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Quiz FM113 

Chapter Problems Covered 

3 3.1, 3.2, 3.3, 3.4, 3.5, 3.8, 3.10, 3.12, 3.15, 3.16, 3.17, 
3.23, 3.25, 3.27, 3.28, 3.31, 3.32, 3.33, 3.34 

4 4.1, 4.3, 4.4, 4.10, 4.12, 4.13, 4.17, 4.18, 4.23, 4.24, 4.25 
5 5.1, 5.2, 5.7, 5.9, 5.11, 5.15 

6 6.4, 6.6, 6.7, 6.9, 6.13, 6.14, 6.15, 6.17, 6.18, 6.20, 6.21, 
6.22, 6.30, 6.31, 6.32 

A PROBLEMS – CHAPTER 3
[ Problem 3.1

Solve for constant-pressure Couette flow between parallel plates, as 
illustrated below, for a non-Newtonian fluid such that 𝜏𝜏 = K(du/dy)n, where n ≠ 
1. Compare with the Newtonian solution. Assuming constant pressure and
temperature, solve for the velocity distribution u(y) between the plates if (𝑎𝑎) n
< 1 and (b) n > 1, and compare with the Newtonian solution, Eq. (3-6). Comment
on the results.

[ Problem 3.2
Consider the axial Couette flow of Fig. 3-3 with both cylinders moving. 

Find the velocity distribution u(r) and plot it for (𝑎𝑎) U1 = U0, (b) U1 = –U0, and (c) 
U1 = 2U0. Comment on the results.  

[ Problem 3.3
Consider the axial Couette flow of Fig. 3-3 with the inner cylinder 

moving at speed U0 and the outer cylinder fixed. Solve for the temperature 
distribution T(r) in the fluid if the inner and outer cylinder walls are at 
temperatures T0 and T1, respectively. 
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[ Problem 3.4   

A long thin rod of radius R is pulled axially at speed U through an 
infinite expanse of still fluid. Solve the Navier-Stokes equation for the 
velocity distribution u(r) in the fluid and comment on a possible paradox. 

[ Problem 3.5   

A circular cylinder of radius R is rotating at steady angular rate 𝜔𝜔 in an 
infinite fluid of constant 𝜌𝜌 and 𝜇𝜇. Assuming purely circular streamlines, find 
the velocity and pressure distribution in the fluid and compare with the flow 
field of an inviscid “potential” vortex. 

[ Problem 3.8   

Air at 20oC and 1 atm is driven between two parallel plates 1 cm apart 
by an imposed pressure gradient (dp/dx) and by the upper plate moving at 20 
cm/s. Find (𝑎𝑎) the volume flow rate (in cm3/s per meter of width) if dp/dx = –0.3 
Pa/m and (b) the value of (dp/dx) (in Pa/m) which causes the shear stress at the 
lower plate to be zero.  

 

[ Problem 3.10 

Air at 20oC and approximately 1 atm flows at 
an average velocity of 1.7 m/s through a rectangular 
1 × 4 cm duct. Estimate the pressure drop (in Pa/m) 
by (𝑎𝑎) an exact calculation and (𝑏𝑏) the hydraulic 
diameter approximation. 

[ Problem 3.12 

If light oil viscosity (0.02 to 0.1 Pa∙s) is 
measured by passing 1 m3/h of fluid through an 
annulus 30 cm long, with inner and outer radii of 9 
mm and 10 mm, find Δp.  

[ Problem 3.15 

Consider a wide liquid film of constant thickness h flowing steadily due 
to gravity down an inclined plane at angle 𝜃𝜃, as shown in Fig. P3-15. The 
atmosphere exerts constant pressure and negligible shear on the free surface. 
Show that the velocity distribution is given by 

 

( )sin 2
2

gu y h yρ θ
µ

= −  

 

and that the volume flow rate per unit width is Q = 𝜌𝜌gh3sin(𝜃𝜃)/3𝜇𝜇. Compare 
this result with flow between parallel plates, Eqs. (3-44) and (3.45).  

 

[ Problem 3.16 

Consider a film of liquid draining 
at volume flow rate Q down the outside 
of a vertical rod of radius 𝑎𝑎, as shown in 
Fig. P3-16. Some distance down the rod, a 
fully developed open region is reached 
where fluid shear balances gravity and 
the film thickness remains constant. Find 
formulas for the velocity distribution 
and the flow rate.  

 

 



3 
© 2022 Montogue Quiz 

[ Problem 3.17 

By extension of Prob. 3-15, consider a double layer of immiscible fluids 1 
and 2, flowing steadily down an inclined plane, as in Fig. P3-17. The 
atmosphere exerts no shear stress on the surface and is at constant pressure. 
Find the laminar velocity distribution in the two layers. 

 

[ Problem 3.23 

Consider radial outflow between two parallel disks fed by symmetric 
entrance holes, as shown below. Assume that velocity components 𝑣𝑣𝑧𝑧 = 𝑣𝑣𝜃𝜃 = 0 
and 𝑣𝑣𝑟𝑟  = f(r,z) with constant density 𝜌𝜌 and viscosity 𝜇𝜇 and pressure as a 
function of radial distance only, i.e., p = p(r). Neglect gravity and entrance 
effects at r = 0. Set up the appropriate differential equation and boundary 
conditions and solve as far as possible – numerical (e.g., Runge-Kutta) 
integration may be needed for a complete solution. Sketch the expected 
velocity profile shape.  

 
[ Problem 3.25 

Consider the problem of steady flow induced by a circular cylinder of 
radius r0 rotating at surface vorticity 𝜔𝜔0 and having a wall-suction velocity 𝑣𝑣𝑟𝑟(r 
= r0) = –𝑣𝑣𝑤𝑤 = const. Set up the problem in polar coordinates assuming no 
circumferential variations 𝜕𝜕/𝜕𝜕𝜕𝜕 = 0, and show that the vorticity in the fluid is 
given by 

( )
Re

0
0

1 rrv
r r rθω ω∂  = =  ∂  

 

 

where Re = r0𝑣𝑣𝑤𝑤/𝜈𝜈 is the wall-suction Reynolds number of the cylinder. 
Integrate this relation to find the velocity distribution 𝑣𝑣𝜃𝜃(r) in the fluid and 
show that the character of the solution is quite different for the three cases 
of the wall Reynolds number Re less than, equal to, or greater than 2.0. 

[ Problem 3.27 

The practical difficulty with the Ekman spiral solution, Eq. (3-144), is 
that it assumes laminar flow whereas the real ocean is turbulent. One 
approximate remedy is to replace kinematic viscosity 𝜈𝜈 everywhere by a 
(constant) turbulent or “eddy” viscosity correlated with wind shear and 
penetration depth using a suggestion by Clauser (1956): 

0
turb

1 2
0.04D τ

ν
ρ

 
≈  

 
 

Repeat our text example, Vwind = 6 m/s over a 20oC air-water interface 
of 41oN latitude. Compute penetration depth D and surface velocity V0.  
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[ Problem 3.28 

Repeat the analysis of the Ekman flow, Sec. 3-7.2, for shallow water, 
that is, apply the bottom boundary condition, Eq. (3-143), at z = –h. Find the 
velocity components and show that the surface velocity is no longer at a 45o 
angle to the wind but rather satisfies the equation as follows for the surface 
angle 𝜃𝜃: 

( ) ( )
( ) ( ) ( )sinh 2 sin 2

tan Ekman 1905
sinh 2 sin 2

h D h D
h D h D

π π
θ

π π
−

=   +
 

Find the value of h/D for which 𝜃𝜃 = 20o.  

[ Problem 3.31 

The rotating disk is sometimes called von Kármán’s centrifugal pump, 
since it brings in fluid axially and throws it out radially. Consider one side of a 
50 cm disk rotating at 1200 rpm in air 20oC and 1 atm. Assuming laminar flow, 
compute (𝑎𝑎) the flow rate, (b) the torque and power required, and (c) the 
maximum radial velocity at the disk edge.  

[ Problem 3.32 

Solve the Jeffery-Hamel wedge-flow relation, Eq. (3-195), for creeping 
flow, Re = 0 but 𝛼𝛼 ≠ 0. Show that the proper solution is 

( ) 211 csc sin 2 1
2 2

f πη α αη  = + − −    
 

Show also that the constant C = 4𝛼𝛼2 cot2 𝛼𝛼 and sketch a few profiles. 
Show that backflow always occurs for 𝛼𝛼 > 90o.  

[ Problem 3.33 

In spherical polar coordinates, when the variations 𝜕𝜕/𝜕𝜕𝜕𝜕 vanish, an 
incompressible stream function 𝜓𝜓(r,𝜃𝜃) can be defined such that 

2 ;
sinsinr

ru u
rr θ

ψ θ ψ
θθ

∂ ∂ ∂ ∂
≡ ≡ −  

The particular stream function 

( )
22 sin, ; const.

1 cos
vrr a
a

θψ θ
θ

= =
+ −

 

is an exact solution of the Navier-Stokes equations and represents a round jet 
issuing from the origin. Sketch the streamlines in the upper two quadrants for 
a particular value of 𝑎𝑎 between 0.001 and 0.1. (Various values could be 
distributed among a group.) Sketch the jet profile shape ur(1,𝜃𝜃) and determine 
how the jet width 𝛿𝛿 (where ur = 0.01umax) and jet mass flow vary with r. 

[ Problem 3.34 

A sphere of specific gravity 7.8 is dropped into oil of specific gravity 
0.88 and viscosity 𝜇𝜇 = 0.15 Pa∙s. Estimate the terminal velocity of the sphere if 
its diameter is (𝑎𝑎) 0.1 mm, (b) 1 mm, and (c) 10 mm. Which of these is a creeping 
motion? 

A PROBLEMS – CHAPTER 4 
 [ Problem 4.1   

Repeat the flat-plate integral analysis of Sect. 4-1 for the cubic velocity 
profile 

3
3 1
2 2u u

u y y
U δ δ

   
= −   

   
 

where 𝛿𝛿𝑢𝑢 is the velocity boundary-layer thickness. Is this profile any more (or 
less) realistic than the approximation of Eq. (4-11)? For the above profile, 
compute (𝑎𝑎) (𝜃𝜃/x)�𝑅𝑅𝑒𝑒𝑥𝑥; (b) (𝛿𝛿∗/x)�𝑅𝑅𝑒𝑒𝑥𝑥; (c) (𝛿𝛿/x)�𝑅𝑅𝑒𝑒𝑥𝑥 (d) Cf�𝑅𝑅𝑒𝑒𝑥𝑥 (e) CD�𝑅𝑅𝑒𝑒𝑥𝑥.  
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[ Problem 4.3   

Schlichting (1979, p. 206) points out that the simple flat-plate velocity 
profile approximation 

sin
2

yu U π
δ

 ≈  
 

 

gives much better accurate values of cf, 𝜃𝜃, and 𝛿𝛿⋆ (±2 percent) than the 
parabolic profile of Eq. (4-11). Verify this by computing cf. Does this sine-wave 
shape satisfy any additional boundary conditions compared to Eq. (4-11)? 
[ Problem 4.4   

Air at 20oC and 1 atm flows past a smooth flat plate as in Fig. P4-4. A 
pitot stagnation tube, placed 2 mm from the wall, develops a water 
manometer head h = 21 mm. Use this information with the Blausius solution, 
Table 4-1, to estimate the position x of the pitot tube. Check to see if the flow 
is laminar.  

