$[10] \mid m$

 Quiz EL101

 Quiz EL101
 Transmission Line Parameters

Lucas Monteiro Nogueira

PROBLEMS

- ${ }^{-1}$ Problem 1

The temperature dependence of resistance can be
 quantified by the relation

$$
R_{2}=R_{1}\left[1+\alpha\left(T_{2}-T_{1}\right)\right]
$$

where R_{1} and R_{2} are the resistances at temperatures at temperatures T_{1} and T_{2}, respectively, and α is known as the temperature coefficient of resistance. If a copper wire has a resistance of 60Ω at $20^{\circ} \mathrm{C}$, find the maximum permissible operating temperature of the wire if its resistance is to increase by at most 18%. Take the temperature coefficient at $20^{\circ} \mathrm{C}$ to be $\alpha=$ $0.00382{ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$.
M Problem 2 (Glover et al., 2017, w/ permission)
Problem 2.1: Find the geometric mean radius (GMR) of a stranded conductor consisting of six outer strands surrounding and touching one central strand, all strands having the same radius r.

Problems 2.2, 2.3, and 2.4: Find the geometric mean radii (GMR) of the following unconventional stranded conductors. All strands have the same radius r.

Y Problem 3
Problem 3.1: A $60-\mathrm{Hz}$, three-phase three-wire overhead line has solid cylindrical conductors arranged in the form of an equilateral triangle with 1.2 m spacing. The conductor diameter is 7 mm . Calculate the positive-sequence inductance in H / m and the positive-sequence reactance in Ω / km.

Problem 3.2: Rework the previous problem if the phase spacing is (a) increased by 25% to 1.5 m ; or (b) decreased by 25% to 0.9 m .

1 Problem 4

A $230-\mathrm{kV}, 60-\mathrm{Hz}$, three-phase completely transposed overhead line has one 954 kcmil per phase and flat horizontal phase spacing, with 6 m between adjacent conductors. Determine the inductance in H / m and the inductive reactance in Ω / km.

M Problem 5

Calculate the inductive reactance in Ω / km of a bundled $500-\mathrm{kV}, 60-$ Hz , three-phase completely transposed overhead line having three 1113 kcmil conductors per bundle, with 0.6 m between conductors in the bundle. The horizontal phase spacings between bundle centers are 8,8 , and 16 m .
\ Problem 6 (Glover et al., 2017, w/ permission)
The conductor configuration of a bundled single-phase overhead transmission line is shown in the figure below. Line X has its three conductors situated at the corners of an equilateral triangle with 10 cm spacing. Line Y has its three conductors arranged in a horizontal configuration with 10 cm spacing. All conductors are identical, solidcylindrical conductors each with a radius of 2 cm . Find the equivalent representation in terms of the geometric mean radius of each bundle and a separation that is the geometric mean distance. True or false?

1.() The GMR of line X is greater than 5 cm .
2.() The GMR of line Y is greater than 6.5 cm .
3.() The GMD between lines X and Y is greater than 6.2 m .

Problem 7 (Glover et al., 2017, w/ permission)
The following figure shows the conductor configuration of a completely transposed three-phase overhead transmission line with bundled phase conductors. All conductors have a radius of 0.75 cm with a $35-\mathrm{cm}$ bundle spacing. Determine the inductance per phase in $\mathrm{mH} / \mathrm{km}$ and the inductive line reactance per phase in Ω / km at 60 Hz .

A Problem 8 (Glover et al., 2017, w/ permission)

For the overhead line of configuration shown below operating at 60 Hz , determine the inductive reactance in ohms/mile/phase. All subconductors have 1.3-cm OD. Note that, for a 4-subconductor squareshaped bundle, $G M R=1.091 \sqrt[4]{D_{S} d^{3}}$, where D_{s} is the radius of one subconductor and d is the distance between subconductors.

Problem 9 (Glover et al., 2017, w/ permission)

Problem 9.1: The following figure shows double-circuit conductors' relative positions in segment 1 of transposition of transposition of a completely transposed three-phase overhead transmission line. The inductance is given by

$$
L=2 \times 10^{-7} \ln \frac{G M D}{G M R} \mathrm{H} / \mathrm{m} / \text { phase }
$$

where GMD $=\left(D_{A B_{\mathrm{eq}}} D_{B C_{\mathrm{eq}}} D_{A C_{\mathrm{eq}}}\right)^{1 / 3}$, with mean distances defined by equivalent spacings

$$
\begin{aligned}
D_{A B_{\mathrm{eq}}} & =\left(D_{12} D_{1^{\prime} 2^{\prime}} D_{12^{\prime}}, D_{1^{\prime} 2}\right)^{1 / 4} \\
D_{B C_{\mathrm{eq}}} & =\left(D_{23} D_{2^{\prime} 3^{\prime}} D_{2^{\prime} 3} D_{23^{\prime}}\right)^{1 / 4} \\
D_{A C_{\mathrm{eq}}} & =\left(D_{13} D_{1^{\prime} 3^{\prime}} D_{13^{\prime}} D_{1^{\prime} 3}\right)^{1 / 4}
\end{aligned}
$$

and $G M R=\left[(G M R)_{A}(G M R)_{B}(G M R)_{C}\right]^{1 / 3}$, with phase GMRs defined by

$$
(G M R)_{A}=\left(r^{\prime} D_{11^{\prime}}\right)^{1 / 2} ;(G M R)_{B}=\left(r^{\prime} D_{22^{\prime}}\right)^{1 / 2} ;(G M R)_{C}=\left(r^{\prime} D_{33^{\prime}}\right)^{1 / 2}
$$

and r ' is the GMR of phase conductors.

