Montogue

How to use Montogue's Shallow Foundation Bearing Capacity Calculator Lucas Monteiro Nogueira

- 1. Vesić's General Bearing Capacity Equation

The program uses the general bearing capacity equation proposed by Vesić in the 1970s. The pertaining equation is

$$
q_{n}=c^{\prime} N_{c} s_{c} d_{c} b_{c} i_{c} g_{c} v_{c}+\sigma_{z D}^{\prime} N_{q} s_{q} d_{q} b_{q} i_{q} g_{q} v_{q}+\frac{1}{2} \gamma^{\prime} B N_{\gamma} s_{\gamma} d_{\gamma} b_{\gamma} i_{\gamma} g_{\gamma} v_{\gamma}
$$

where
$\rightarrow c^{\prime}$ is cohesive strength (or undrained shear strength s_{u} in total stress analyses);
$\rightarrow \sigma_{z D}^{\prime}$ is the vertical effective stress at a depth D below the ground surface (D is the depth of the foundation). The total stress $\sigma_{z D}$ may be used in total stress analyses;
$\rightarrow \gamma^{\prime}$ is the effective unit weight of the soil (which may require correction depending on the depth of the water table relatively to the footing; see below);
$\rightarrow N_{c}, N_{q}, N_{\gamma}$ are Vesić's bearing capacity factors;
$\rightarrow s_{c}, s_{q}, s_{\nu}$ are shape factors;
$\rightarrow d_{c}, d_{q}, d_{\nu}$ are depth factors;
$\rightarrow b_{c}, b_{q}, b_{\nu}$ are base inclination factors;
$\rightarrow i_{c}, i_{q}, i_{\nu}$ are load inclination factors;
$\rightarrow g_{c}, g_{q}, g_{\nu}$ are ground inclination factors;
$\rightarrow v_{c}, v_{q}, v_{\nu}$ are soil compressibility factors;

2. Data Input

2.1. Effective friction angle (degrees): This is the angle ϕ^{\prime} in the soil's MohrCoulomb failure envelope $\tau=c^{\prime}+\sigma$ tan ϕ^{\prime}. For a total stress analysis, the undrained friction angle ϕ_{T} may be entered instead.
2.2. Effective cohesion ($\mathrm{kN} / \mathrm{m}^{2}$ or $\mathrm{lb} / \mathrm{ft}^{2}$): This is the vertical intercept c' in the soil's Mohr-Coulomb failure envelope $\tau=c^{\prime}+\sigma \tan \phi^{\prime}$. For a total stress analysis, the undrained shear strength s_{u} may be entered instead.
2.3. Footing width (B) (m or ft): This is, wait for it , the width of the footing.
2.4. Footing length $(\mathrm{L})(\mathrm{m}$ or ft$)$: This is, you guessed it , the length of the footing. For a square footing, $B=L$.

In principle, a strip footing could be simulated by entering a very large value in the footing length field, but problems of this nature have not been tested.
2.5. Foundation depth (D) or groundwater depth $\left(D_{w}\right)$ (m or ft): Following Coduto et al. (2016), three cases are defined depending on the relative magnitudes of D, D_{w}, and the width B.
\rightarrow Case 1: $D_{w} \leq D$ (water table is shallower than the footing).
In this case, the effective unit weight γ^{\prime} to be used in the third term of the bearing capacity equation is the buoyant weight γ_{b}, namely

$$
\gamma^{\prime}=\gamma_{b}=\gamma-\gamma_{w}
$$

where γ is the dry unit weight of the soil and $\gamma_{w}=9.81 \mathrm{kN} / \mathrm{m}^{3}$ or $62.43 \mathrm{lb} / \mathrm{ft}^{3}$ is the unit weight of water at ambient temperature. In Case 1, the second term in the bearing capacity formula is also affected, but the appropriate correction is implicit in the computation of effective stress $\sigma_{z D}^{\prime}$.
\rightarrow Case 2: $D_{w} \leq D \leq D+B$ (water table is shallower than the lower limit of the zone of influence).