 
[ Problem 4.10   

The quantity (𝛿𝛿⋆/𝜏𝜏𝑤𝑤)(dp/dx) is called Clauser’s parameter. It compares 
an external pressure gradient to wall friction and is very useful for turbulent 
boundary layers. Show that this parameter is a constant for a given laminar 
Falkner-Skan wedge-flow boundary layer. What value does this parameter 
have at the separation condition? 
[ Problem 4.12   

A thin equilateral triangle plate is immersed parallel to a 12 m/s stream 
of air at 20oC and 1 atm, as in Fig. P4-12. Assuming laminar flow, estimate the 
drag of this plate (in N). 

 

[ Problem 4.13   

Flow straighteners consist of arrays of narrow ducts place in a flow to 
remove swirl and other transverse (secondary) velocities. One element can be 
idealized as a square box with thin sides as in Fig. P4-13. Using laminar flat-
plate theory, derive a formula for the pressure drop Δp across an N × N bundle 
of such boxes.  
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[ Problem 4.17   

Air at 20oC and 1 atm issues from a narrow slot and forms a two-
dimensional laminar jet. At 50 cm downstream of the slot the maximum 
velocity is 20 cm/s. Estimate, at this position, (𝑎𝑎) the jet width, (b) the jet mass 
flow per unit depth, and (c) an appropriate Reynolds number for the jet. 

[ Problem 4.18   

Air at 20oC and 1 atm flows at 1 m/s past a slender two-dimensional 
body of length L = 30 cm and CD = 0.05 based on ‘plan’ area (bL). At 3 m 
downstream of the trailing edge, estimate (𝑎𝑎) the maximum wake velocity 
defect (in cm/s), (b) the “one percent” wake thickness (in cm), and (c) the wake-
thickness Reynolds number. 

[ Problem 4.23   

Apply the method of Thwaites, Sect. 4-6.6, to boundary-layer flow on a 
cylinder, using either the inviscid Eq. (4-143) or measured Eq. (4-144) 
freestream velocity distributions. Compare the computed local wall friction 
with Fig. 4-24b.  

[ Problem 4.24 

Apply the Thwaites’ integral method to one of the laminar-flow test 
cases in Table 4-5 (for best results have each member of the class take a 
different case). Compute and plot the local friction distribution cf�Re𝑥𝑥 and 
compare the predicted separation point with Table 4-5.  

[ Problem 4.25 

Consider a two-dimensional thin-walled diffuser, as in Fig. P4-25. 
Assume incompressible flow with a one-dimensional freestream velocity U(x) 
and entrance velocity U0(x). The entrance height is W and the constant depth 
into the paper is b. Using Thwaites’ method, find an expression for the angle 𝜃𝜃 
at which separation will occur at x = L. What is the value of 𝜃𝜃 if L = 1.5W? 

 

A PROBLEMS – CHAPTER 5 
 [ Problem 5.1   

While holding (g, 𝜌𝜌1, 𝜌𝜌2, 𝔗𝔗) constant, show that the right-hand side of 
Eq. (5-9) has a minimum at the wave number 𝛼𝛼 = [g(𝜌𝜌1 - 𝜌𝜌2)/𝔗𝔗]1/2. Find 
experimental data somewhere and estimate this “critical” wavelength and 
velocity difference for air blowing over gasoline.  

[ Problem 5.2   

Show that, if the upper and lower velocities in Fig. 5-2 are negligible 
and if surface tension is neglected, a disturbance of the interface will 
propagate at the phase speed  

( )
( )

1 2

1 22
g

c
λ ρ ρ
π ρ ρ

−
=

+
 

where 𝜆𝜆 is the wavelength of the disturbance. Discuss what might happen if 
𝜌𝜌1 < 𝜌𝜌2. Estimate this propagation speed for an air-water interface when the 
wavelength is 3 m. 
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[ Problem 5.7   

For stagnation boundary-layer flow, U = Kx, estimate the position Rex 
where instability first occurs. 

 

[ Problem 5.9   

For the Howarth freestream velocity U = U0(1 – x/L), if U0L/𝜈𝜈 = 106, 
estimate the point (x/L) where boundary-layer instability first occurs. Assume 
a low subsonic Mach number.  

 

[ Problem 5.11   

For potential freestream flow across a cylinder, U = 2U0sin(x/𝑎𝑎), if ReD = 
106, estimate the position (x/𝑎𝑎)crit where boundary-layer instability first occurs. 

[ Problem 5.15 

For the separating Falkner-Skan wedge-flow boundary layer, 𝛽𝛽 = 
−0.19884, estimate the position Rex where instability first occurs.  

A PROBLEMS – CHAPTER 6 
 [ Problem 6.4   

The experiment of Clauser (1954), flow 2200 of Coles and Hirst (1968), 
used air at 24oC and 1 atm. At the first station, x = 6.92 ft, the turbulent-
boundary-layer velocity data are as follows: 

y (in.) u (ft/s) y (in.) u (ft/s) 
0.1 16.14 0.8 22.88 

0.15 17.02 0.9 23.70 
0.2 17.54 1.0 24.38 

0.25 18.16 1.25 26.51 
0.3 18.69 1.5 28.21 
0.4 19.60 2.0 31.22 
0.5 20.49 2.5 32.27 
0.6 21.24 3.0 32.44 
0.7 22.03 3.5 32.50 

  

The boundary layer thickness was 3.5 in., and the local freestream 
velocity gradient was dU/dx ≈ −1.06 s–1. Analyze these data, with suitable 
plots and formulas, to establish (𝑎𝑎) the inner law and wall shear stress, (b) the 
outer law with Clauser’s parameter 𝛽𝛽 and the Coles parameter Π, and (c) the 
logarithmic overlap.  
[ Problem 6.6   

For developed turbulent smooth wall pipe flow, assuming that the log-
law analysis of Sec. 6-5.1 is valid with 𝜅𝜅 = 0.41, show that the maximum pipe 
velocity may be computed from  

max

avg

1 21 1.29u
u

≈ + Λ  

where Λ is the friction factor.  

[ Problem 6.7   

Water at 20oC flows through a smooth pipe of diameter 3 cm at 30 
m3/h. Assuming developed flow, estimate (𝑎𝑎) the wall shear stress (in Pa), (b) 
the pressure drop (in Pa/m), and (c) the centerline velocity in the pipe. What is 
the maximum flow rate for which this flow would be laminar? What flow rate 
would give 𝜏𝜏𝑤𝑤 = 100 Pa? 

[ Problem 6.9   

Consider fully developed turbulent flow through a duct of square 
cross-section. Taking advantage of the double symmetry, analyze this 
problem using the log-law, Eq. (6-38𝑎𝑎), plus a suitable assumption about 
variation of shear stress around the cross-section. Compare your result for Λ 
with the hydraulic radius concept.  
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[ Problem 6.13   

The flat-plate formulas of Sec. 6-6 assume turbulent flow beginning at 
the leading edge (x = 0). More likely, there is an initial region of laminar flow, 
as in Fig. P6-13. 

 

Devise a scheme to compare 𝛿𝛿(x) and 𝑐𝑐𝑓𝑓(x) in the turbulent region, 𝑅𝑅𝑅𝑅 > 
𝑅𝑅𝑒𝑒𝑡𝑡𝑡𝑡, by accounting for the laminar part of the flow. 

[ Problem 6.14   

Water at 20oC and 1 atm flows at 6 m/s past a smooth flat plate 1 m 
long and 60 cm wide. Estimate (𝑎𝑎) the trailing-edge displacement thickness, 
(b) the trailing-edge wall shear stress, and (c) the drag of one side of the plate, 
if 𝑅𝑅𝑒𝑒𝑥𝑥,tr = 106.  

[ Problem 6.15   

Repeat Prob. 6-14 if the plate average roughness is 0.1 mm. Estimate 
ΔB at x = L.  

[ Problem 6.17   

Rewrite Stevenson’s relation Eq. (6-86) in the form of a wall-friction 
law with suction or blowing. Show that the ratio of 𝐶𝐶𝑓𝑓  to the impermeable-
wall value 𝐶𝐶𝑓𝑓0 is approximately a function only of a “blowing parameter” 𝛽𝛽 = 
(2𝑣𝑣𝑤𝑤)/(Ue𝐶𝐶𝑓𝑓). Plot 𝐶𝐶𝑓𝑓/𝐶𝐶𝑓𝑓0 vs. 𝛽𝛽 in the range –0.5 < 𝛽𝛽 < 2.0 and compare with the 
correlation [ln(1 + 𝛽𝛽)]/𝛽𝛽 recommended by Kays and Crawford (1980, p. 181). 

[ Problem 6.18   

Water at 20oC flows through a smooth permeable pipe of diameter 8 
cm. The volume flow rate is 0.06 m3/s. Estimate the wall shear stress, in 
pascals, if the wall velocity is (𝑎𝑎) 0.01 m/s blowing; (b) 0 m/s; and (c) 0.01 m/s 
suction. To avoid excessive iteration, assume that the ratio of average to 
centerline velocity is 0.85. 

[ Problem 6.20   

As an alternative to Eq. (6-62), Bergstrom et al. (2002) suggest the 
following formula for the downshift of the log-law Eq. (6-60) due to uniform 
surface roughness of height k: 

( )1 ln 3.5 ; for 4.2B k k
κ

+ +∆ ≈ − ≥  

First compare this correlation with a sketch or graph, to Eq. (6-62). 
Then apply this correlation to derive a formula for pipe-friction factor Λ, 
similar to Eq. (6-64). 

[ Problem 6.21   

Use numerical quadrature to evaluate and sketch Eq. (6-96) for zero 
pressure gradient. Compare your results with Eq. (6-41) and Fig. 6-11. 

[ Problem 6.22   

Use the log-law, Eq. (6-38𝑎𝑎), to analyze Couette flow between parallel 
plates a distance 2h apart, with the upper plate moving at velocity U. Show 
that the turbulent-flow velocity profile is S-shaped, as in Fig. 3-5. Sketch the 
profile for Uh/𝜈𝜈 = 105 and compute the ratio 𝜏𝜏𝑤𝑤h/𝜇𝜇U for this condition.  
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[ Problem 6.30   

At a certain section of a developed turbulent plane water jet, the 
maximum velocity is 3 m/s and the mass flow is 800 kg/s per meter of width. 
Estimate (𝑎𝑎) the jet width, (b) maximum velocity, and (c) total mass flow, at a 
position 2 m further downstream. 

[ Problem 6.31   

Air at 20oC and 1 atm issues at 0.001 kg/s from a 4 mm diameter orifice 
into still air. At a section in the jet 1 m downstream of the orifice, estimate (𝑎𝑎) 
the maximum velocity, (b) the jet width, and (c) the ratio 𝜇𝜇𝑡𝑡/𝜇𝜇. 

[ Problem 6.32   

A long 5-m-diameter vertical cylinder is placed in the ocean where the 
current is 60 cm/s across the cylinder. At 1 km downstream of the cylinder, 
estimate (𝑎𝑎) the wake width; and (b) the wake velocity defect. 