Now consider a $350-\mathrm{kV}$, three-phase, double-circuit line with phase conductor's GMR of 1.8 cm and the horizontal conductor configuration shown below. Determine the inductance per meter per phase in henries (H).

Problem 9.2: Calculate the inductance of just one circuit and then divide by 2 to obtain the inductance of the double circuit. Compare this result with the one in the previous part.

(Problem 10 (Glover et al., 2017, w/ permission)

Now consider a double-circuit configuration shown in the following figure. The configuration belongs to a $500-\mathrm{kV}$, three-phase line with bundle conductors of three subconductors at 50 cm spacing. The GMR of each subconductor is given to be 1.5 cm . Determine the inductive reactance of the line in ohms per kilometer per phase. You may use

$$
X_{L}=0.1736 \log _{10} \frac{G M D}{G M R} \Omega / \mathrm{km} / \text { phase }
$$

- Problem 11

Calculate the capacitance-to-neutral in F / m and the admittance-toneutral in S / km for the three-phase line in Problem 4. Also calculate the linecharging current in $\mathrm{kA} /$ phase if the line is 110 km in length and is operated at 230 kV . Neglect the effect of the earth plane. True or false?
1.() The capacitance-to-neutral is greater than $9.2 \times 10^{-12} \mathrm{~F} / \mathrm{m}$.
2.() The admittance-to-neutral is greater than $j 3.6 \times 10^{-6} \mathrm{~S} / \mathrm{km}$.
3.() The line-charging current is greater than $0.04 \mathrm{kA} /$ phase.

M Problem 12

Calculate the capacitance-to-neutral in F / m and the admittance-toneutral in S / km of the line introduced in Problem 5. Also determine the total reactive power in $\mathrm{Mvar} / \mathrm{km}$ supplied by the line capacitance when it is operated at 500 kV . True or false?
1.() The capacitance-to-neutral is greater than $7.8 \times 10^{-12} \mathrm{~F} / \mathrm{m}$.
2.() The admittance-to-neutral is greater than $j 3 \times 10^{-6} \mathrm{~S} / \mathrm{km}$.
3.() The total reactive power is greater than $0.83 \mathrm{Mvar} / \mathrm{km}$.

M Problem 13 (Stevenson Jr. and Grainger, 1994)
A three-phase $60-\mathrm{Hz}$ transmission line has its conductors arranged in a triangular formation so that two of the distances between conductors are 7.5 m and the third is 13 m . The conductors are ACSR with 2.25 cm OD. Determine the capacitance to neutral ($\mu \mathrm{F} / \mathrm{km}$) and the capacitive reactance $(\Omega \cdot \mathrm{km})$ of the line.

M Problem 14 (Stevenson Jr. and Grainger, 1994)

The $60-\mathrm{Hz}$ capacitive reactance to neutral of a solid conductor, which is one conductor of a single-phase line with 1.5 m spacing, is $280 \mathrm{k} \Omega-\mathrm{km}$. What value of reactance, in $k \Omega \cdot$ mi, would be specified in a table listing the capacitive reactance in ohm-miles to neutral of the conductor at 2 ft spacing for 25 Hz ? What is the cross-sectional area of the conductor in circular mils?
M Problem 15 (Stevenson Jr. and Grainger, 1994)
Three ACSR conductors of $28-\mathrm{mm}$ OD are used for a three-phase overhead transmission line operating at 60 Hz . The conductor configuration is in the form of an isosceles triangle with sides of $6 \mathrm{~m}, 6 \mathrm{~m}$, and 11 m . Calculate the capacitance-to-neutral for each 1-kilometer length of line. Next, determine the capacitive reactance-to-neutral for a line length of 75 mi . Also determine the charging current per mile for a normal operating voltage of 220 kV . Lastly, determine the three-phase reactive power supplied by the line capacitance. True or false?
1.() The capacitance-to-neutral of the line is greater than $8.5 \mathrm{nF} / \mathrm{km}$.
2.() The capacitive reactance-to-neutral of the line for a $75-\mathrm{mi}$ line is greater than 2200Ω.
3.() The charging current is greater than $0.72 \mathrm{~A} / \mathrm{mi}$.
4.() The three-phase reactive power for a 75 -mi line is greater than 21 Mvar .

$>$ SOLUTIONS

P. $1 \rightarrow$ Solution

Since the resistance of the wire is to increase 18% at most, $R_{2}=1.18 R_{1}$. Further, $\alpha=0.00382$ and $T_{1}=20^{\circ} \mathrm{C}$. Accordingly,

$$
\begin{gathered}
R_{2}=R_{1}\left[1+\alpha\left(T_{2}-T_{1}\right)\right] \rightarrow 1.18 R_{1}=R_{1}\left[1+0.00382 \times\left(T_{\max }-20\right)\right] \\
\therefore 1.18=1+0.00382 \times\left(T_{\max }-20\right) \\
\therefore 0.18=0.0382 T_{\max }-0.0764 \\
\therefore T_{\max }=\frac{0.18+0.0764}{0.0382}=67.1^{\circ} \mathrm{C}
\end{gathered}
$$

The wire is to operate at a temperature no greater than $67.1^{\circ} \mathrm{C}$.

