II Montogue

 QUIZ GT102

 QUIZ GT102
 Weight-Volume Relationships
 Lucas Montogue

PROBLEMS

PROBLEM 1

Which of the following statements is false?
A) Porosity is a dimensionless quantity defined as the ratio of the volume of voids to total volume.
B) Void ratio is usually expressed as a decimal number, while porosity is usually defined as a percentage.
C) Unlike the degree of saturation, the water content of a soil can be higher than 100\%.
D) The degree of saturation of a soil is given by $S=w G_{S} / n$, where w is the water content, G_{s} is the specific gravity, and n is the porosity.

PROBLEM (Das \& Sobhan, 2014)

A soil sample has a total mass of 23.3 g , a volume of $12 \mathrm{~cm}^{3}$, an oven-dry mass of 21.2 g , and a specific gravity of 2.5 for the solids. The void ratio of the specimen is:
A) $e=0.28$
B) $e=0.42$
C) $e=0.61$
D) $e=0.87$

PROBLEM 3

A soil sample has a total unit weight of $16.9 \mathrm{kN} / \mathrm{m}^{3}$ and a void ratio of 0.84 . The specific gravity of solids is 2.70 . Determine the degree of saturation and the moisture content of the soil.
A) $S=45 \%$ and $w=17.4 \%$
B) $S=45 \%$ and $w=22.2 \%$
C) $S=56 \%$ and $w=17.4 \%$
D) $S=56 \%$ and $w=22.2 \%$

PROBLEM 4

The specific gravity of a saturated soil sample is 2.60 , with a total unit mass of $2250 \mathrm{~kg} / \mathrm{m}^{3}$. The dry unit mass is:
A) $\rho=1670 \mathrm{~kg} / \mathrm{m}^{3}$
B) $\rho=1860 \mathrm{~kg} / \mathrm{m}^{3}$
C) $\rho=2080 \mathrm{~kg} / \mathrm{m}^{3}$
D) $\rho=2240 \mathrm{~kg} / \mathrm{m}^{3}$

A soil sample has moist unit weight equal to $16.5 \mathrm{kN} / \mathrm{m}^{3}$, water content of 15%, and specific gravity of 2.70 . Find the dry unit weight and the void ratio for this soil.
A) $\gamma_{d}=12.1 \mathrm{kN} / \mathrm{m}^{3}$ and $e=0.62$
B) $\gamma_{d}=12.1 \mathrm{kN} / \mathrm{m}^{3}$ and $e=0.85$
C) $\gamma_{d}=14.3 \mathrm{kN} / \mathrm{m}^{3}$ and $e=0.62$
D) $\gamma_{d}=14.3 \mathrm{kN} / \mathrm{m}^{3}$ and $e=0.85$

PROBLEM (Prieto-Portar, 2009)

A soil sample has a unit weight of 105.7 pcf and a degree of saturation of 50%. When the saturation is increased to 75%, its unit weight raises to 112.7 pcf. Determine the void ratio e and the specific gravity G_{s} for this soil.
A) $e=0.81$ and $G_{s}=2.67$
B) $e=0.81$ and $G_{s}=2.85$
C) $e=0.95$ and $G_{s}=2.67$
D) $e=0.95$ and $G_{s}=2.85$

PROBLEM 7

(Prieto-Portar, 2009)
The moist unit weight of a soil is $16.5 \mathrm{kN} / \mathrm{m}^{3}$. Given that $w=15 \%$ and $G_{s}=$ 2.70, which of the following statements is false?
A) The dry unit weight of the soil equals about $12.5 \mathrm{kN} / \mathrm{m}^{3}$.
B) The porosity of the soil equals about 46%.
C) The degree of saturation of the soil equals about 48%.
D) The mass of water that must be added to achieve full saturation is 2300 kg per cubic meter of soil.

PROBLEM (Craig, 2004)

In its natural condition, a soil sample has a mass of 2290 g and a volume of $1.15 \times 10^{-3} \mathrm{~m}^{3}$. After being completely dried in an oven, the mass of the sample becomes 2035 g . The value of G_{s} for the soil is 2.68 . Regarding this soil, which of the following statements is false?
A) The water content of the soil equals about 12.5%.
B) The porosity of the soil equals about 34%.
C) The degree of saturation of the soil is about 65\%.
D) The air content of the soil is about 18%.