A SOLUTIONS 
P.3.1 c Solution 

A fluid in which the shear stress-strain relationship is described by the 
power law 𝜏𝜏 = K(du/dy)n is an example of non-Newtonian fluid. The non-
Newtonian version of Eq. (3-4) in the text is 

0 0dp
dx y y

τ τ∂ ∂
= − + = +

∂ ∂
 

since the pressure is constant. Integrating once with respect to y gives 

constantdu
dy

=  

Integrating a second time brings to 

( )u y ay b= +  

where 𝑎𝑎 and b are integration constants. One boundary condition is no-slip 
at the lower wall, i.e., u(–h) = 0: 

0 (I)ah b− + =  

The other BC pertains to velocity in the upper wall, i.e., u(+h) = V: 

(II)ah b V+ =  

Equations (I) and (II) form a system of linear equations on 𝑎𝑎 and b: 

0ah b
ah b V
− + =
 + =

 

Adding one equation to the other gives 

ah− b ah+ + 0b V+ = +  

2b V∴ =  

2
Vb∴ =  

Substituting b in (I) and solving for 𝑎𝑎: 

0
2
Vah− + =  

2
Va
h

∴ =  

so that 
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( ) 1
2 2 2
V V V yu y y
h h

 = + = + 
 

 

Notice that this is identical to the linear velocity profile expected for a 
Newtonian fluid. Accordingly, the velocity profile that describes parallel-
plate (Couette) flow of a power-law non-Newtonian fluid is identical to that 
of a Newtonian parallel-plate flow.  

P.3.2 c Solution 

With velocity u as a function of r only, the analysis follows Section 3-
2.2: 

( ) ( )1 2
1 0 lnd dur u r C r C
r dr dr

  = → = + 
 

 

The two BCs are u(r0) = U0 and u(r1) = U1; substituting these into the 
equation for u(r) yields: 

( )
( )

1 0 2 0

1 1 2 1

ln (I)

ln (II)

C r C U

C r C U

 + =


+ =
 

Subtracting (II) from (I), we get 

( ) ( )1 0 2 1 1 2 0 1ln lnC r C C r C U U+ − − = −  

0
1 0 1

1
ln rC U U

r
 

∴ = − 
 

 

1
1 1 0

0
ln rC U U

r
 

∴ = − 
 

 

( )
1 0

1
1 0ln

U UC
r r
−

∴ =  

Solving (I) for C2 yields 

( ) ( )1 0 2 0 2 0 1 0ln lnC r C U C U C r+ = → = −  

( ) ( )1 0
2 0 0

1 0
ln

ln
U UC U r

r r
 −

∴ = −  
  

 

so that 

( ) ( )
( )

( )
( )

01
0 1

1 0 1 0

lnln
ln ln

r rr r
u r U U

r r r r
= +  

As noted by White, this is simply the sum of the separate solutions for 
moving inner and outer cylinders, as described by Eqs. (3-18) and (3-19). This 
superposition is possible because the Navier-Stokes equations are linear for 
this particular flow. 

Now, we were told to plot velocity profiles for (𝑎𝑎) U1 = U0, (b) U1 = –
U0, and (c) U1 =  2U0. As an example, let U0 = 1 (arbitrary units) and r0 = 1, r1 = 
3r0 = 3 (also in arbitrary units). For illustrative purposes, we add a case (d) 
corresponding to U1 = −2U0.  
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P.3.3 c Solution 

The temperature is assumed to be a function of radial distance only, 
i.e., T = T(r); there are no radial or circumferential velocities, so the energy 
equation, Eq. (B-9) in Appendix B of the textbook, reduces to 

2

0 k d dT dur
r dr dr dr

µ   = +   
   

 

where, referring to Eq. (3-18), velocity u(r) is given by 

( ) ( )
( )

1
0

1 0

ln
ln

r r
u r U

r r
=  

Introducing u(r), separating variables, and integrating once, we obtain 

( )
( )2

0 1
2

1 0

ln
ln

rU CdT
dr r rk r r

µ
= − +  

where C1 is an integration constant. Integrating a second time and noting 

that ∫ ln(r)/rdr = ln2(r)/2,  

( ) ( )
( )

22
00

1 22
1 0

ln
ln

2 ln
r rUT r C r C

k r r
µ

= − + +  

The boundary conditions are T(r0) = T0 and T(r1) = T1. Substituting the 
former BC gives 

( ) ( )
( )

22
0 00

0 1 0 2 02
1 0

0

ln
ln

2 ln
r rUT r C r C T

k r r
µ

=

= − + + =


 

1 0 2 0ln (I)C r C T∴ + =  

Substituting the second BC, in turn, we have 

( ) ( )
( )

22
1 00

1 1 1 2 12
1 0

ln
ln

2 ln
r rUT r C r C T

k r r
µ

= − + + =  

2
0

1 1 2 1ln (II)
2
U C r C T
k

µ
∴− + + =  

Subtracting (II) from (I) and manipulating, 
 

2
0

1 0 2 1 1 2 0 1ln ln (I)
2
UC r C C r C T T
k

µ
∴ + + − − = −  

2
0 0

1 0 1
1

ln
2

r UC T T
r k

µ 
∴ + = − 

 
 

( )

2
0

0 1

1
0 1

2
ln

UT T
kC

r r

µ
− −

∴ =  

Substituting C1 in (I) and solving for C2, 

( )

2
0

0 1

0 2 0
0 1

2
ln

ln

UT T
k

r C T
r r

µ 
− − 

  + =  

( )

2
0

0 1

2 0 0
0 1

2
ln

ln

UT T
k

C T r
r r

µ 
− − 

 ∴ = −  

Therefore, the temperature profile is described by the equation 

( ) ( )
( ) ( ) ( )

2 2
0 0

0 1 0 122
00

0 02
0 1 0 11 0

2 2ln
ln ln

2 ln lnln

U UT T T T
k kr rUT r r T r

k r r r rr r

µ µ
µ

   
− − − −   

   = − + + −  
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( ) ( )
( )

( )
( )

22 2
0 00 0

0 1 02
0 11 0

ln ln
2 2 lnln

r r r rU UT r T T T
k k r rr r

µ µ 
∴ = − + − − +  

 
 

( ) ( )
( )

( )
( )

22 2
0 00 0

0 1 02
1 01 0

ln ln
2 2 lnln

r r r rU UT r T T T
k k r rr r

µ µ 
∴ = − + − +  

 
 

As an example, let’s plot the temperature profile for a case in which 
the inner cylinder is moving at a speed U0 = 1 arbitrary unit; also, let r0 = 1, r1 
= 3r0 = 3, T0 = 300, 𝜇𝜇 = 0.01, and k = 0.05. The outer cylinder temperature 
T1 is taken as 200, 400, or 600.   

 

P.3.4 c Solution 
The equation to integrate is 

1 0d dur
r dr dr

  = 
 

 

which becomes  

( )1 2lnu C r C= +  

The first boundary condition is that the velocity at radial distance R 
must equal U: 

( ) ( )1 2lnu R C R C U= + =  

The second boundary condition is that the velocity at a very large 
distance from the centerline of the rod should equal zero: 

( ) ( )1 2ln 0 ( )u r C C→∞ = ∞ + = ?  

However, no constants C1 and C2 can be found that make the second 
BC valid. It is impossible to find steady-flow constants if the rod moves 
through an infinite expanse of fluid. Physically, it would require the finite-
diameter rod to deliver an infinite amount of kinetic energy to the fluid with 
only finite wall shear stress. 

P.3.5 c Solution 
The velocity follows from the 𝜃𝜃-momentum equation in Section 3-

2.3: 
2

2 0d u ud
dr rdr

θ θ + = 
 

 

which can be integrated to yield 

2
1

Cu C r
rθ = +  
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One of the boundary conditions is that 𝑢𝑢𝜃𝜃 should be zero at a very 
large radial distance, 

( ) 2
1 0Cu r Cθ →∞ = ∞+ =

∞
 

The only way to satisfy this equality is to have C1 = 0. The other 
boundary condition is that the circumferential velocity must equal 𝜔𝜔R at a 
distance R from the centerline of the cylinder: 

 

( ) 20 Cu r R R R
Rθ ω= = = × +  

2
2C Rω∴ =  

Thus, 𝑢𝑢𝜃𝜃 is described by the equation 

2Ru
rθ

ω
=  

This is the solution given by Eq. (3-25). It does indeed correspond to a 
potential vortex. The pressure is found from the r-momentum equation: 

2 2 4 2 4

2 3
udp R R

dr r r r r
θρ ρ ω ρω

= = × =  

Integrating: 

( )
2 4

2 (I)
2

Rp r C
r

ρω
= − +  

The boundary condition is that p = p0 at r = R, which brings to 

( )
2 4

022
Rp R C p

R
ρω

= − + =  

2 2

02
R C pρω

∴− + =  

2 2

0 2
RC p ρω

∴ = +  

 

Lastly, we substitute C into (I) to obtain 
 

( )
2 4 2 2

02 22
R Rp r p

r
ρω ρω

= − + +  

( )
2

2 2
0 2

1 1
2

Rp r p R
r

ρω
 

∴ = + −  
 

 

This is exactly what one would find by using Bernoulli’s equation for a 
potential vortex.  

P.3.8 c Solution 
The velocity distribution is given by Eq. (3-42) in the textbook:  

( )
2 2

21 1
2 2
U y h dp yu y

h dx hµ
    = + + − −         

 

 

The volume flow per unit depth is found by integrating this across the 
fluid between plates: 

 

We are given h = 0.5 cm = 0.005 m, U = 20 cm/s = 0.2 m/s, and 
dp/dx = −0.3 Pa/m. The viscosity of air at 20oC may be taken as 1.80×10–5 
Pa∙s. Substituting in the expression above, we obtain 
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32
3
h dpQ hU

dxµ
 = + − 
 

 

( ) ( )
3

2
5

2 0.0050.005 0.2 0.3 0.00238m /s
3 1.80 10

Q
−

×
∴ = × + × − =

× ×
 

32380cm /s/mQ∴ =  
 

To find the pressure gradient for which the shear stress at the lower 
plate is zero, we appeal to the ‘separation criterion’ mentioned in Sect. 3-
3.2: 

( )
( )
( )

5

2 2

2 1.80 10 0.202 0.0724Pa/m
2 2 0.005

dp U
dx h

µ
−× × ×

= = =
×

 

 

A small, positive pressure gradient is needed to cause flow separation. 

P.3.10 c Solution 
We first compute the hydraulic diameter Dh, 
 

( )
( )

4 0.01 0.044 0.016m
2 0.01 0.04h

AD
P

× ×
= = =

× +  
 

 

and then the Reynolds number (the density and viscosity of air at 20oC may 
be taken as 1.20 kg/m3 and 1.80×10–5 N∙s/m2, respectively): 

5
1.20 1.7 0.016Re 1810

1.80 10h

h
D

VDρ
µ −

× ×
= = =

×
 

which is less than 2000, hence the flow is laminar. For air flowing at 1.7 m/s 
in a 1 × 4 cm duct, the flow rate is 
 

( ) 4 31.7 0.01 0.04 6.80 10 m /sQ VA −= = × × = ×  
 

In the exact analysis, the flow rate can be obtained with equation 
(3.48) in the textbook, 

( )3

5 5
1,3,5,...

tanh 24 1921 (I)
3 i

i b aba dp aQ
dx b i

π
µ π

∞

=

  = − −  
    

∑  

In the case at hand, 𝑎𝑎 = 4 cm/2 = 2 cm  and 𝑏𝑏 = 1 cm/2 = 0.5 cm; 
using only the first three terms in the series, we obtain 

( ) ( )( ) ( )( )

( )( )

5 5 5
1,3,5,...