P. $2 \Rightarrow$ Solution

Problem 2.1: Refer to the illustration on the next page.

From the figure, it is easy to see that, for conductors 1-6,

$$
\begin{gathered}
D_{11}=r^{\prime}=e^{-\frac{1}{4}} r=0.779 r \\
D_{12}=D_{16}=D_{17}=2 r \\
D_{13}=D_{15}=2 \sqrt{3} r \\
D_{14}=4 r
\end{gathered}
$$

For conductor 7,

$$
\begin{gathered}
D_{77}=0.779 r \\
D_{71}=D_{72}=D_{73}=D_{74}=D_{75}=D_{76}=2 r
\end{gathered}
$$

The GMR is then

$$
\begin{aligned}
& G M R=\sqrt[49]{\left(D_{11} D_{12} D_{13} D_{14} D_{15} D_{16} D_{17}\right)^{6}\left(D_{71} D_{72} D_{73} D_{74} D_{75} D_{76} D_{77}\right)} \\
& \therefore G M R=\sqrt[49]{(0.779 r \times 2 r \times 2 \sqrt{3} r \times 4 r \times 2 \sqrt{3} r \times 2 r \times 2 r)^{6} \times(2 r \times 2 r \times 0.779 r)} \\
& \therefore G M R=2.18 r
\end{aligned}
$$

Problem 2.2: This is a simplified version of the stranded conductor investigated in the previous problem. The GMR is
$G M R=\sqrt[9]{\left[\left(e^{-1 / 4} r\right)(2 r)(2 r)\right] \times\left[\left(e^{-1 / 4} r\right)(2 r)(2 r)\right] \times\left[\left(e^{-1 / 4} r\right)(2 r)(2 r)\right]}=1.46 r$
Problem 2.3: In this configuration, there are two "types" of strands, which we highlight below in blue and red.

The GMR of the conductor is given by
$G M R=\sqrt[16]{\left[\left(e^{-1 / 4} r\right)(2 r)(4 r)(6 r)\right]^{2} \times\left[\left(e^{-1 / 4} r\right)(2 r)(2 r)(4 r)\right]^{2}}=2.16 r$
Problem 2.4: In this particular configuration, there are three "types" of strands, which we highlight below in blue, red and green.

The GMR is given by
$G M R=\sqrt{\left[(0.779 r)(2 r)^{2}(4 r)^{2}(\sqrt{20} r)^{2}(\sqrt{8} r)(\sqrt{32} r)\right]^{4}} \begin{aligned} & \times\left[(0.779 r)(2 r)^{3}(\sqrt{8} r)^{2}(\sqrt{20} r)^{2}(4 r)\right]^{4} \times\left[(0.779 r)(2 r)^{4}(\sqrt{8} r)^{4}\right]\end{aligned}$

$\therefore G M R=2.64 r$

P. $3 \rightarrow$ Solution

Problem 3.1: The positive-sequence inductance is given by

$$
L_{1}=2 \times 10^{-7} \ln \left(\frac{D_{1}}{r^{\prime}}\right) \mathrm{H} / \mathrm{m}
$$

where $D_{1}=1.2 \mathrm{~m}$ is the distance that separates the conductor centroids and r^{\prime} is a parameter that depends on conductor diameter according to

$$
r^{\prime}=\frac{e^{-\frac{1}{4}}}{2} d=\frac{e^{-\frac{1}{4}}}{2} \times 0.007=0.00273 \mathrm{~m}
$$

so that

$$
L_{1}=2 \times 10^{-7} \ln \left(\frac{1.2}{0.00273}\right)=1.22 \times 10^{-6} \mathrm{H} / \mathrm{m}
$$

Next, for a $60-\mathrm{Hz}$ line, the positive-sequence reactance is given by

$$
\begin{gathered}
X_{1}=\omega L_{1}=(2 \pi \times 60) \times\left(1.22 \times 10^{-6}\right)=4.60 \times 10^{-4} \Omega / \mathrm{m} \\
\therefore X_{1}=0.460 \Omega / \mathrm{km}
\end{gathered}
$$

Problem 3.2: With a spacing $D_{2}=1.5 \mathrm{~m}$, the positive-sequence inductance now becomes

$$
L_{2}=2 \times 10^{-7} \ln \left(\frac{D_{2}}{r^{\prime}}\right)=2 \times 10^{-7} \ln \left(\frac{1.5}{0.00273}\right)=1.26 \times 10^{-6} \mathrm{H} / \mathrm{m}
$$

which represents an increase of 3.3% relatively to L_{1}. The updated positivesequence reactance is

$$
\begin{gathered}
X_{2}=\omega L_{2}=(2 \pi \times 60) \times\left(1.26 \times 10^{-7}\right)=4.75 \times 10^{-4} \Omega / \mathrm{m} \\
\therefore X_{2}=0.475 \Omega / \mathrm{km}
\end{gathered}
$$

Now, decreasing phase spacing to 0.9 m will lower the positivesequence inductance to $L_{3}=1.16 \times 10^{-6} \mathrm{H} / \mathrm{m}\left(\mathrm{a} 4.9 \%\right.$ decrease relatively to $\left.L_{1}\right)$ and decrease the positive-sequence reactance to $X_{3}=0.437 \Omega / \mathrm{km}$.