PROBLEM (Aysen, 2003)

Dry soil with $G_{s}=2.71$ is mixed with 16% by weight of water and compacted to produce a cylindrical sample with 38 mm diameter and 76 mm height with 6% air content. Calculate the mass of the mixed soil that will be required and the void ratio of the sample.
A) $M=112.8 \mathrm{~g}$ and $e=0.53$
B) $M=112.8 \mathrm{~g}$ and $e=0.81$
C) $M=177.7 \mathrm{~g}$ and $e=0.53$
D) $M=177.7 \mathrm{~g}$ and $e=0.81$

problem 10

(Das \& Sobhan, 2014)
In a construction project, the field moist unit weight was $115 \mathrm{lb} / \mathrm{ft}^{3}$ at a moisture content of 8%. If the maximum and minimum dry unit weight determined in the laboratory were $108 \mathrm{lb} / \mathrm{ft}^{3}$ and $92 \mathrm{lb} / \mathrm{ft}^{3}$, respectively, what was the field relative density?
A) $D_{r}=81.3 \%$
B) $D_{r}=86.8 \%$
C) $D_{r}=91.8 \%$
D) $D_{r}=96.5 \%$

PROBLEM 11 (Das \& Sobhan, 2014)

A soil sample with a grain specific gravity of 2.67 was filled in a 1000 mL container in the loosest possible state and the dry unit weight of the sample was found to be 14.75 N . It was then filled at the densest obtainable state and the weight was found to be 17.70 N . The void ratio of the soil in the natural state was 0.63 . Determine the relative density in the natural state.
A) $D_{r}=60.0 \%$
B) $D_{r}=65.0 \%$
C) $D_{r}=70.0 \%$
D) $D_{r}=75.0 \%$

PROBLEM ${ }^{12}$ (Das \& Sobhan, 2014)

For a given sandy soil, the maximum and minimum void ratios are 0.72 and 0.46 , respectively. If $G_{s}=2.71$ and $w=11 \%$, what is the moist unit weight of compaction in the field if the relative density equals 82% ?
A) $\gamma=17.5 \mathrm{kN} / \mathrm{m}^{3}$
B) $\gamma=19.4 \mathrm{kN} / \mathrm{m}^{3}$
C) $\gamma=21.0 \mathrm{kN} / \mathrm{m}^{3}$
D) $\gamma=23.1 \mathrm{kN} / \mathrm{m}^{3}$

- SOLUTIONS

P. 1 = Solution

Statement C is false, because in reality the degree of saturation is such that

$$
S=\frac{V_{w}}{V_{v}}
$$

which can be adjusted to give

$$
S=\frac{w G_{S}}{e}
$$

where w is the water content, G_{s} is the specific gravity, and e is the void ratio (not the porosity!)

- The false statement is \mathbf{D}.

P. 2 ■ Solution

The volume of soil solids is given by the following equation,

$$
V_{s}=\frac{m_{s}}{G_{s} \rho_{w}}=\frac{21.2}{2.5 \times 1.0}=8.48 \mathrm{~cm}^{3}
$$

The volume of the voids is found by subtracting the volume of solids from the total volume,

$$
V_{v}=V_{t}-V_{s}=12-8.48=3.52 \mathrm{~cm}^{3}
$$

Finally, the void ratio is determined to be

$$
e=\frac{V_{v}}{V_{s}}=\frac{3.52}{8.48}=0.415 \approx 0.42
$$

The correct answer is \mathbf{B}.

P. 3 ■ Solution

The degree of saturation can be obtained with the relation

$$
\begin{aligned}
\gamma_{t}=\frac{\gamma_{w}\left(G_{s}+e S\right)}{1+e} & \rightarrow 16.9=\frac{9.81(2.70+0.84 \times S)}{1+0.84} \\
\therefore S=0.559 & \approx 56 \%
\end{aligned}
$$

The moisture content, in turn, can be obtained with the relation

$$
\begin{gathered}
S e=w G_{s} \rightarrow w=\frac{S e}{G_{s}} \\
\therefore w=\frac{0.56 \times 0.84}{2.70}=0.174=17.4 \%
\end{gathered}
$$

- The correct answer is \mathbf{C}.