In this case, the effective unit weight γ^{\prime} is expressed as

$$
\gamma^{\prime}=\gamma-\gamma_{w}\left[1-\left(\frac{D_{w}-D}{B}\right)\right]
$$

\rightarrow Case 3: $D+B \leq D$ (water table is lower than the lower limit of the zone of influence).

In this case, no groundwater correction is necessary and the effective unit weight γ^{\prime} of the soil is taken as the dry unit weight γ :

$$
\gamma^{\prime}=\gamma
$$

2.6. Soil unit weight (dry) and soil unit weight (saturated) ($\mathrm{kN} / \mathrm{m}^{3}$ or $\mathrm{lb} / \mathrm{ft}^{3}$): These are the average unit weights of the soil under consideration. At present, the program only supports calculation of bearing capacity in soils constituted of a single homogeneous layer.

> The saturated unit weight is only required for calculations pertaining to groundwater case 1 . In cases 2 and 3 , enter the dry unit weight and leave the saturated unit weight as zero. A very deep water table can be simulated by entering a very large number in the groundwater depth field.
2.7. Footing base inclination (degrees): This is the inclination of the footing base relatively to the horizontal.
2.8. Applied normal load (kN or lb): This is the intensity of the load component that acts perpendicularly to the base of the footing.
2.9. Applied shear load (kN or lb): This is the intensity of the load component that acts parallel to the base of the footing.

In Vesić's model, applied normal and shear loads affect bearing capacity only through the load inclination factors, which can be unrealistic and requires careful judgment on part of the engineer.
2.10. Ground surface inclination (degrees): This is the declivity of the nearby slope relatively to the horizontal.
2.11. Modulus of elasticity ($\mathrm{kN} / \mathrm{m}^{2}$ or $\mathrm{lb} / \mathrm{ft}^{2}$): This is Young's modulus for the soil layer in which the footing is constructed. This quantity is used solely to compute the shear modulus G_{s}, which is related to Young's modulus (E) and Poisson's ratio (μ) by the elasticity-theory equation

$$
G_{s}=\frac{E}{2(1+\mu)}
$$

2.12. Poisson's ratio (dimensionless): Poisson's ratio is approximately equal to 0.3 for most soils and has no use in the program besides calculating the shear modulus G_{s}.
2.13. Shear modulus ($\mathrm{kN} / \mathrm{m}^{2}$ or $\mathrm{lb} / \mathrm{ft}^{2}$): This mechanical parameter is used to compute Vesić's soil compressibility factors. By default, the shear modulus is calculated from Young's modulus and Poisson's ratio using the relationship shown in 2.11; entering a shear modulus will override this calculation.
2.14. Factor of safety (dimensionless): Dividing the nominal bearing capacity by the factor of safety yields the allowable bearing capacity. Likewise, dividing the gross axial load by the factor of safety gives the gross allowable load.

3. Data Output

3.1. Nominal bearing capacity ($\mathrm{kN} / \mathrm{m}^{2}$ or ksf): As mentioned in Section 1, the nominal bearing capacity q_{n} is determined with Vesić's bearing capacity equation.
3.2. Gross axial load (kN or kip): The gross axial load is obtained by multiplying the nominal bearing capacity by the base area of the footing:

$$
Q_{n}=q_{n} \times(B \times L)
$$

3.3. Allowable bearing capacity ($\mathrm{kN} / \mathrm{m}^{2}$ or ksf): The allowable bearing capacity is obtained by dividing the nominal bearing capacity by the factor of safety:

$$
q_{\mathrm{all}}=\frac{q_{n}}{\mathrm{FS}}
$$

3.4. Gross allowable load (kN or kip): The gross allowable load is obtained by dividing the gross axial load by the factor of safety:

$$
Q_{\mathrm{all}}=\frac{Q_{n}}{\mathrm{FS}}
$$

3.5. Multiplying factors: As shown in Section 1, Vesić's bearing capacity equation incorporates seven sets of factors that account for several phenomena.