P. $4 \Rightarrow$ Solution

A 954-kcmil conductor has GMR equal to $24.8 \mathrm{~mm} / 2=12.4 \mathrm{~mm}$ (Use Convert-me's converter at https://www.convert-
me.com/en/convert/wire_gauge/wireareakcmil.html?u=wireareakcmil\&v=95
4). The geometric mean distance between phases is

$$
D_{\mathrm{eq}}=\sqrt[3]{D_{12} D_{23} D_{13}}=\sqrt[3]{6 \times 6 \times 12}=7.56 \mathrm{~m}
$$

We proceed to determine the inductance L,

$$
L=2 \times 10^{-7} \ln \left(\frac{D_{\mathrm{eq}}}{D_{s}}\right)=2 \times 10^{-7} \ln \left(\frac{7.56}{0.0124}\right)=1.28 \times 10^{-6} \mathrm{H} / \mathrm{m}
$$

and the reactance X_{L},

$$
\begin{gathered}
X_{L}=2 \pi f L=2 \pi \times 60 \times\left(1.28 \times 10^{-6}\right)=4.83 \times 10^{-4} \Omega / \mathrm{m} \\
\therefore X_{L}=0.483 \Omega / \mathrm{km}
\end{gathered}
$$

P. $5 \Rightarrow$ Solution

A $1113-\mathrm{kcmil}$ conductor has GMR equal to $26.8 \mathrm{~mm} / 2=13.4 \mathrm{~mm}$. The geometric mean distance between phases is

$$
D_{\mathrm{eq}}=\sqrt[3]{D_{12} D_{23} D_{13}}=\sqrt[3]{8 \times 8 \times 16}=10.1 \mathrm{~m}
$$

The inductive reactance is calculated to be

$$
X_{L}=\omega L_{1}=(2 \pi \times 60) \times\left(2 \times 10^{-7} \ln \frac{10.1}{0.0134}\right)=5.0 \times 10^{-4} \Omega / \mathrm{m}
$$

$$
\therefore X_{L}=0.500 \Omega / \mathrm{km}
$$

P. $6 \rightarrow$ Solution

Conductor X has $N=3$ identical subconductors, each with radius $r_{x}=2$ cm . Likewise, conductor Y has $M=3$ identical subconductors, each with radius $r_{Y}=2 \mathrm{~cm}$. Let $D_{X X}$ denote the geometric mean radius of conductor $X, D_{Y Y}$ denote the geometric mean radius of conductor Y, and $D_{X Y}$ denote the geometric mean distance between conductors X and Y. Firstly, the value of $D_{x x}$ is

$$
\begin{gathered}
D_{X X}=\sqrt[N^{2}]{\prod_{k=1}^{N} \prod_{m=1}^{N} D_{k m}}=\sqrt[9]{\prod_{k=1}^{3} \prod_{m=1}^{3} D_{k m}}=\sqrt[9]{\prod_{k=1}^{3} D_{k 1} D_{k 2} D_{k 3}} \\
\therefore D_{X X}=\sqrt[9]{\left(D_{11} D_{12} D_{13}\right)\left(D_{21} D_{22} D_{23}\right)\left(D_{31} D_{32} D_{33}\right)} \\
\therefore D_{X X}=\sqrt[9]{\left(0.778 r_{X} \times 0.1 \times 0.1\right) \times\left(0.1 \times 0.778 r_{X} \times 0.1\right) \times\left(0.1 \times 0.1 \times 0.778 r_{X}\right)} \\
\therefore D_{X X}=\sqrt[9]{[(0.778 \times 0.02) \times 0.1 \times 0.1] \times[0.1 \times(0.778 \times 0.02) \times 0.1] \times[0.1 \times 0.1 \times(0.778 \times 0.02)]} \\
\therefore D_{X X}=0.0538 \mathrm{~m}=5.38 \mathrm{~cm}
\end{gathered}
$$

The value of $D_{y y}$ is determined next,

$$
\begin{gathered}
D_{Y Y}=\sqrt[M 2]{\prod_{k=1^{\prime}}^{M} \prod_{m=1^{\prime}}^{M} D_{k m}}=\sqrt[9]{\prod_{k=1^{\prime}}^{3^{\prime}} \prod_{m=1^{\prime}}^{3^{\prime}} D_{k m}}=\sqrt[9]{\prod_{k=1^{\prime}}^{3^{\prime}} D_{k 1^{\prime}} D_{k 2^{\prime}} D_{k 3^{\prime}}} \\
\therefore D_{Y Y}=\sqrt[9]{\left(D_{1^{\prime} 1^{\prime}} D_{1^{\prime} 2^{\prime}} D_{1^{\prime} 3^{\prime}}\right)\left(D_{2^{\prime} 1^{\prime}} D_{2^{\prime} 2^{\prime}} D_{2^{\prime} 3^{\prime}}\right)\left(D_{3^{\prime} 1^{\prime}} D_{3^{\prime} 2^{\prime}} D_{3^{\prime} 3^{\prime}}\right)} \\
\therefore D_{Y Y}=\sqrt[9]{[(0.778 \times 0.02) \times 0.1 \times 0.2] \times[0.1 \times(0.778 \times 0.02) \times 0.1] \times[0.2 \times 0.1 \times(0.778 \times 0.02)]} \\
\therefore D_{Y Y}=0.0627 \mathrm{~m}=6.27 \mathrm{~cm}
\end{gathered}
$$