P. 4 ■ Solution

Assume the total volume to be $1 \mathrm{~m}^{3}$. The total volume, V, is the sum of the volume of water, V_{w}, and the volume of solids, V_{s},

$$
V=V_{w}+V_{s}
$$

In addition, the sum of masses is such that

$$
m=m_{w}+m_{s}=2250
$$

where $m_{s}=G_{s} V_{s} \rho_{w}$ and $m_{w}=V_{w} \rho_{w}$. Substituting in the first equation gives

$$
\begin{gathered}
1000 V_{w}+2.5 \times 1000 V_{s}=2250 \\
\therefore 1000\left(1-V_{s}\right)+2.5 \times 1000 V_{s}=2250
\end{gathered}
$$

with the result that $V_{s}=0.833 \mathrm{~m}^{3}$. The volume of water immediately follows as $V_{w}=$ $1-0.833=0.167 \mathrm{~m}^{3}$. We can then obtain the dry unit mass with the expression

$$
m_{s}=G_{s} V_{s} \rho_{w}=2.5 \times 0.833 \times 1000=2082.5 \mathrm{~kg}
$$

That is,

$$
\rho=2080 \mathrm{~kg} / \mathrm{m}^{3}
$$

The correct answer is \mathbf{C}.

P. 5 ■ Solution

The dry unit weight is given by the relation

$$
\gamma_{d}=\frac{\gamma}{1+w}=\frac{16.5}{1+0.15}=14.3 \mathrm{kN} / \mathrm{m}^{3}
$$

The void ratio, in turn, can be obtained with the expression

$$
\begin{gathered}
\gamma_{d}=\frac{G_{s} \gamma_{w}}{1+e} \\
\therefore 1+e=\frac{G_{s} \gamma_{w}}{\gamma_{d}} \\
\therefore e=\frac{G_{s} \gamma_{w}}{\gamma_{d}}-1=\frac{2.70 \times 9.81}{14.3}-1=0.852 \approx 0.85
\end{gathered}
$$

\Rightarrow The correct answer is \mathbf{D}.

P. 6 ■ Solution

We resort to the expression

$$
\gamma=\frac{\gamma_{w}\left(G_{s}+S e\right)}{1+e}
$$

Substituting the pertaining data when saturation equals 50%, we have

$$
\begin{equation*}
105.7=\frac{62.4\left(G_{s}+0.50 e\right)}{1+e} \tag{I}
\end{equation*}
$$

whereas, when the saturation equals 75%, the equation becomes

$$
112.7=\frac{62.4\left(G_{s}+0.75 e\right)}{1+e}
$$

Equations (I) and (II) can be solved simultaneously for the specific gravity and void ratio. The results are $e=0.81$ and $G_{s}=2.67$.

- The correct answer is A.

P. 7 ■ Solution

The dry unit weight follows from the relation

$$
\gamma_{d}=\frac{\gamma}{1+w}=\frac{16.5}{1+0.15}=14.3 \mathrm{kN} / \mathrm{m}^{3}
$$

The porosity is given by

$$
n=\frac{e}{1+e}
$$

and thus requires the void ratio. This quantity can be extracted from the formula

$$
\begin{gathered}
\gamma_{d}=\frac{G_{s} \gamma_{w}}{1+e} \rightarrow 14.3=\frac{2.7 \times 9.81}{1+e} \\
\therefore e=0.852
\end{gathered}
$$

Returning to the expression for n, we have

$$
n=\frac{0.852}{1+0.852}=0.46=46 \%
$$

Next, the degree of saturation is

$$
\begin{gathered}
S e=w G_{s} \rightarrow S=\frac{w G_{S}}{e} \\
\therefore S=\frac{0.15 \times 2.7}{0.852}=0.475=47.5 \%
\end{gathered}
$$

Thence, the saturated unit weight can be obtained with the expression

$$
\gamma_{\mathrm{sat}}=\frac{\left(G_{s}+e\right) \gamma_{w}}{1+e}=\frac{(2.7+0.852) \times 9.81}{1+0.852}=18.8 \mathrm{kN} / \mathrm{m}^{3}
$$

The water to be added to attain full saturation can be calculated via the relation $\gamma=\rho g$; that is,

$$
\rho=\frac{\gamma}{g}=\frac{(18.8-16.5) \mathrm{kN} / \mathrm{m}^{3}}{9.81 \mathrm{kgm} / \mathrm{s}^{2}} \times \frac{1000 \mathrm{~N}}{1 \mathrm{kN}} \times 9.81 \frac{\mathrm{kgm} / \mathrm{s}^{2}}{\mathrm{~N}}=2300 \mathrm{kgm} / \mathrm{m}^{3}
$$

Statement A is false, because $\gamma_{d} \neq 12.5 \mathrm{kN} / \mathrm{m}^{3}$.