3.5.1. Vesič's bearing capacity factors

Vesić's bearing capacity factors are functions of the friction angle ϕ^{\prime} only:

$$
N_{q}=e^{\pi \tan \phi^{\prime}} \tan ^{2}\left(45^{\circ}+\frac{\phi^{\prime}}{2}\right)
$$

$$
\begin{gathered}
N_{c}=\frac{N_{q}-1}{\tan \phi^{\prime}}\left(\text { for } \phi^{\prime}>0\right) \\
N_{c}=5.14\left(\text { for } \phi^{\prime}=0\right) \\
N_{\gamma}=2\left(N_{q}+1\right) \tan \phi^{\prime}
\end{gathered}
$$

3.5.2. Shape factors

Shape factors reflect the influence of footing shape on bearing capacity estimates. The factors are given by

$$
\begin{aligned}
& s_{c}=1+\frac{B}{L}\left(\frac{N_{q}}{N_{c}}\right) \\
& s_{q}=1+\left(\frac{B}{L}\right) \tan \phi^{\prime} \\
& s_{\gamma}=1-0.4\left(\frac{B}{L}\right)
\end{aligned}
$$

where B is footing width and L is footing length.

3.5.3. Depth factors

Depth factors reflect the influence of footing depth on bearing capacity estimates. The equations to use depend on footing depth-to-width ratio and friction angle:

$D / B \leq 1$	
$\phi=0$	$\phi^{\prime}>0$
$\begin{gathered} d_{c}=1+0.4\left(\frac{D}{B}\right) \\ d_{q}=d_{\gamma}=1.0 \end{gathered}$	$\begin{gathered} d_{c}=d_{q}-\frac{1-d_{q}}{N_{c} \tan \phi^{\prime}} \\ d_{q}=1+2 \tan \phi^{\prime}\left(1-\sin \phi^{\prime}\right)^{2}\left(\frac{D}{B}\right) \\ d_{\gamma}=1.0 \end{gathered}$
D/B >1	
$\phi=0$	$\phi^{\prime}>0$
$\begin{gathered} d_{c}=1+0.4 \underbrace{\tan ^{-1}\left(\frac{D}{B}\right)}_{\text {radians }} \\ d_{q}=d_{\gamma}=1.0 \end{gathered}$	$d_{c}=d_{q}-\frac{1-d_{q}}{N_{c} \tan \phi^{\prime}}$

	$d_{q}=1+2 \tan \phi^{\prime}\left(1-\sin \phi^{\prime}\right)^{2} \underbrace{\tan ^{-1}\left(\frac{D}{B}\right)}_{\text {radians }}$
$d_{\gamma}=1.0$	

3.5.4. Load inclination factors

Load inclination factors account for the application of loads that do not act perpendicular to the base of the footing, but still act through its centroid; the latter observation implies that loads must not be eccentric, as Vesić did not consider eccentricity in his model. The equations to use are

$$
\begin{gathered}
i_{c}=1-\frac{m V}{A c^{\prime} N_{c}} \geq 0 \\
i_{q}=\left(1-\frac{V}{P+\frac{A c^{\prime}}{\tan \phi^{\prime}}}\right)^{m} \geq 0 \\
i_{\gamma}=\left(1-\frac{V}{P+\frac{A c^{\prime}}{\tan \phi^{\prime}}}\right)^{m+1} \geq 0
\end{gathered}
$$

For loads inclined in the B direction, exponent m is stated as

$$
m=\frac{2+B / L}{1+B / L}
$$

For loads inclined in the L direction, exponent m is stated as

$$
m=\frac{2+L / B}{1+L / B}
$$

where V is the applied shear load, P is the applied normal load, $A=B \times L$ is the base area of the footing, c ' is effective cohesion (or undrained shear strength in total stress analyses), and ϕ^{\prime} is drained friction angle (or undrained friction angle in total stress analyses).

