 \rightarrow$ Solution

The voltage gain of a BJT cascode is given by

$$
A_{v}=-g_{m}\left(R_{\mathrm{on}} \| R_{\mathrm{op}}\right)
$$

Here, the output resistance $R_{\text {on }}$ of the amplifier and the output resistance $R_{\text {op }}$ of the current source are given by

$$
\begin{gathered}
R_{\mathrm{on}}=\left(g_{m 2} r_{o 2}\right)\left(r_{o 1} \| r_{\pi 2}\right)=\left(g_{m} r_{o}\right)\left(r_{o} \| r_{\pi}\right) \\
R_{\mathrm{op}}=\left(g_{m 3} r_{o 3}\right)\left(r_{o 4} \| r_{\pi 3}\right)=\left(g_{m} r_{o}\right)\left(r_{o} \| r_{\pi}\right) \\
\therefore R_{\mathrm{on}}=R_{\mathrm{op}}=\left(g_{m} r_{o}\right) \times \frac{r_{o} \times r_{\pi}}{r_{o}+r_{\pi}}=\frac{I_{C}}{V_{T}} \times \frac{\left|V_{A}\right|}{I_{C}} \times \frac{\frac{\left|V_{A}\right|}{I_{C}} \times \frac{\beta V_{T}}{I_{C}}}{\frac{\left|V_{A}\right|}{I_{C}}+\frac{\beta V_{T}}{I_{C}}} \\
\therefore R_{\mathrm{on}}=R_{\mathrm{op}}=\frac{\left|V_{A}\right|}{V_{K}} \times \frac{\left.\left|V_{A}\right| \beta\right) / V_{C}}{I_{C}\left(\left|V_{A}\right|+\beta V_{T}\right)}=\frac{\beta\left|V_{A}\right|^{2}}{I_{C}\left(\left|V_{A}\right|+\beta V_{T}\right)} \\
\therefore R_{\mathrm{on}}=R_{\mathrm{op}}=\frac{\beta\left|V_{A}\right|^{2}}{I_{C} \beta\left|V_{A}\right|\left(\frac{1}{\beta}+\frac{V_{T}}{\left|V_{A}\right|}\right)}=\frac{\left|V_{A}\right|}{I_{C}\left(\frac{V_{T}}{\left|V_{A}\right|}+\frac{1}{\beta}\right)}
\end{gathered}
$$

Substituting in (I), we get

$$
\begin{gathered}
\left.A_{v}=-g_{m}\left(R_{\text {on }} \| R_{\text {op }}\right)=-\frac{I_{C}}{V_{T}} \times\left\{\frac{\left|V_{A}\right|}{I_{C}\left(\frac{V_{T}}{\left|V_{A}\right|}+\frac{1}{\beta}\right)}\right] \|\left[\frac{\left|V_{A}\right|}{I_{C}\left(\frac{V_{T}}{\left|V_{A}\right|}+\frac{1}{\beta}\right)}\right]\right\} \\
\therefore A_{v}=-\frac{1 / Q_{1}}{V_{T}} \times \frac{\left|V_{A}\right|}{2 \nmid<\left(\frac{V_{T}}{\left|V_{A}\right|}+\frac{1}{\beta}\right)}=-\frac{1}{2} \frac{\left|V_{A}\right| / V_{T}}{\left(V_{T} /\left|V_{A}\right|\right)+1 / \beta}
\end{gathered}
$$

Substituting $\left|V_{A}\right|=5 \mathrm{~V}$ and $\beta=50$ brings to

$$
\therefore A_{v}=-\frac{1}{2} \frac{5.0 / 0.025}{(0.025 / 5.0)+1 / 50}=-4000 \mathrm{~V} / \mathrm{V}
$$

REFERENCE

- SEDRA, A.S. and SMITH, K.C. (2015). Microelectronic Circuits. 7th edition. Oxford: Oxford University Press. posting free, high-quality materials like this one on a regular basis.