We proceed to determine the GMD between conductors X and Y,

$$
\begin{gathered}
D_{X Y}=\sqrt[N M]{\prod_{k=1}^{N} \prod_{m=1^{\prime}}^{M} D_{k m}}=\sqrt[3 \times 3]{\prod_{k=1}^{N} D_{k 1^{\prime}} D_{k 2^{\prime}} D_{k 3^{\prime}}} \\
\therefore D_{X Y}=\sqrt[9]{\left(D_{11^{\prime}} D_{12^{\prime}} D_{13^{\prime}}\right)\left(D_{21^{\prime}} D_{22^{\prime}} D_{23^{\prime}}\right)\left(D_{31^{\prime}} D_{32^{\prime}} D_{33^{\prime}}\right)}
\end{gathered}
$$

Distances D_{31}, D_{32}, and D_{33}, are somewhat trickier to visualize but, due to the tight spacing between subconductors, turn out to yield elementary results:

$$
\begin{aligned}
& D_{31^{\prime}}=\sqrt{\left(0.1^{2}-0.05^{2}\right)^{2}+6.05^{2}} \approx 6.05 \mathrm{~m} \\
& D_{32^{\prime}}=\sqrt{\left(0.1^{2}-0.05^{2}\right)^{2}+6.15^{2}} \approx 6.15 \mathrm{~m} \\
& D_{33^{\prime}}=\sqrt{\left(0.1^{2}-0.05^{2}\right)^{2}+6.25^{2}} \approx 6.25 \mathrm{~m}
\end{aligned}
$$

Finally,
$D_{X Y}=\sqrt[9]{(6.1 \times 6.2 \times 6.3) \times(6 \times 6.1 \times 6.2) \times(6.05 \times 6.15 \times 6.25)}=6.15 \mathrm{~m}$
Statement $\mathbf{1}$ is true, while statements $\mathbf{2}$ and $\mathbf{3}$ are false.

P. $7 \Rightarrow$ Solution

The geometric mean radius of each phase is calculated as

$$
R=\sqrt[4]{\left(r^{\prime}\right)^{2}(0.35)^{2}}=\sqrt[4]{(0.778 \times 0.0075)^{2} \times 0.35^{2}}=0.0452 \mathrm{~m}
$$

The geometric mean distance between the conductors of phases X and Y is given by

$$
D_{X Y}=\sqrt[4]{5^{2} \times 4.65 \times 5.35}=4.99 \mathrm{~m}
$$

Similarly,

$$
D_{Y Z}=\sqrt[4]{5^{2} \times 4.65 \times 5.35}=4.99 \mathrm{~m}
$$

and

$$
D_{x z}=\sqrt[4]{10^{2} \times 10.35 \times 9.65} \approx 10 \mathrm{~m}
$$

The GMD between phases is given by the cube root of the product of the three-phase spacings,

$$
D_{e q}=\sqrt[3]{D_{X Y} D_{Y Z} D_{X Z}}=\sqrt[3]{4.99 \times 4.99 \times 10}=6.29 \mathrm{~m}
$$

The inductance per phase is found as

$$
L=2 \times 10^{-7} \ln \left(\frac{6.29}{0.0452}\right) \times 1000 \times 1000=0.987 \mathrm{mH} / \mathrm{km}
$$

The line reactance for each phase is, in turn,

$$
X=2 \pi f L=2 \pi \times 60 \times\left(0.987 \times 10^{-3}\right)=0.372 \Omega / \mathrm{km}
$$

P. $8 \Rightarrow$ Solution

Using the formula provided, the GMR of one bundle is given by

$$
G M R=1.091 \sqrt[4]{D_{s} d^{3}}=1.091 \sqrt[4]{0.013 \times 0.5^{3}}=0.219 \mathrm{~m}
$$

Next, the GMD of the system is found as

$$
G M D=\sqrt[3]{\sqrt{12^{2}+4^{2}} \times 24 \times \sqrt{12^{2}+4^{2}}}=15.7 \mathrm{~m}
$$

We proceed to determine the per-phase inductance of the overhead transmission line,

$$
L=2 \times 10^{-7} \ln \frac{G M D}{G M R}=2 \times 10^{-7} \ln \frac{15.7}{0.219}=8.54 \times 10^{-7} \mathrm{H} / \mathrm{m}
$$

Lastly, the inductive reactance is calculated to be

$$
\begin{gathered}
X_{L}=2 \pi f \times L \\
\therefore X_{L}=2 \pi \times 60 \times\left(8.54 \times 10^{-7}\right)=3.22 \times 10^{-4} \Omega / \mathrm{m} / \text { phase } \\
\therefore X_{L}=0.518 \Omega / \mathrm{mi} / \mathrm{phase}
\end{gathered}
$$