- The false statement is \mathbf{A}.

P. 8 ■ Solution

To begin, the water content of the soil is given by the ratio M_{w} / M_{s}; that is,

$$
w=\frac{M_{w}}{M_{s}}=\frac{2290-2035}{2035}=0.125 \rightarrow w=12.5 \%
$$

The bulk density and unit weight can be extracted from the data we were given. Mathematically,

$$
\rho=\frac{M}{V}=\frac{2290}{1.15 \times 10^{-3}}=1991 \mathrm{~kg} / \mathrm{m}^{3}
$$

and

$$
\gamma=\frac{M g}{V}=1990 \times 9.81=19.52 \mathrm{kN} / \mathrm{m}^{3}
$$

Next, the porosity follows from the relationship $n=e /(1+e)$. The void ratio is

$$
e=G_{s}(1+w) \frac{\rho_{w}}{\rho}-1=2.68 \times(1+0.125) \times \frac{1000}{1990}-1=0.515
$$

so that

$$
n=\frac{e}{1+e}=\frac{0.515}{1+0.515}=0.340=34 \%
$$

The degree of saturation is given by

$$
S=\frac{w G_{s}}{e}=\frac{0.125 \times 2.68}{0.515}=0.650=65 \%
$$

Finally, the air content is computed as

$$
A=n(1-S)=0.34 \times(1-0.65)=0.119=11.9 \%
$$

which is evidently different from 18%. Accordingly, statement D is false.

- The false statement is \mathbf{D}.

P. 9 ■ Solution

The overall volume of the specimen is

$$
V=7.6 \times \frac{\pi \times 3.8^{2}}{4}=86.19 \mathrm{~cm}^{3}
$$

The density of the soil solids follows as

$$
\rho_{s}=G_{s} \rho_{w}=2.71 \times 1.0=2.71 \mathrm{~g} / \mathrm{cm}^{3}
$$

The sum of the volume of solids, the volume of water and the volume of air is

$$
V_{s}+V_{w}+V_{a}=86.19
$$

Substituting the corresponding expressions for each term, we obtain

$$
\frac{M_{s}}{2.71}+\frac{0.16 \times M_{s}}{\rho_{w}}+0.06 \times 86.19=86.19
$$

Solving the equation above, one obtains $M_{s}=153.2 \mathrm{~g}$. The mass of the sample follows as

$$
M=153.2+0.16 \times 153.2=177.7 \mathrm{~g}
$$

The volume of solids is, in turn,

$$
\begin{aligned}
M_{s}=153.2= & \rho_{s} V_{s}=G_{s} \rho_{w} V_{s}=2.71 \times 1.0 \times V_{s} \\
& \therefore V_{s}=56.49 \mathrm{~cm}^{3}
\end{aligned}
$$

The volume of voids is

$$
V_{v}=V-V_{s}=86.19-56.49=29.7 \mathrm{~cm}^{3}
$$

Finally, we calculate the void ratio,

$$
e=\frac{V_{v}}{V_{s}}=\frac{29.7}{56.49}=0.53
$$

- The correct answer is C.

The relative density can be obtained with the expression

$$
D_{\gamma}=\frac{\gamma_{d}-\gamma_{d, \text { min }}}{\gamma_{d, \text { max }}-\gamma_{d, \text { min }}}\left(\frac{\gamma_{d, \text { max }}}{\gamma_{d}}\right)
$$

With $\gamma=115 \mathrm{lb} / \mathrm{ft}^{3}$ and $w=8 \%$, the dry unit weight is calculated as

$$
\gamma_{d}=\frac{115}{1+0.08}=106.48 \mathrm{lb} / \mathrm{ft}^{3}
$$

Then, using $\gamma_{d, \min }=92 \mathrm{lb} / \mathrm{ft}^{3}, \gamma_{\text {max }}=108 \mathrm{lb} / \mathrm{ft}^{3}$, and $\gamma_{d}=106.48 \mathrm{lb} / \mathrm{ft}^{3}$, the relative density is determined to be

$$
D_{r}=\left(\frac{106.48-92}{108-92}\right)\left(\frac{108}{106.48}\right)=0.918=91.8 \%
$$

- The correct answer is \mathbf{C}.