5

tanh 1 0.005 / 2 0.02 tanh 3 0.005 2 0.02tanh 2
1 3

tanh 5 0.005 2 0.02
0.377

5

i

i b a
i

π ππ

π

∞

=

× × × × × ×
= +

× × ×
+ =

∑
 

so that, substituting in (I) and solving for pressure drop, we obtain 

( )
3

4
55

4 0.005 0.02 192 0.021 0.377 6.8 10
0.0053 1.80 10

dpQ
dx π

−
−

× × ×   = − − × = ×   ×   × ×
 

4 41.60 10 6.8 10dp
dx

− − ∴ × − = × 
 

 

4

4
6.8 10 4.25Pa

1.60 10
dp
dx

−

−
×

∴− = − = −
×

 

 

Now, in the approximate approach, the rectangular duct is modelled 
as though it were a circular duct with hydraulic diameter Dh = 4A/P = 0.016 
m. The friction factor is 

16 16 0.00884
Re 1810fC = = =  

The average shear stress is obtained by multiplying the friction factor 
by the dynamic pressure: 
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2 2
avg

1 10.00884 1.20 1.7 0.0153Pa
2 2fC Vτ ρ= = × × × =  

However, the average shear can also be expressed as 
 

avg 4
hD dp

dx
τ  = − 

 
 

 

so that, solving for pressure drop, 

avg4 4 0.0153 3.83 Pa
0.016h

dp
dx D

τ ×
= − = − = −  

The circular-duct approximation underestimates the (absolute value 
of) pressure drop obtained via the exact solution by approximately 10%.  

P.3.12 c Solution 
The hydraulic diameter of an annulus with outer radius 𝑎𝑎 = 10 mm 

and inner radius b = 9 mm is calculated as Dh = 2(𝑎𝑎 – b) = 2 mm = 0.002 m. 
The area of the annulus is 𝜋𝜋(𝑎𝑎2 - 𝑏𝑏2) = 𝜋𝜋 × (0.012 – 0.0092) = 5.97×10–5 m2. 
The flow rate is 

3m1
h

Q =
1 h

3600
× 4 32.78 10 m /s

s
−= ×  

Dividing Q by the annular area gives the flow velocity: 

4

5
2.78 10 4.66m/s
5.97 10

QV
A

−

−
×

= = =
×

 

Assuming that the density of a typical light oil is 900 kg/m3 and noting 
that the viscosity of tested oils varied from 0.02 Pa∙s to 0.1 Pa∙s, the 
corresponding range of Reynolds numbers is: 

min
max

900 4.66 0.002Re 83.9
0.1

hVDρ
µ

× ×
= = =  

max
min

900 4.66 0.002Re 419
0.02

hVDρ
µ

× ×
= = =  

Even the greatest Reynolds number is well within the laminar range, 
so the pressure drop can be computed with equation (3-51) in the textbook: 

( )
( )

22 2
4 4

8 ln

a bdpQ a b
dx a b

π
µ

 −   = − − −       

 

On one extreme, for an oil with viscosity 𝜇𝜇min = 0.02 Pa∙s, 

( )
( )

22 2
4 4 4

0.01 0.009
0.01 0.009 2.78 10

8 0.02 0.3 ln 0.01 0.009
pQ π −

 −∆  = × × − − = × ×
  

 

4

10
2.78 10 335,000Pa 335kPa
8.29 10

p
−

−
×

∴∆ = = =
×

 

On the other extreme, for an oil with viscosity 𝜇𝜇max = 0.1 Pa∙s, 

( )
( )

22 2
4 4 4

0.01 0.009
0.01 0.009 2.78 10

8 0.1 0.3 ln 0.01 0.009
pQ π −

 −∆  = × × − − = × ×
  

 

4

10
2.78 10 1,680,000Pa 1680kPa
1.66 10

p
−

−
×

∴∆ = = =
×

 

The pressure drop ranges from about 300 kilopascals to over 1600 
kilopascals. For such a large pressure drop, a mechanical gage might be 
recommended.  
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P.3.15 c Solution 
Since the boundary conditions are independent of x, we may assume 

that u = u(y), i.e., u is a function of the normal coordinate y, and that the 
other two velocity components, v and w, are both zero. Also, 𝜕𝜕p/𝜕𝜕x = 0. The 
momentum equation then reduces to 

 

2

2 sin constantd uu g
dy

ρ θ= − =  

Integrating twice brings to 

2
1 2

sin (I)
2

gu y C y Cρ θ
µ

= − + +  

where C1 and C2 are integration constants. One of the boundary conditions 
relates to no-slip at the wall, that is, u(y = 0) = 0, with the result that 

( ) 2
1 2

sin0 0 0 0
2

gu y C Cρ θ
µ

= = − × + × + =  

2 0C∴ =  

As a second boundary condition, we note that there is negligible 
shear at the free surface due to weak interaction with the constant-pressure, 
low-density atmosphere: 

 

( ) ( ) 1
sin0 2 0
2xy

y h

u gy h h C
y

ρ θτ µ µ
=

∂
= = → = − × + =

∂
 

1
singhC ρ θ
µ

∴ =  

Substituting C1 and C2 into (I) and rearranging, we get 

2sin sin 0
2

g ghu y yρ θ ρ θ
µ µ

= − + +  

( )sin 2
2

gu y h yρ θ
µ

∴ = −  

This expression can be integrated to yield the volume flow per unit 
width of film: 

 

That is,  

3 sin
3

ghQ ρ θ
µ

=  

The flow rate varies as h3, hence the rate of draining is highly 
dependent upon the film thickness.  

P.3.16 c Solution 
Assume, due to the constant-pressure atmosphere outside the film, 

that 𝜕𝜕p/𝜕𝜕z = 0, and, for a fully developed film, uz = u(r) only. The z-
momentum equation, in this case, reduces to 

0 u d dug r
r dr dr

ρ  = +  
 

 

This second-order ordinary differential equation is integrated twice to 
yield 

( )
2

1 2ln (I)
4
gru C r Cρ
µ

= − + +  



17 
© 2022 Montogue Quiz 

The first boundary condition is no-slip at the wall, that is, u(r = 𝑎𝑎) = 0, 
which can be substituted in (I) to yield 

( ) ( )
2

1 2ln 0
4
gau r a C a Cρ
µ

= = − + + =  

( )
2

2 1 ln (II)
4
gaC C aρ
µ

∴ = −  

The second boundary condition we can use is the absence of surface 
shear, that is: 

10 0
2y b r b

Cdu gr
dr r

ρ
µ= =

 
= → − + = 

 
 

1 0
2

Cgb
b

ρ
µ

∴− + =  

2

1 2
gbC ρ
µ

∴ =  

Substituting C1 in (II) yields 

( )
2 2

2 ln
4 2
ga gbC aρ ρ
µ µ

= −  

Substituting C1 and C2 in (I) and rearranging gives the velocity profile 
we’re looking for: 

( ) ( ) ( )
2 2 2 2

ln ln
4 2 4 2
gr gb ga gbu r r aρ ρ ρ ρ
µ µ µ µ

= − + + −  

( )
2 22

2 ln
4
gb r r au r

a b b
ρ
µ

      ∴ = − +      
       

 

Lastly, the flow rate can be obtained by evaluating the integral 

( )2
b
a

Q u r rdrπ= ∫  

The integration is tedious and can be obtained with Mathematica: 

 

As can be seen, the result is (note the tiny negative sign in the output) 

4 2 2 4 44 ln 4 3
8

g bQ b a b a b
a

πρ
µ

  = − − − + +    
 

In closing, we define b/𝑎𝑎 = 𝛽𝛽 and factor out 𝑎𝑎4 to obtain 

( )
4

4 2 44 ln 4 1 3 ; 1
8
ga bQ

a
πρ β β β β β

µ
 = + − − = >   

For thin films approximating a flat wall, 1.0 < b/𝑎𝑎 < 1.2, Q increases 
(approximately) as the cube of the film thickness (see also Problem 3.15). For 
b/𝑎𝑎 > 1.2, Q increases even faster than the cube of the thickness, as film area 
increases with radius.  

P.3.17 c Solution 
We solve for the velocity distribution in each of the two layers and 

then check if they coincide at the boundary y = h1. Assuming that velocities 
u1 and u2 are functions of the y-coordinate only, the layers satisfy the 
momentum equations 
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2
1

1 1 2momentum: sin 0d ux g
dy

ρ θ µ− + =  

1
1momentum: cos 0py g

y
ρ θ ∂

− − =
∂

 

Also, the pressure gradient 𝜕𝜕p/𝜕𝜕x = 0 because the surface pressure is 
constant. Accordingly, the pressure is hydrostatic in 𝜌𝜌1gcos(𝜃𝜃) and is 
uncoupled from velocity. Accordingly, we can ignore pressure and solve for 
velocity; integrating the x-momentum equation twice yields the profiles 

21
1 1 1

1

sin
2
gu y C y Dρ θ
µ

= − + +  

22
2 2 2

2

sin
2
gu y C y Dρ θ
µ

= − + +  

where C1,2 and D1,2 are integration constants. By inspection, D1 = 0 because 
the lower layer is bounded by a rigid surface in its lower end and hence the 
no-slip condition applies. The other three boundary conditions are 
negligible shear at the surface (weakly interacting atmosphere), matching 
velocities in the interface between the two layers, and matching shear in the 
interface between the two layers. In mathematical terms: 

1 2

2
2 2Surface shear: 0

y h h

du
dy

τ µ
+=

= =  

1 2

2
2 2

2

sin 0
y h h

g y Cρ θµ
µ = +

 
∴ − + = 

 
 

( )2 1 2 2 2sin 0 (I)g h h Cρ θ µ∴− + + =  

( ) ( )1 1 2 1Interface velocity: u y h u y h= = =  

2 21 2
1 1 1 1 2 1 2

1 2

sin sin (II)
2 2
g gh C h h C h Dρ θ ρ θ
µ µ

∴ − + = − + +  

( ) ( )1 1 2 1Interface shear: y h y hτ τ= = =  

1 1

1 2
1 1 2 2

1 2

sin sin

y h y h

g gy C y Cρ θ ρ θµ µ
µ µ= =

   
∴ − + = − +   

   
 

1 2
1 1 1 2 1 2

1 2

sin sin (III)g gh C h Cρ θ ρ θµ µ
µ µ

   
∴ − + = − +   

   
 

Expressions (I) to (III) constitute a system of linear equations with 
three unknowns, namely C1, C2, and D2. The most obvious equation to tackle 
is (I), which can be readily solved for C2: 

( ) ( )2
2 1 2 2 2 2 1 2

2

sinsin 0 gg h h C C h hρ θρ θ µ
µ

− + + = → = +  

Substituting C2 in (III) and solving for C1, we obtain: 

( )1 2 2
1 1 1 2 1 1 2

1 2 2

sin sin sing g gh C h h hρ θ ρ θ ρ θµ µ
µ µ µ

   
∴ − + = − + +   

   
 

( ) ( ) ( )( )1 1 1 1 2 1 2 1 2sin sin sing h C g h g h hρ θ µ ρ θ ρ θ∴− + = − + +  

( ) ( )1 1 1 1 2 1sin sing h C g hρ θ µ ρ θ∴− + = − ( )2 1sing hρ θ+ ( )2 2sing hρ θ+ ¨ 