3.5.5. Base inclination factors

Base inclination factors consider the effect of footing base inclination on bearing capacity estimates. The factors are given by

$$
\begin{gathered}
b_{c}=1-\frac{\alpha}{147^{\circ}} \\
b_{q}=b_{\gamma}=\left(1-\frac{\alpha \tan \phi^{\prime}}{57^{\circ}}\right)^{2}
\end{gathered}
$$

where α is the angle (degrees) that the base of the footing makes with the horizontal. If the base of the footing is level, all of the b factors become equal to 1 and may be ignored.

3.5.6. Ground inclination factors

Footings near the top of a slope have a lower bearing capacity than those on level ground, and Vesić's g factors quantify this reduction. The factors are given by

$$
\begin{gathered}
g_{c}=1-\frac{\beta}{147^{\circ}} \\
g_{q}=g_{\gamma}=(1-\tan \beta)^{2}
\end{gathered}
$$

where β is the angle (degrees) that the slope makes with the horizontal. If the ground surface is level, all of the g factors become equal to 1 and may be ignored.

3.5.7. Vesić's soil compressibility factors

Vesić proposed three additional factors to take into account the change of failure mode in soil (i.e., local shear failure). The change of failure mode is due to soil compressibility, and has been incorporated into factors v_{c}, v_{q}, and v_{r}, each of which can be determined in three steps:

Step 1. Calculate the rigidity index, I_{r}, of the soil at a depth approximately $B / 2$ below the foundation, or

$$
I_{r}=\frac{G_{S}}{c^{\prime}+q^{\prime} \tan \phi^{\prime}}
$$

where G_{s} is the shear modulus of the soil, c^{\prime} is effective cohesion, ϕ^{\prime} is drained friction angle, and q^{\prime} is the effective overburden pressure at a depth of $D+B / 2$. The shear modulus can be entered directly into the program or calculated from the modulus of elasticity (E) and Poisson's ratio (μ) using the relationship

$$
G_{s}=\frac{E}{2(1+\mu)}
$$

Step 2. Compute the critical rigidity index, $I_{r(c r)}$, which is expressed as

$$
I_{r(\mathrm{cr})}=\frac{1}{2}\left\{\exp \left[\left(3.30-0.45 \frac{B}{L}\right) \cot \left(45^{\circ}-\frac{\phi^{\prime}}{2}\right)\right]\right\}
$$

Step 3. If $I_{r} \geq I_{r(\mathrm{cr})}$, then

$$
v_{c}=v_{q}=v_{\gamma}=1
$$

However, if $I_{r}<I_{r(\mathrm{cr})}$, then

$$
v_{q}=v_{\gamma}=\exp \left\{\left(-4.4+0.6 \frac{B}{L}\right) \tan \phi^{\prime}+\frac{\left(3.07 \sin \phi^{\prime}\right)\left[\log _{10}\left(2 I_{r}\right)\right]}{1+\sin \phi^{\prime}}\right\}
$$

For $\phi=0$,

$$
v_{c}=0.32+0.12\left(\frac{B}{L}\right)+0.60 \log _{10}\left(I_{r}\right)
$$

For $\phi^{\prime}>0$,

$$
v_{c}=v_{q}-\frac{1-v_{q}}{N_{q} \tan \phi^{\prime}}
$$

■ 5. References

\rightarrow CODUTO, D.P., KITCH, W.A. and YEUNG, M.R. (2016). Foundation Design:
Principles and Practices. 3rd edition. Upper Saddle River: Pearson.
\rightarrow DAS, B. (2011). Principles of Foundation Engineering. 7th edition. Stamford: Cengage Learning.
\rightarrow Vesić, A.S. (1973). Analysis of ultimate loads of shallow foundations. ASCE Journal of the Soil Mechanics and Foundations Division, 99:SM1, 45-73.
\rightarrow Vesić, A.S. (1975). Bearing capacity of shallow foundations. In: WINTERKORN, H.F., and HSAI-YANG, F. (Eds.). Foundation Engineering Handbook. New York: Van Nostrand Reinhold.

Was this material helpful to you? If so, please consider donating a small amount to our project at www.montoguequiz.com/donate so we can keep posting free, high-quality materials like this one on a regular basis.