P. $9 \Rightarrow$ Solution

Problem 9.1: The solution is started by determining $D_{A B_{\mathrm{eq}}}$ between conductors A and B .

$$
D_{A B_{\mathrm{cq}}}=\sqrt[4]{D_{12} D_{1^{\prime} 2^{\prime}} D_{12^{\prime}} D_{1^{\prime} 2}}=\sqrt[4]{10 \times 10 \times 40 \times 20}=16.8 \mathrm{~m}
$$

$D_{B C_{\mathrm{eq}}}$ is determined next,

$$
D_{B C_{\mathrm{eq}}}=\sqrt[4]{D_{23} D_{2^{\prime} 3^{\prime}} D_{2^{\prime} 3} D_{23^{\prime}}}=\sqrt[4]{10 \times 10 \times 20 \times 40}=16.8 \mathrm{~m}
$$

Then, $D_{A C_{\mathrm{eq}}}$,

$$
D_{A C_{\mathrm{eq}}}=\sqrt[4]{D_{13} D_{1^{\prime} 3^{\prime}} D_{13^{\prime}} D_{1^{\prime} 3}}=\sqrt[4]{20 \times 20 \times 50 \times 10}=21.1 \mathrm{~m}
$$

It follows that

$$
G M D=\sqrt[3]{D_{A B_{\mathrm{cq}}} D_{B C_{\mathrm{cq}}} D_{A C_{\mathrm{cq}}}}=\sqrt[3]{16.8 \times 16.8 \times 21.1}=18.1 \mathrm{~m}
$$

Noting that $r^{\prime}=0.778 \times 1.8=1.40 \mathrm{~cm}=0.0014 \mathrm{~m}$, we compute

$$
\begin{aligned}
& (G M R)_{A}=\sqrt{r^{\prime} D_{11^{\prime}}}=\sqrt{0.0014 \times 30}=0.205 \mathrm{~m} \\
& (G M R)_{B}=\sqrt{r^{\prime} D_{22^{\prime}}}=\sqrt{0.0014 \times 30}=0.205 \mathrm{~m} \\
& (G M R)_{C}=\sqrt{r^{\prime} D_{33^{\prime}}}=\sqrt{0.0014 \times 30}=0.205 \mathrm{~m}
\end{aligned}
$$

so that
$G M R=\sqrt[3]{(G M R)_{A}(G M R)_{B}(G M R)_{C}}=\sqrt[3]{0.205 \times 0.205 \times 0.205}=0.205 \mathrm{~m}$

The total inductance per meter per phase is

$$
L=2 \times 10^{-7} \ln \frac{G M D}{G M R}=2 \times 10^{-7} \ln \left(\frac{18.1}{0.205}\right)=8.961 \times 10^{-7} \mathrm{H} / \mathrm{m}
$$

Problem 9.2: To compute the inductance of just one circuit, we first establish the equivalent GMD $D_{\text {eq }}$,

$$
D_{\mathrm{eq}}=\sqrt[3]{D_{12} D_{23} D_{31}}=\sqrt[3]{20 \times 20 \times 40}=25.2 \mathrm{~m}
$$

Further, we have the GMR $D_{s}=r^{\prime}=0.0014 \mathrm{~m}$, so that

$$
L=2 \times 10^{-7} \ln \frac{D_{\mathrm{eq}}}{D_{S}}=2 \times 10^{-7} \ln \frac{25.2}{0.0014}=1.960 \times 10^{-6} \mathrm{H} / \mathrm{m}
$$

Dividing this result by two gives the inductance of the double circuit,

$$
\text { Inductance of the double circuit }=\frac{1.960 \times 10^{-6}}{2}=9.798 \times 10^{-7} \mathrm{H} / \mathrm{m}
$$

This approach overestimates the inductance per meter by 9.3\% relatively to the previous result.

P. $10 \Rightarrow$ Solution

The GMR of each subconductor is 1.5 cm , and the spacing between subconductors is 50 cm . Accordingly, the bundle GMR is

$$
\text { Bundle } G M R=\sqrt[3]{0.015 \times 0.5^{2}}=0.155 \mathrm{~m}
$$

Now, the overall phase GMR is given by

$$
G M R=\sqrt[3]{(G M R)_{A}(G M R)_{B}(G M R)_{C}}
$$

Here,

$$
\begin{gathered}
(G M R)_{A}=\sqrt{r^{\prime} D_{11^{\prime}}}=\sqrt{0.155 \times \sqrt{10^{2}+12^{2}}}=1.56 \mathrm{~m} \\
(G M R)_{B}=\sqrt{r^{\prime} D_{22^{\prime}}}=\sqrt{0.155 \times 30}=2.16 \mathrm{~m}
\end{gathered}
$$

$$
(G M R)_{C}=\sqrt{r^{\prime} D_{33^{\prime}}}=\sqrt{0.155 \times \sqrt{10^{2}+12^{2}}}=1.56 \mathrm{~m}
$$

so that

$$
G M R=\sqrt[3]{1.56 \times 2.16 \times 1.56}=1.74 \mathrm{~m}
$$

To determine the GMD, we use

$$
G M D=\sqrt[3]{D_{A B_{\mathrm{eq}}} D_{B C_{\mathrm{eq}}} D_{A C_{\mathrm{eq}}}}
$$