( )1 1 1 2 2
1

singC h hθ ρ ρ
µ

∴ = +  

Lastly, we substitute C1 and C2 into (II) and solve for the remaining 
constant, D2: 
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( ) ( )2 21 2 2
1 1 1 2 2 1 1 1 2 1 2

1 1 2 2

sin sin sinsin
2 2
g g ggh h h h h h h h Dρ θ ρ θ ρ θθ ρ ρ
µ µ µ µ

− + + = − + + +  

2 2 2 21 1 2 2 2 2
1 1 1 2 1 1 1 2 2

1 1 1 2 2 2

sin sin sin sin sin sin
2 2
g g g g g gh h h h h h h h Dρ θ ρ θ ρ θ ρ θ ρ θ ρ θ
µ µ µ µ µ µ

∴− + + = − + + +  

2 2 21 1 2 2 2
2 1 1 1 2 1 1 2

1 1 1 2 2

sin sin sin sin sin
2 2
g g g g gD h h h h h h hρ θ ρ θ ρ θ ρ θ ρ θ
µ µ µ µ µ

∴ = − + + − −  

1 1 2 2 2 1 2 2
2 1

1 1 2 2
sin

2 2
h h h hD h g ρ ρ ρ ρθ
µ µ µ µ

 
∴ = + − − 

 
 

Thus, the velocity profiles u1(y) and u2(y) are described by the lengthy 
equations 

( ) ( )21
1 1 1 2 2

1 1

sin sin
2
g gu y y h h yρ θ θ ρ ρ
µ µ

= − + +  

( )22 2 1 1 2 2 2 1 2 2
2 1 2 1

2 2 1 1 2 2

sin sin sin
2 2 2
g g h h h hu y h h y h gρ θ ρ θ ρ ρ ρ ρθ
µ µ µ µ µ µ

 
= − + + + + − − 

 
 

Let us exemplify these profiles with a bilayer of thickness equal to 1 
and such that h1 = h2 = 0.5. The density of the two fluids is the same, 𝜌𝜌1 = 𝜌𝜌2 
= 800 kg/m3, the inclination is 𝜃𝜃 = 8o, and the viscosity of the lower fluid is 
𝜇𝜇1 = 10 Pa∙s; the viscosity of the upper fluid is varied from 𝜇𝜇2 = 𝜇𝜇1 (case 1), 𝜇𝜇2 
= 5𝜇𝜇1 (case 2), and 𝜇𝜇2 = 0.2𝜇𝜇1 (case 3). We apply the following MATLAB code 
to plot the three cases; the blue, red and green curves refer to cases 1, 2 and 
3, respectively.  

syms y 
rho1 = 800; 
rho2 = 800; 
mu1 = 10; 
mu2 = 10; 
mu2Alt1 = 10*5; 
mu2Alt2 = 10/5; 
h1 = 0.5; 
h2 = 0.5; 
g = 9.81; 
theta = 8*pi/180;  
u = piecewise(0<y<0.5,-rho1*g*sin(theta)/(2*mu1)*y^2 + 
g*sin(theta)/mu1*(rho1*h1+rho2*h2)*y,0.5 < y < 1,-
rho2*g*sin(theta)/(2*mu2)*y^2 + 
rho2*g*sin(theta)/mu2*(h1+h2)*y+h1*g*sin(theta)*(rho1*h1/(2*m
u1)+rho2*h2/mu1-rho2*h1/(2*mu2)-rho2*h2/mu2)); 
fplot(u,'b'); 
xlim([0 1]); 
grid on 
hold on 
uAlt1 = piecewise(0.5 < y < 1,-
rho2*g*sin(theta)/(2*mu2Alt1)*y^2 + 
rho2*g*sin(theta)/mu2Alt1*(h1+h2)*y+h1*g*sin(theta)*(rho1*h1/
(2*mu1)+rho2*h2/mu1-rho2*h1/(2*mu2Alt1)-rho2*h2/mu2Alt1)); 
fplot(uAlt1,'r') 
uAlt2 = piecewise(0.5 < y < 1,-
rho2*g*sin(theta)/(2*mu2Alt2)*y^2 + 
rho2*g*sin(theta)/mu2Alt2*(h1+h2)*y+h1*g*sin(theta)*(rho1*h1/
(2*mu1)+rho2*h2/mu1-rho2*h1/(2*mu2Alt2)-rho2*h2/mu2Alt2)); 
fplot(uAlt2, 'g') 
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It is apparent that, if the upper fluid has viscosity equal to that of the 
lower layer, the velocity profile for the upper fluid is patched nicely with that 
of the lower one, and reaches a maximum speed of about 55 m/s. If, 
however, the upper fluid has viscosity substantially greater than the lower 
one, the maximum velocity reduces to about 42 m/s. Finally, having an 
upper fluid substantially less viscous than the lower one yields a much 
increased velocity profile in layer 2, with the fluid exceeding 100 m/s close 
to the free surface. 

P.3.23 c Solution 
Firstly, the continuity equation reads 

( ) 0rru
r
∂

=
∂

 

or 

( )rru f z=  
 

Substituting ur = 𝑓𝑓(z)/r into the r-momentum equation brings to 

2

2 2
1r r r z

r
u u u upu r
r r r r r r z

ρ µ
 ∂ ∂ ∂∂ ∂  = − + − +  ∂ ∂ ∂ ∂ ∂  

 

or 

( ) 2 2

2 2 (I)
f z dp u d f

dr rr dz
ρ   − = − +  

which is to be solved for 𝑓𝑓(z). For any given section r, the equation above is a 
nonlinear ordinary differential equation that can be solved for 𝑓𝑓(z), subject to 
two boundary conditions: 

No-slip condition: 0atf z L= = ±  

Symmetry condition: 0at 0df z
dz

= =  

The parameters involved in (I) become clearer if we integrate the 
equation in the radial direction from r = r1 to r = r2. The result is 

2 2
2

2 2 2
12 1

1 1 ln (II)
2

rf d fp
rr r dz

ρ µ
   

− = ∆ +       
 

where Δp = p1 – p2. For “creeping” flow, the inertia term on the left-hand 
side is negligible, and the solution can be found immediately: 
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( ) ( )
2 2

2
2 1

1 (III)
2 lnr

pL zf z ru
r r Lµ

 ∆
= = −  

 
 

This parabolic profile is analogous to Poiseuille flow in a channel. At 
higher Reynolds numbers, the creeping flow simplification breaks down and 
(II) must be solved in its complete form. We may nondimensionalize (II) using 
solution (III) as a guide, so that 

2

2
2 2 (IV)d K

dz

φ φ
∗

= − −  

where  

( )
2

2 1
;

2 ln
pL f zz

r r L
φ

µ
∗∆

= =  

and  

( )
( )

2 2 4
1 2
2 2

2 14 ln

r r pL
K

r r

ρ

µ

− ∆
=  

The single parameter K is proportional to the Reynolds number of the 
flow. The boundary conditions become 𝜙𝜙(±1) = 0 and d𝜙𝜙/d𝑧𝑧∗(0) = 0. 
Equation (IV) may be solved numerically via simple techniques such as the 
Runge-Kutta method. For a given K, the problem is to find the proper value 
of f(0) that causes f(1) to be zero. Solutions can be found for K ranging from 
0.0 to 0.75, but no solutions can be found for K ≳ 0.75 approximately. 
Profiles for some values of K can be found with the following Mathematica 
code: 

sol=ParametricNDSolve[{ϕ''[z]+k*ϕ[z]2+2==0,ϕ[1]==0,ϕ'[0]==0},ϕ,{z,0,2},{k}] 
Plot[Evaluate[Table[\[Phi][k][z] /. sol, {k, {0, 0.2, 0.4, 0.6, 0.7}}]], {z, 0, 1}, PlotRange -> 
All, Frame -> True, GridLines -> Automatic] 

 

As can be seen, the velocity profiles are approximately parabolic.  

P.3.25 c Solution 
With pressure and velocities dependent only upon 𝑟𝑟, the continuity 

equation simplifies to 

( )1 0rrv
r r
∂

=
∂

 

so that 

0 w
r

r vv
r

= −  

since 𝑣𝑣𝑟𝑟|𝑟𝑟=𝑟𝑟0 = −𝑣𝑣𝑤𝑤. With the radial velocity known, the 𝜃𝜃 (circumferential) 

momentum equation, 

r
r

dv v v dv vdv r
dr r r dr dr r
θ θ θ θ  + = −    

ν
 

can be solved for tangential velocity. The general solution is 
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1 1 Rev A r B rθ
− −= × + ×  

where Re = 𝑣𝑣𝑤𝑤r0/𝜈𝜈 is the wall Reynolds number. The first term above is the 
‘potential’ vortex of a solid cylinder. The second term is a combined effect of 
viscosity and wall suction and is unbounded if Re < 1, which is unrealistic. 
Further, the flow circulation, Γ = 2𝜋𝜋r𝑣𝑣𝜃𝜃, is proportional to r2–Re and is 
unbounded if Re < 2, which is likewise unrealistic. Therefore, for physical 
realism, 

0 if Re 2B = ≤  

The vorticity in the flow is obtained by differentiation: 

( ) ( ) ( )1 1 Re Re1 1 2 Re (I)d drv r Ar Br B r
r dr r drθω − − − = = × + = −   

Utilizing the boundary condition for surface vorticity, 𝜔𝜔 = 𝜔𝜔0 at r = r0, 
we obtain the constant B for Re > 2: 

( )
Re

Re 0 0
0 02 Re

2 Re
rB r B ωω−− = → =
−

 

Substituting in (I) gives the final solution for vorticity: 

( )
Re

Re 0 02 Re
2 Re

rB r ω
ω −= − =

−
( )2 Re− Rer−  

Re
0

0
r
r

ω ω  ∴ =  
 

 

With B known, the constant A follows from the condition 𝑣𝑣𝜃𝜃 = r0𝜔𝜔0 at 
r = r0. The final solution for velocity is a piecewise function conditioned by 
the range of Reynolds number: 

( )
2

0 0 0

2
0 0

Re 2
1 Re if Re 2

2 Re

if Re 2

r r
r r

v
r

r

θ

ω

ω

−    − + >  −    = 


≤


 

P.3.27 c Solution 
The Ekman solutions for surface velocity and penetration depth are 

0 ;
sin2 sinoV Dτ ρ νπ

ω φων φ
= =  

In the case at hand, the wind velocity is Vwind = 6 m/s and the air 
density at 20oC may be taken as 𝜌𝜌air ≈ 1.205 kg/m3. The angular velocity of 
the Earth may be taken as 𝜔𝜔 = 2𝜋𝜋/86,400 = 7.27×10–5 s-1. The surface wind 
shear may be estimated with equation (3-141): 

2 2
0 air wind0.002 0.002 1.205 6.0 0.0868PaVτ ρ= = × × =  

The shear velocity is, noting that the density of seawater may be 
taken as 1025 kg/m3, 

0 0.0868 1025 0.00920m/su τ ρ∗ = = =  

We may then use Clauser’s correlation to solve for penetration depth: 

0.04
sin sin

DuD νπ π
ω φ ω φ

∗

= =  

2 2 0.04
sin

DuD π
ω φ

∗

∴ =  

2 0.04
sin

uD π
ω φ

∗

∴ =  
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( )
2

5
0.04 0.00920 76.2m

7.27 10 sin 41º
D π

−

×
∴ = × =

× ×
 

Using this penetration depth, we can compute Clauser’s modified 
eddy viscosity: 

0
turb

1 2
0.04 0.04D Duτ

ν
ρ

∗ 
≈ = 

 
 

2
turb 0.04 76.2 0.00920 0.0280m /sν∴ = × × =  

It remains to compute the surface velocity: 

( )
2

0
5

0.00920 0.0518m/s
2 sin 2 7.27 10 0.0280 sin 41º

oV τ ρ
ων φ −

= = =
× × × ×

 

These are realistic results, with a surface velocity of the order of a few 
centimeters per second and a penetration depth of the order of 100 meters.  