P. 11 ■ Solution

The volume occupied by the soil is $1000 \mathrm{~cm}^{3}$. In the loosest state, the weight of soil is 14.75 N and the volume of solids is

$$
V_{s}=\frac{14.75}{0.0267}=552.4 \mathrm{~cm}^{3}
$$

Consequently, the volume of voids is $V_{v}=1000-552.4=447.6 \mathrm{~cm}^{3}$. The maximum void ratio is then

$$
e_{\max }=\frac{447.6}{552.4}=0.810
$$

Now, when the soil is at its densest state, the weight is 17.70 N and the volume of solids, in turn, is

$$
V_{s}=\frac{17.70}{0.0267}=662.9 \mathrm{~cm}^{3}
$$

The corresponding volume of voids is $V_{v}=1000-662.9=337.1 \mathrm{~cm}^{3}$. The minimum void ratio follows as

$$
e_{\min }=\frac{337.1}{662.9}=0.509
$$

Finally, noting that the void ratio in the natural state is $e=0.63$, the relative density is calculated as

$$
D_{r}=\frac{e_{\max }-e}{e_{\max }-e_{\min }}=\frac{0.810-0.630}{0.810-0.509}=0.598=59.8 \% \approx 60 \%
$$

\Rightarrow The correct answer is \mathbf{A}.

P. 12 ■ Solution

The dry unit weight can be calculated from the expression for relative density,

$$
\begin{equation*}
D_{\gamma}=\frac{\gamma_{d}-\gamma_{d, \min }}{\gamma_{d, \max }-\gamma_{d, \min }}\left(\frac{\gamma_{d, \max }}{\gamma_{d}}\right) \tag{I}
\end{equation*}
$$

where $\gamma_{d, \text { min }}$ is the dry unit weight in the loosest condition, γ_{d} is the in situ dry unit weight, and $\gamma_{d, \max }$ is the dry unit weight in the densest condition. To calculate the dry unit weight in the densest condition, we write

$$
\gamma_{d, \max }=\frac{G_{s} \gamma_{w}}{1+e_{\min }}
$$

where $e_{\min }$ is the minimum void ratio of the soil. Substituting the data we were given, it follows that

$$
\gamma_{d, \max }=\frac{(2.68 \times 9.81)}{1+0.46}=18.00 \mathrm{kN} / \mathrm{m}^{3}
$$

Next, the dry unit weight in the loosest condition is

$$
\gamma_{d, \min }=\frac{G_{s} \gamma_{w}}{1+e_{\max }}
$$

where $e_{\max }$ is the maximum void ratio of the soil. Substituting the data we were given, we have

$$
\gamma_{d, \min }=\frac{(2.68 \times 9.81)}{1+0.72}=15.29 \mathrm{kN} / \mathrm{m}^{3}
$$

Thence, we can return to Equation (I) and solve for γ_{d},

$$
0.82=\left(\frac{\gamma_{d}-15.29}{18.00-15.29}\right) \times\left(\frac{18.00}{\gamma_{d}}\right) \rightarrow \gamma_{d}=17.45 \mathrm{kN} / \mathrm{m}^{3}
$$

In order to compute the moist unit weight, we make use of the formula

$$
\gamma_{d}=\frac{\gamma}{(1+w)}
$$

Substituting $\gamma_{d}=17.45 \mathrm{kN} / \mathrm{m}^{3}$ and $w=0.11$, we find that

$$
\gamma=\gamma_{d}(1+w)=17.45(1+0.11)=19.37 \approx 19.4 \mathrm{kN} / \mathrm{m}^{3}
$$

- The correct answer is \mathbf{B}.

- ANSWER SUMMARY

Problem 1	D
Problem 2	B
Problem 3	C
Problem 4	C
Problem 5	D
Problem 6	A
Problem 7	A
Problem 8	D
Problem 9	C
Problem 10	C
Problem 11	A
Problem 12	B

REFERENCES

- AYSEN, A. (2003). Problem Solving in Soil Mechanics. Boca Raton: CRC Press/Balkema.
- CRAIG, R. (2004). Craig's Soil Mechanics. 7th edition. London: Spon Press.
- DAS, B. and SOBHAN, K. (2014). Principles of Geotechnical Engineering. 8th edition. Stamford: Cengage Learning.
- PRIETO-PORTAR, L. (2009). 300 Solved Problems in Soil/Rock Mechanics and Foundations Engineering. Miami: Luis A. Prieto-Portar.
- VENKATRAMAIAH, C. (2006). Geotechnical Engineering. 3rd edition. New Delhi: New Age Publishers.

Got any questions related to this quiz? We can help!
Send a message to contact@montogue.com and we'll
answer your question as soon as possible.