Here,

$$
\begin{gathered}
D_{A B_{\mathrm{eq}}}=\sqrt[4]{D_{12} D_{1^{\prime} 2^{\prime}} D_{12^{\prime}} D_{1^{\prime} 2}} \\
\therefore D_{A B_{\mathrm{eq}}}=\sqrt[4]{10 \times \sqrt{10^{2}+12^{2}} \times \sqrt{20^{2}+12^{2}} \times 20}=16.4 \mathrm{~m} \\
D_{B C_{\mathrm{eq}}}=\sqrt[4]{D_{23} D_{2^{\prime} 3^{\prime}} D_{2^{\prime} 3} D_{23^{\prime}}} \\
\therefore D_{B C_{\mathrm{eq}}}=\sqrt[4]{10 \times \sqrt{10^{2}+12^{2}} \times 20 \times \sqrt{20^{2}+12^{2}}}=16.4 \mathrm{~m} \\
D_{A C_{\mathrm{eq}}}=\sqrt[4]{D_{13} D_{1^{\prime} 3^{\prime}} D_{13^{\prime}} D_{1^{\prime} 3}} \\
\therefore D_{A C_{\mathrm{eq}}}=\sqrt[4]{12 \times 12 \times 10 \times 10}=11.0 \mathrm{~m}
\end{gathered}
$$

giving

$$
G M D=\sqrt[3]{D_{A B_{\mathrm{eq}}} D_{B C_{\mathrm{eq}}} D_{A C_{\mathrm{eq}}}}=\sqrt[3]{16.4 \times 16.4 \times 11.0}=14.4 \mathrm{~m}
$$

It remains to determine the inductive reactance X_{L},

$$
X_{L}=0.1736 \log _{10} \frac{G M D}{G M R}=0.1736 \log _{10} \frac{14.4}{1.74}=0.159 \Omega / \mathrm{km} / \mathrm{phase}
$$

P. $11 \Rightarrow$ Solution

In Problem 4, the GMR and GMD for this system were calculated to be 12.4 mm and 7.56 m , respectively. The capacitance-to-neutral is then

$$
C_{1}=\frac{2 \pi \varepsilon_{0}}{\ln (D / r)}=\frac{2 \pi \times\left(8.85 \times 10^{-12}\right)}{\ln (7.56 / 0.0124)}=8.67 \times 10^{-12} \mathrm{~F} / \mathrm{m}
$$

The admittance-to-neutral, in turn, is

$$
\begin{gathered}
\bar{Y}_{1}=j \omega C_{1}=j(2 \pi \times 60) \times\left(8.67 \times 10^{-12}\right)=j 3.27 \times 10^{-9} \mathrm{~S} / \mathrm{m} \\
\therefore \bar{Y}_{1}=j 3.27 \times 10^{-6} \mathrm{~S} / \mathrm{km}
\end{gathered}
$$

For a 125 km line length,

$$
I_{\mathrm{chg}}=\bar{Y}_{1} V_{L N}=\left(3.27 \times 10^{-6} \times 125\right) \times(230 / \sqrt{3})=0.0543 \mathrm{kA} / \text { phase }
$$

Statement $\mathbf{3}$ is true, while statements $\mathbf{1}$ and $\mathbf{2}$ are false.

P. $12 \Rightarrow$ Solution

In Problem 5, the GMR and GMD for this system were calculated to be 13.4 mm and 10.1 m , respectively. The capacitance-to-neutral is then

$$
C_{1}=\frac{2 \pi \varepsilon_{0}}{\ln (D / r)}=\frac{2 \pi \times\left(8.85 \times 10^{-12}\right)}{\ln (10.1 / 0.0134)}=8.39 \times 10^{-12} \mathrm{~F} / \mathrm{m}
$$

The admittance-to-neutral, in turn, is

$$
\begin{gathered}
\bar{Y}_{1}=j \omega C_{1}=j(2 \pi \times 60) \times\left(8.39 \times 10^{-12}\right)=j 3.16 \times 10^{-9} \mathrm{~S} / \mathrm{m} \\
\therefore \bar{Y}_{1}=j 3.16 \times 10^{-6} \mathrm{~S} / \mathrm{km}
\end{gathered}
$$

Lastly, the total reactive power is

$$
Q_{1}=V_{L L}^{2} Y_{1}=500^{2} \times\left(3.16 \times 10^{-6}\right)=0.790 \mathrm{Mvar} / \mathrm{km}
$$

\rightarrow Statements $\mathbf{1}$ and $\mathbf{2}$ are true, while statement $\mathbf{3}$ is false.