P.3.28 c Solution 
We are to solve the same differential equation with one changed 

boundary condition: 
 

( ) ( )2 sin 0 ; 1vw i w w u iv iω φ′′ − = = + = −  
 

subject to w(–h) = 0, w’(0) = iK, with K = 𝜏𝜏0/𝜇𝜇. This linear ODE has a general 
solution based on hyperbolic functions: 
 

( ) ( ) ( ) ( )1 2cosh sinh ; 2 sin /w z A bz B bz b i vω φ= + =  

Note that parameter b can be restated as: 

( )( )1 21 sinb i vω φ= +  

From the boundary conditions, we find that A = Btanh(bh), B = iK/b. 
The desired solution for (general) velocity and surface velocity is thus 

( ) ( ) ( ) ( ) ( ) 0 0tanh cosh sinh and 0 tanhiK iKw bh bz bz w bh u iv
b b

= + = = +    

We use the identity tanh(x + iy) = [sinh(2x) + isin(2y)]/ [cosh(2x) + 
cos(2y)] to untangle the real and imaginary parts of the surface velocity: 

( ) ( ) ( ) ( )0 0
1 1sinh 2 sin 2 ; sinh 2 sin 2u h h v h hβ β β β= − = +      Θ Θ

 

where 𝛽𝛽 = 𝜋𝜋/D and 

( ) ( )2 cosh 2 cos 2
K
h hβ β β

Θ =
+  

 

The ratio u0/v0 is the tangent of the desired surface flow angle: 

( ) ( )
( ) ( )

0

0

sinh 2 sin 2
tan

sinh 2 sin 2
h D h Du

v h D h D
π π
π π

−
Θ = =

+
 

We can then plot Θ versus h/D using the MATLAB code 

fplot(@(b) (atan((sinh(2*pi*b)-
sin(2*pi*b))/(sinh(2*pi*b)+sin(2*pi*b)))), [0 1.4]) 
ylim([0 0.9]) 
grid on 

The graph is shown below. The angle rises slowly from zero through 
an increasing overshoot at 47o at h/D ≈ 0.6 to level off at 45o in “deep” 
water.  
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We can readily evaluate the function at 𝜃𝜃 = 20o (i.e., 20 × 𝜋𝜋/180 rad) 
with MATLAB’s feval command: 

feval(@(b) (atan((sinh(2*pi*b)-
sin(2*pi*b))/(sinh(2*pi*b)+sin(2*pi*b)))), 20*pi/180) 

ans = 

    0.6039 

Clearly, h/D ≈ 0.604 when 𝜃𝜃 = 20o.  

P.3.31 c Solution 
The angular velocity of 1200 rpm can be converted to 1200 × 2𝜋𝜋/60 

=126 rad/s. The kinematic viscosity of air at 20oC and 1 atm can be taken as 
1.50×10–5 m2/s. One way (the hard way) to evaluate flow rate is to integrate 
the radial velocity at the edge of the disk: 

( ) 2
0 0

2 2zQ v r R Rdz R Fdzπ π ω
∞ ∞ ∗= = =∫ ∫ν  

However, the rightmost integral is not tabulated in the text. A much 
easier approach is to note that the flow rate should also equal the fluid 
‘pumped’ axially toward the disk: 

( )2
zQ R vπ= ∞  

where vz(∞) can be obtained from equation (3-188), namely 

( ) 0.8838zv ω∞ = − ν  

so that 

( )2 5 30.25 0.8838 126 1.50 10 0.00754m /sQ π −= × × − × × × =  

Next, the torque on one side of the disk is given by Eq. (3-190): 

4 3
0 02

M r Gπ ρ ω′= ν  

Function 𝐺𝐺0′  can be read from Table 3.5, noting that 

0z∗ =  

so that |𝐺𝐺0′ | = 0.61592. The torque we aim for is then 

( )4 5 31.205 0.25 0.61592 1.50 10 126 0.0250 N m
2

M π −= × × × × × × = ⋅  

The power required to drive one side of the disk is 

0.0250 126 3.15WMωΠ = = × =  

0 0.2 0.4 0.6 0.8 1 1.2 1.4

h/D
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White notes that the rotational Reynolds number for the problem at 
hand, 

2 2

5
126 0.25Re 525,000
1.50 10

Rω
−

×
= = =

×ν
 

exceeds the threshold for turbulent flow, so the results we’ve obtained may 
not be immediately valid.  

P.3.32 c Solution 
With Re = 0, Eq. (3-195) reduces to 

2Ref fα′′′ + 24 const.fα+ =  

24 const.f fα′′′∴ + =  

This is a third-order linear ODE for which the general solution can be 
shown to be 

( ) ( )1 2 3sin 2 cos 2f A A Aαη αη= + +  

The boundary conditions are 𝑓𝑓(0) = 1, 𝑓𝑓(+1) = 0, and 𝑓𝑓(−1) = 0. 
Substituting the first BC yields 

( ) ( ) ( )1 2 3

0

0 sin 2 0 cos 2 0 1f A A Aη α α
=

= = × + × + =


 

2 3 1 (I)A A∴ + =  

Substituting the second BC, 

( ) ( ) ( )1 2 31 sin 2 1 cos 2 1 0f A A Aη α α= = × + × + =  

( ) ( )1 2 3sin 2 cos 2 0 (II)A A Aα α∴ + + =  

Substituting the third BC, 

( ) ( )1 2 3sin 2 cos 2 0A A Aα α− + − + =  

( ) ( )1 2 3sin 2 cos 2 0 (III)A A Aα α∴− + + =  

Equations (I) to (III) constitute a system of linear equations with three 
unknowns. Adding (II) to (III), we have 

( )1 sin 2A α ( ) ( )2 3 1cos 2 sin 2A A Aα α+ + − ( )2 3cos 2 0A Aα+ + =  

( )2 32 cos 2 2 0A Aα∴ + =  

( )2 3cos 2 0A Aα∴ + =  

( )3 2 cos 2 (IV)A A α∴ = −  

Substituting A3 in (I), 

( )2 3 2 21 cos 2 1A A A A α+ = → − =  

( )2 1 cos 2 1A α∴ − =    

( )2
1

1 cos 2
A

α
∴ =

−
 

From (IV), 

( ) ( )
( )3 2

cos 2
cos 2

1 cos 2
A A

α
α

α
= − = −

−
 

Substituting A2 and A3 in (I), we see that 

( ) ( )
( )

( )
( )1

cos 2 cos 2
sin 2 0

1 cos 2 1 cos 2
A

α α
α

α α
+ − =

− −
 

( )1 sin 2 0A α∴ =  

1 0A∴ =  
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It follows that the desired solution for creeping Jeffery-Hamel wedge 
flow is 

( ) ( ) ( )1 2 3sin 2 cos 2f A A Aη αη αη= + +  

( ) ( )
( )

( )
( )

cos 2 cos 2
1 cos 2 1 cos 2

f
αη α

η
α α

∴ = −
− −

 

( ) ( ) ( )
( )

cos 2 cos 2
1 cos 2

f
αη α

η
α

−
∴ =

−
 

After a sequence of lengthy trigonometry passages (some of the steps 
are outlined here), function 𝑓𝑓(𝜂𝜂) is found to be 

( ) 211 csc sin 2 1
2 2

f πη α αη  = + − −    
 

Some representative velocity profiles are plotted below. The case {𝛼𝛼 = 
0o} refers to Poiseuille channel flow and is not shown. The case {𝛼𝛼 = 90o} is 
the separation point. For 𝛼𝛼 > 90o, separation or backflow must occur in a 
diverging flow even at zero Reynolds number.  

 

P.3.33 c Solution 
As mentioned in the problem statement, the radial velocity is given by 

the general formula 

2 sinru
r
ψ θ

θ
∂ ∂

≡  

We can establish the partial in the numerator using Mathematica, and 
then apply the Simplify command:  

 
That is,  

( ) ( ) ( )
( ) 2

3 4 1 cos cos 2

1 cos
r

v a
u

r a

θ θ

θ

− + +  = −
+ −  

 

Assuming v = 1 and 𝑎𝑎 = 0.001, we may plot contours for 𝑢𝑢𝑟𝑟 using 
Mathematica’s ContourPlot function: 

 

https://mathhelpforum.com/threads/trig-and-the-derivation-of-jeffery-hamel-creeping-flow.300281/
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The contours for 𝑎𝑎 = 0.1 are shown next. 

 

The jet width 𝛿𝛿 is defined as the point where ur = 0.01umax. Setting 𝜃𝜃 
in the equation above to zero, we see that the maximum velocity is umax = 
4v/(r𝑎𝑎). Then, the jet velocity ratio is 

 

Output 900 above gives the jet velocity ratio. We move on to equate 
this relationship to 0.01, so that 

( ) ( ) ( )
( )max

2
3 4 1 cos cos 2

0.01
4 1 cos

r a au
u a

θ θ

θ

− + +  = − =
+ −  

 

with 𝑎𝑎 = 0.001, we have 
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The viable solution, 𝜃𝜃 ≈ 0.158 rad, is highlighted in red. Converting it 
to degrees, we find 𝜃𝜃 ≈ 9.05o. Proceeding similarly with other values of 𝑎𝑎, we 
prepare the following table: 

𝑎𝑎 0.001 0.003 0.006 0.009 0.012 
𝜃𝜃  9.05o 15.0o 20.2o 23.6o 26.2o 

 

The jet mass flow is obtained by integrating over the jet profile at a 
given value of r: 

( ) ( )( )
jet 0

,
2r

f a
m u dA r rd

r
θ δ θ

ρ ρ π θ= =∫ ∫  

( )( )
0

const ,m r f a d
θ δ

θ θ∴ = × × ∫  

( )( )
0

Also constant

const ,m f a d r
θ δ

θ θ

=

 ∴ = × ×  ∫


 

const.m r∴ = ×  

Therefore, the (laminar) mass flow increases linearly with r along the 
jet axis due to “entrainment” from the ambient fluid outside the jet.  

P.3.34 c Solution 
At terminal velocity, the sphere’s net weight in oil equals its drag: 

( )
2

3 2
net sph Drag

6 2 4D
VW g D C Dπ ρ πρ ρ= − = =  

Solving for V gives a modified form of Stokes’ famous solution: 

( )sph
1 2

4 1
(I)

3 D

Dg
V

C

ρ ρ −
 =
  

 

The drag coefficient is a function of Reynolds number, i.e., CD = 𝑓𝑓(Re). 
For creeping (Stokes) motion, we have CD = 24/Re and a velocity given by V 
= W/(3𝜋𝜋D𝜇𝜇), which could serve as a first estimate. At higher Reynolds 
numbers, the drag coefficient may be estimated with the correlation 

( ) 24 6sphere 0.4 (II)
Re 1 ReDC = + +

+
 

Consider first the particle with diameter equal to 0.1 mm. This is the 
smallest sphere of the three we were told to assess, and hence should be 
the one most likely to settle via Stokes flow. Accordingly, we estimate the 
velocity as 

( ) ( )
( )

33

4
3

7.8 0.88 998 9.81 0.1 10
6 2.49 10 m/s

3 3 0.1 10 0.15
WV
D

π

π µ π

−

−
−

 × × × × × ×     = = = ×
× × ×

 

To check if the creeping flow assumption is indeed valid, we may 
substitute this velocity and other parameters into the definition of Reynolds 
number: 

( ) ( ) ( )4 3
4

0.88 998 2.49 10 0.1 10
Re 1.46 10

0.15
VDρ
µ

− −
−

× × × × ×
= = = ×  

Since Re ≪ 1, our assumption is reasonable. 
Consider now the 1.0-mm-diameter sphere. Assuming that Stokes 

flow is also valid for this sphere, we estimate the settling velocity with the 
usual relation 

( ) ( )
( )

33

3

7.8 0.88 998 9.81 1.0 10
6 0.0249m/s

3 3 1.0 10 0.15
WV
D

π

π µ π

−

−

 × × × × × ×     = = =
× × ×
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Checking for the assumption of creeping flow: 

( ) ( )30.88 998 0.0249 1.0 10
Re 0.146

0.15
VDρ
µ

−× × × ×
= = =  

Since Re ≲ 1, Stokes flow applies to this sphere as well. 
Lastly, we have the 10-mm-diameter sphere. Proceeding similarly to 

the two previous spheres, the settling velocity and the Reynolds number are 
found to be 2.5 m/s and 147, respectively. This latter result indicates that 
creeping flow is not valid in this particular case. Accordingly, we must 
estimate velocity and drag coefficient with equations (I) and (II), respectively. 
We can readily obtain these solutions by defining a MATLAB function and 
then applying the command fsolve: 

function fcn = stok(x) 
%x(1) is velocity 
%x(2) is drag coefficient 
reyn = 0.88*998*0.01*x(1)/0.15; 
fcn(1) = x(2) - 24/reyn - 6/(1+sqrt(reyn)) - 0.4; 
fcn(2) = x(1) - sqrt(4*0.01*9.81*(7.8/0.88-1)/(3*x(2))); 
 
>> x0 = [1,1]; 
>> x = fsolve(fun,x0) 
 
x = 
 
    0.7774    1.7018 
 

As can be seen, the code returns a velocity V ≈ 0.777 m/s and a drag 
coefficient CD ≈ 1.70.  

P.4.1 c Solution 
This profile is more realistic than the quadratic approximation, Eq. (4-

11), because it satisfies not only u(0) = 0, u(𝛿𝛿) = U, and 𝜕𝜕u(𝛿𝛿)/𝜕𝜕y = 0, but also 
𝜕𝜕2u(0)/𝜕𝜕y2 = 0. The maximum thickness 𝜃𝜃 is approximated by 

1 3 3
0 0

3 1 3 11 1
2 2 2 2

u u dy d
U U

δ
θ δ η η η η η    = − = − − +    

    ∫ ∫  

where 𝜂𝜂 = y/𝛿𝛿. The integral above can be readily set up in Mathematica: 

 

In a similar manner, we can find 𝛿𝛿⋆, namely 𝛿𝛿⋆ = 𝛿𝛿 ∫ (1 – u/U)dy = 
3𝛿𝛿/8.  

Now, the wall shear is 

2

0 0

3 3
2 2w

u uy y

du U y
dy

τ µ µ
δ δ= =

 
= − = − − 

 
 

3
2w

Uµτ
δ

∴ =  

and the friction factor follows as 

2 2
2 2 3 3 2

2
w

f
U dC

U dxU U
τ µ µ θ

δ ρ δρ ρ
= = × = =  

3 392
280

d
U dx
µ δ

ρ δ
 ∴ =  
 

 

Separating variables, 

140
13

dxd
U
µδ δ
ρ

=  

Integrating and assuming 𝛿𝛿 = 0 at x = 0 brings to 
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2 140
2 13

x
U

δ µ
ρ

=  

2 2140
2 13

x
U x

δ µ
ρ

∴ =  

2

2
280

13 Uxx
µδ

ρ
∴ =  

2

2
280

1 R3 exx
δ

∴ =  

4.64
Rexx

δ
∴ =  

The other two thicknesses follow from 𝜃𝜃 = 39𝛿𝛿/280 = 0.139𝛿𝛿 and 𝛿𝛿⋆ 
= 3𝛿𝛿/8 = 0.375𝛿𝛿, so that 

Re4.64 4.64
Re

x

xx x
δ δ∴ = → =  

 

Re
4.64

0.139
x

x
θ

∴ × =  

 

Re 0.645xx
θ

∴ =  

For the other thickness, we write 

Re Re
4.64 4.64

0.375
x x

x x
δδ
∗

= → × =  

Re 1.74xx
δ ∗

∴ =  

To compute the terms mentioned in (d) and (e), we use the 
approximation 𝜏𝜏𝑤𝑤 ≈ 1.5𝜇𝜇U/𝛿𝛿 and write 

2 2
2 2 1.5w

f
UC

U U
τ µ

δρ ρ
= = ×  

3
fC

U
µ

ρ δ
∴ =  

3
fC

U
µ

ρ δ
∴ =  

3Re
4.64f xC∴ =  

Re 0.647f xC∴ =  

Finally, 

( )2 0.6452D

L LC
L

θ
= = ×

ReL L
 

Re 1.29D LC∴ =  

P.4.3 c Solution 
In addition to satisfying the conditions u(0) = 0, u(𝛿𝛿) = U, and 𝜕𝜕u/𝜕𝜕y(𝛿𝛿) 

= 0, the sine-wave profile also satisfies the zero-pressure-gradient condition 
𝜕𝜕2u(0)/𝜕𝜕y2 = 0 pertaining to flat-plate flow, which is not satisfied by the 
parabolic profile. The wall shear estimate is 
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0 0
cos

2 2w
y y

u U y
y

π πτ µ µ
δ δ= =

∂   = = ×   ∂   
 

(I)
2w

Uπµτ
δ

∴ =  

Then, the momentum thickness estimate is determined as 

1

0 0
1 sin 1 sin

2 2
u u dy d
U U

δ π πθ δ η η η      = − = −            
∫ ∫  

1 2 0.137
2

θ δ δ
π

 ∴ = − + = 
 

 

Next, the friction coefficient can be obtained as 

( )
2 2

2 22 2w
f

U dC
dxU U

πµ δτ θ
ρ ρ

= = =  

( ) ( )2
2 2

2 0.137
U d

dxU
πµ δ

δ
ρ

∴ =  

( )
2

2 2
0.274

U d
dxU

πµ δ δ
ρ

∴ =  

2
0.274

2
x

U
πµ δ
ρ

∴ =  

2
2 0.274

2
x

Ux
µ

ρ
π δ

∴ =  

2

20. 37
Re

1
x x

π δ
∴ =  

.
1 2

Re
0.137xx

δ π ∴ =  
 

 

Re 4.79xx
δ

∴ =  

The accuracy is decent. Putting 𝛿𝛿(x) back into the Cf estimate brings 
to 

2Re 0.328
4.79f xC π

= =  

P.4.4 c Solution 
For air at 20oC and 1 atm, we may take 𝜌𝜌a = 1.205 kg/m3 and 𝜇𝜇 = 

1.80×10–5 Pa∙s. The density of water at the same temperature may be taken 
as 𝜌𝜌𝑤𝑤 = 998 kg/m3. We begin by estimating the pressure drop Δp, 

( ) ( )998 1.205 9.81 0.021 205Paw ap ghρ ρ∆ = − = − × × =  

so that, from the definition of dynamic pressure, 

2
air

air

2
2
u pp uρ

ρ
∆

∆ = → =  

2 205 18.5m/s
1.205

u ×
∴ = =  

Since u < 20 m/s, the inlet of the Pitot tube is somewhere within the 
boundary layer. The velocity ratio is 𝑓𝑓′ = u/U = 18.5/20 = 0.925. Table 4-1 
gives 𝑓𝑓′(𝜂𝜂 = 2.6) = 0.93060, which is reasonably close to 0.925. Hence, 𝜂𝜂 ≈ 
2.6 and, referring to the definition of this parameter and solving for x, 

2 2
aUUy y

x x
ρ

η
µ

= =
ν
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2 2

2
aUy

x
ρ

η
µ

∴ =  

2

2
aU yx ρ
µ η

 
∴ =  

 
 

( )5

21.205 20 0.002 0.396m
2.62 1.80 10

x
−

×  ∴ = = 
 × ×

 

That is, the Pitot tube is approximately 40 cm away from the leading 
edge of the plate. Lastly, we check the Reynolds number: 

( )5
1.205 20 0.396Re 530,000

1.80 10
a

x
uxρ
µ −

× ×
= = =

×
 

For a smooth plate and a quiet freestream, transition to turbulence 
occurs beyond Rex ≈ 1,000,000. Thus, the flow in the vicinities of the tube is 
laminar, and our results are reasonable.  

P.4.10 c Solution 
Knowing that, for Falkner-Skan flow, 𝜂𝜂 = y[(m + 1)U/2𝜈𝜈x]1/2, and 𝑓𝑓′(𝜂𝜂) = 

u/U, we may compute the boundary-layer displacement thickness as 

( ) ( )
0 0

1 2
21 1

1
u xdy f d
U m U

δ δ

η

δ η
∗

∗

=

   ′= − = −   +   
∫ ∫



ν
 

( )

1 2
2 (I)

1
x

m U
δ η∗ ∗ 

∴ =  + 

ν
 

The wall shear, in turn, is 

( ) ( ) 1 2

0

1
0 (II)

2w
y

m Uu Uf
y x

τ µ µ
=

+ ∂ ′= =  ∂  ν
 

Then, since U = Kxm, the pressure gradient is 

1 2 2 1m m mdp dUU Kx mKx mK x
dx dx

ρ ρ ρ− −= − = − × × = −  

2
(III)dp mU

dx x
ρ

∴ = −  

Combining equations (I), (II), and (III), the Clauser parameter is found 
to be 

( )

( ) ( )

1
2

2

1
2

2
1

Clauser parameter
1

0
2

w

x
m Udp mU

dx x
m U

Uf
x

η
δ ρ
τ

µ

∗
∗

 
 +   = = × −  

 + 
′  

 

ν

ν

 

( )( )

2

2
2Clauser p.

0 1
x mU

xf m U
η ρ

µ

∗

∴ = −
′ +

ν
 

( ) ( )
2Clauser p.
1 0
m

m f
η∗

∴ = −
′+

 

All quantities in the right-hand side are independent of x, hence the 
Clauser parameter is a constant for a given wedge flow. For separating flow, 
f’(0) = 0 and the Clauser parameter → +∞.  