P. $13 \Rightarrow$ Solution

We first determine $D_{\text {eq }}$,

$$
D_{\mathrm{eq}}=\sqrt[3]{7.5 \times 7.5 \times 13}=9.01 \mathrm{~m}
$$

The capacitance to neutral is calculated as

$$
C=\frac{2 \pi \times\left(8.85 \times 10^{-12}\right)}{\ln \left(\frac{9.01}{0.0225 / 2}\right)}=1.05 \times 10^{-11} \mathrm{~F} / \mathrm{m}=0.0105 \mu \mathrm{~F} / \mathrm{km}
$$

The capacitive reactance is
$X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 60 \times\left(1.05 \times 10^{-11}\right)}=2.53 \times 10^{8} \Omega \cdot \mathrm{~m}=253,000 \Omega \cdot \mathrm{~km}$

P. $14 \rightarrow$ Solution

In general, the capacitive reactance is

$$
X_{C}=\frac{1}{2 \pi f C}=\frac{2.86 \times 10^{9}}{f} \ln \frac{D}{r} \quad \Omega \cdot \mathrm{~m} \text { to neutral }
$$

or, equivalently,

$$
\begin{gathered}
X_{C}=\frac{2.86 \times 10^{3}}{f} \ln \frac{D}{r} \mathrm{k} \Omega \cdot \mathrm{~km} \text { to neutral } \\
\therefore X_{C}=\frac{2.86 \times 10^{3}}{60} \ln \frac{1.5}{r}=280 \\
\therefore r=0.00422 \mathrm{~m}=0.422 \mathrm{~cm}
\end{gathered}
$$

Equivalently，$r=0.0138 \mathrm{ft}$ ．Now，for a spacing of 2 ft and an angular frequency of 25 Hz ，

$$
\begin{gathered}
X_{C}=\frac{1.779 \times 10^{6}}{f} \ln \frac{D}{r} \Omega \cdot \mathrm{mi} \\
\therefore X_{C}=\frac{1.779 \times 10^{6}}{25} \ln \frac{2}{0.0138}=354,000 \Omega \cdot \mathrm{mi} \\
\therefore X_{C}=354 \mathrm{k} \Omega \cdot \mathrm{mi}
\end{gathered}
$$

Noting that $d=2 \times 0.0138 \mathrm{ft}=0.331 \mathrm{in}$ ，and that $1 \mathrm{cmil}=7.854 \times 10^{-7} \mathrm{in}^{2}$, the cross－section of the wire is converted as

$$
A=\frac{\pi \times 0.331^{2}}{4} \mathrm{in}^{2} \times \frac{1 \mathrm{cmil}}{7.854 \times 10^{-7} \mathrm{in.}^{2}}=110,000 \mathrm{cmil}
$$

P． $15 \Rightarrow$ Solution

The solution is started by computing the $G M R=0.028 / 2=0.014 \mathrm{~m}$ and the GMD

$$
D_{\mathrm{eq}}=\sqrt[3]{D_{12} D_{23} D_{13}}=\sqrt[3]{6 \times 6 \times 11}=7.34 \mathrm{~m}
$$

The capacitance－to－neutral follows as

$$
\begin{aligned}
C_{n}=\frac{2 \pi \varepsilon_{0}}{\ln \left(D_{\text {eq }} / D_{s}\right)} & =\frac{2 \pi \times\left(8.85 \times 10^{-12}\right)}{\ln (7.34 / 0.014)}=8.88 \times 10^{-12} \mathrm{~F} / \mathrm{m} \\
& \therefore C_{n}=8.88 \mathrm{nF} / \mathrm{km}
\end{aligned}
$$

The per－unit－length reactance－to－neutral is

$$
\begin{gathered}
X_{C}=\frac{1}{2 \pi f C}=\frac{1}{2 \pi \times 60 \times\left(8.88 \times 10^{-12}\right)}=2.99 \times 10^{8} \Omega \cdot \mathrm{~m} \\
\therefore X_{C}=299,000 \Omega \cdot \mathrm{~km}
\end{gathered}
$$

For a line length of $75 \mathrm{mi} \approx 121 \mathrm{~km}$ ，

$$
X_{C}=\frac{299,000 \Omega \cdot \text { 侖的 }}{121 \text { 有 }}=2470 \Omega
$$

Next comes the charging current per mile，

$$
\begin{gathered}
I_{\text {chg }}=\frac{220,000}{\sqrt{3}} \times \frac{1}{X_{C}}=\frac{220,000}{\sqrt{3}} \times \frac{1}{2.99 \times 10^{8}}=4.25 \times 10^{-4} \mathrm{~A} / \mathrm{m} \\
\therefore I_{\text {chg }}=0.684 \mathrm{~A} / \mathrm{mi}
\end{gathered}
$$

For a line length of $75 \mathrm{mi}, I_{\text {chg }}=51.3 \mathrm{~A}$ ．Multiplying this current by the voltage gives the three－phase reactive power，

$$
\Pi=U I_{\mathrm{chg}}=(\sqrt{3} \times 220,000) \times 0.684=19.6 \mathrm{MVar}
$$

－Statements $\mathbf{1}$ and $\mathbf{2}$ are true，while statements $\mathbf{3}$ and $\mathbf{4}$ are false．

REFERENCES

－GLOVER，J．D．，OVERBYE，T．J．，and SARMA，M．S．（2017）．Power System Analysis and Design．6th edition．Boston：Cengage Learning．
－GRAINGER，J．J．and STEVENSON，JR．，W．D．（1994）．Power System Analysis． New York：McGraw－Hill．

Was this material helpful to you？If so，please consider donating a small amount to our project at www．montoguequiz．com／donate so we can keep posting free，high－quality materials like this one on a regular basis．