P.4.12 c Solution 
Assume that the local wall shear stress varies only with distance x 

from the leading edge, in accordance with laminar flat-plate theory. Then 
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the strip dA in the figure below would have a uniform shear stress given by 
Eq. (4-52), with 𝑓𝑓′(0) = 0.4696: 

1 3
2 2

2
2 0.664 0.332

Re
w

w
x

U
xU

τ ρµτ
ρ

 = → =  
 

 

 

For a triangle with side length 𝑎𝑎, the strip has an area dA = Ldx(1 – 
x/L), where L = 𝑎𝑎 × sin 60o and 𝑎𝑎 = 2 m. Then the total shear force on the 
plate is the integral of the local strip force: 

( ) ( )1 2 3 2
0

2sides 2 0.332
L

w
L xF dA U dx

x
τ ρµ −

= = ×∫ ∫  

( )1 23 3 2

0

20.664 2
3

x L

x
F U L x xρµ

=

=

 ∴ = − 
 

 

( )
3 21 23 40.664
3
LF Uρµ∴ = ×  

( )1 23 3 20.885F U Lρµ∴ =  

For the case at hand, U = 12 m/s, L = 2sin(60o) = 1.73 m and, for air 
under the given conditions, 𝜌𝜌 ≈ 1.2 kg/m3 and 𝜇𝜇 ≈ 1.8×10–5 Pa∙s, so that 

( ) 1 25 3 3 20.885 1.2 1.8 10 12 1.73 0.389 NF − = × × × × × =   

Lastly, we check the Reynolds number: 

6
5

1.2 12 1.73Re 1.38 10
1.8 10L

ULρ
µ −

× ×
= = = ×

×
 

This is greater than the turbulent threshold ReL ≈ 106, hence our 
results may not be immediately valid.  

P.4.13 c Solution 
Each square cell has four surfaces, and each (L × 𝑎𝑎) surface 

experiences a shear force given by laminar boundary-layer theory, Eq. (4-
53): 

2

1.328
1Re
2

D
L

FC
U aLρ

= =  

1 2 1 2 1 2 2
1 2

1.328
1
2

F
U L U aLρ ρ
µ

∴ =  

( )1 2 3 20.664F L U aρµ∴ =  

An N × N array of boxes has N2 cells of four surfaces each, yielding a 
total shear force  

( )1 2 3 2 20.664 4L U a Nρµ= ×F  

( )1 22 3 22.66N L U aρµ∴ =F  
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A freebody around the entire array shows that this shear force has to 
be balanced by a pressure drop across the array, multiplied by the array 
frontal area: 

( )
( )1 2 3 2

array 2
2.66p L U

aN a
ρµ∆ = =

×

F
 

Surprisingly, the pressure drop is found to be independent of the 
number N of ducts. The pressure drop achieved is modest: for air at 20oC, 
flowing in cells with 𝑎𝑎 = 1 cm and L = 10 cm at a speed of 20 m/s, Δparray 
becomes 

( ) 1 25 3 2
array

2.66 1.20 1.80 10 0.1 20 35.0Pa
0.01

p − ∆ = × × × × × =   

P.4.17 c Solution 
The jet width can be estimated with equation (4-106), 
 

2 2 1 3
21.8 (I)xb

J
µ
ρ

 
≈   

 
 

but the momentum flux J is missing. To evaluate it, we appeal to equation 
(4-104): 

( )
2 2

max 5

1 31 3
0.4543 0.20 0.4543

1.20 1.80 10 0.50
J Ju

xρµ −

    ≈ → = ×    × × ×   
 

 

That is, J = 9.60×10–4 kg/s2. Substituting this and other quantities into 
(I) yields 

( )
( )

22 52 2

4

1 3
1 3 0.50 1.8 10

21.8 21.8 0.0900m
9.60 10 1.20

xb
J
µ
ρ

−

−

 × ×   ≈ = × =     × ×    

 

The jet has width equal to approximately 9 centimeters. Next, the 
mass flow can be determined with equation (4-107): 

( ) ( ) ( )4 5 1 31 33.302 3.302 9.60 10 1.20 1.80 10 0.50m J xρµ − − = = × × × × × × 
  

0.00720kg/s/mm∴ =  

Lastly, the jet Reynolds number can be expressed in three essentially 
equivalent ways: 

 

Jet 5
0.00720Re 400

1.8 10
m
µ −= = =

×


 

( )
( )

41 3

Jet 2 25

1 3
9.60 10 1.20 0.50

Re 121
1.80 10

J xρ
µ

−

−

 × × ×   = = =     ×  

 

max
Jet 5

1.20 0.20 0.09Re 1200
1.80 10

u bρ
µ −

× ×
= = =

×
 

P.4.18 c Solution 
The Reynolds number for the flow at hand is 

5
1.2 1.0 0.3Re 20,000

1.8 10L
ULρ
µ −

× ×
= = =

×
 

The wake velocity is given by equation (4-112), 
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1 2 1 2 2
01

0

Re exp
16 4

L
D

U yu LC
U x xπ

    = −         ν
 

At the centerline, y = 0, so that 

1 2 1 2 2
01

0

1.0

0Re exp
16 4

L
D

Uu LC
U x xπ

=

 ×   = −         
ν

 

1 2 1 2
1

0

Re
16

L
D

u LC
U xπ

   ∴ =   
  

 

1 2 1 2
1 20,000 0.30.05 0.315

1.0 16 3.0
u

π
   ∴ = × × =   
   

 

( )1 0 0.315m/su y∴ = =  

By analogy with jet theory, the wake half-thickness can be defined as 
the point where the defect velocity drops to 1% of its maximum velocity, so 
that, from the Gaussian profile, 

2
0exp 0.01

4
U y

x
 
− =  
 ν

 

( )
2

0ln exp ln 0.01
4

U y
x

  
∴ − =      ν

 

( )
2

0 ln 0.01
4

U y
x

∴− =
ν

 

( )
0

4 ln 0.01x
y

U
∴ = −

ν
 

( ) ( )54 3.0 1.80 10 /1.2 ln 0.01
0.0288m

1.0
y

−× × × ×
∴ = − =  

The wake width is twice this value, or b = 2 × 0.0288 = 0.0576 m. 
Lastly, the wake Reynolds number can be expressed in terms of wake width 
and the maximum defect velocity: 

max
Wake 5

1.2 0.315 0.0576Re 1210
1.8 10

u bρ
µ −

∆ × ×
= = =

×
 

Note that the Reynolds number can be defined in other ways, as in 
the case of jet flow.  

P.4.23 c Solution 
We select the inviscid-flow theory for freestream velocity, U(x) = 

2U0sin(x/𝑎𝑎), where 𝑎𝑎 cylinder radius and 𝑥𝑥 starts at the front stagnation point 
(see Fig. 4-24(𝑎𝑎) for the geometry). The momentum thickness from 
Thwaites’ method is given by Eq. (4-138), namely 

2 5
6 0

0.45 (I)
x
U dx

U
θ = ∫

ν
 

Thwaites’ factor 𝜆𝜆 is given by Eq. (4-132), that is, 

2 dU
dx

θλ  =  
 ν

 

where dU/dx = (2U0/𝑎𝑎)cos(x/𝑎𝑎), and 𝜃𝜃2 can be taken from the quadrature (I), 
giving 

5
2 6 00

0.45
2 cos

x
U dx UdU xU

dx a a
θλ    = = ×   

   

∫
ν

ν ν
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( )
( ) 5 0

06
0

0
20.45 2 sin cos

2 sin

x U xU x a dx
a aU x a

λ  ∴ = ×        
∫  

( )
( )

( )5
6 0

0.45cos
sin (II)

sin
dλ∴ = ∫

ζζ
ζ ζ

ζ
 

where 𝜁𝜁 = x/𝑎𝑎 and the integral on the right-hand side can be evaluated to 
yield 

( ) ( ) ( )5 6
0

4sin sin 19 18cos 3cos 2
15 2

d  = + +     ∫
ζ ζζ ζ ζ ζ  

Then, with 𝜆𝜆 known, the wall shear stress is given by Eq. (4-139): 

( )w
U Sµτ λ
θ

=  

where S(𝜆𝜆) is determined with Eq. (3-140), 

( ) ( )0.620.09 (III)S λ λ≈ +  

Lastly, we are asked to plot (Cf/2)�𝑈𝑈𝑈𝑈/𝜈𝜈, where Cf/2 = 𝜏𝜏𝑤𝑤/(𝜌𝜌U2). 
Putting all this together from the above formulas, we obtain the expression 

( ) ( )
1 25sin

Re (IV)
2 0.45

f
x

C
S

I
λ

 
=  
  

ζ ζ
 

where 𝐼𝐼 = ∫ sin5 𝜁𝜁𝜁𝜁
0 𝑑𝑑𝑑𝑑. Some values are tabulated below. 

𝜁𝜁 (deg) 0o 30o 45o 60o 75o 90o 100o 103.1o 
𝜁𝜁 (rad) 0 0.524 0.785 1.05 1.31 1.57 1.75 1.80 
𝜆𝜆 (Eq. II) 0.075 0.0722 0.0677 0.0589 0.0410 0 –0.0603 –0.0900 

S(𝜆𝜆) (Eq. III) 0.327 0.324 0.318 0.307 0.284 0.225 0.113 0.00357 
𝐶𝐶𝑓𝑓
2 √𝑅𝑅𝑅𝑅 (Eq. IV) 1.20 1.15 1.08 0.984 0.830 0.575 0.256 0.00771 

 

Then, we plot the red row versus the blue row, as shown. The skin 
friction values show good agreement with Terrill’s digital computer results 
plotted in Figure 4-24(b).  

 

P.4.24 c Solution 
We illustrate here the particular case of Tani (1949), namely 

21U x= −  

which, when taken to the fifth power, becomes 
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To compute 𝜃𝜃, we take the square root of Eq. (4-138), 

5
6 0

0.45 x

I

U dx
U

θ

=

≈ ∫


ν
 

( )1 2

3
0.45 I

U
θ∴ ≈

ν
 

where  
11 9 7 3

55 10 52
11 9 7 3
x x x xI x x= − + − + − +  

so that 

6
0.9xI
U

λ = −  

To find the value of 𝜆𝜆 that corresponds to the stagnation point, which 
is read from Table 4-5 to be x = 0.268, we substitute above and solve for 𝜆𝜆: 

 

 
 

Note that 𝜆𝜆 ≈ –0.09, as it should be (Sect. 4-6.9).  
Now, the local skin friction coefficient is given by 𝐶𝐶𝑓𝑓 = 2𝜏𝜏𝑤𝑤/𝜌𝜌U2, where 

wall shear 𝜏𝜏𝑤𝑤 can be expressed as 

( )w
U Sµτ λ
θ

=  

with S(𝜆𝜆) given by Eq. (4-140). We ultimately obtain  

( ) ( )
( )

2 3 2

1 2
2 1

Re (I)
0.45

f x

S x
C

H

λ −  =  

where H = 𝐼𝐼/x, or 

10 8 6 2
45 10 52 1

11 9 7 3
I x x x xH x
x

= = − + − + − +  

Let us plot (I) with Mathematica: 

II=Integrate[(1-x^2)5,x] 
x-(5 x3)/3+2 x5-(10 x7)/7+(5 x9)/9-x11/11 
λp = -((0.9*x*II)/(1-x^2)6) 
-((0.9 x (x-(5 x3)/3+2 x5-(10 x7)/7+(5 x9)/9-x11/11))/(1-x^2)6) 
Sλ=(λp+0.09)0.62; 
H=II/x; 
Plot[(2*Sλ*(1-x^2)3/2)/(0.45*H)1/2,{x,0,0.3}] 

The ensuing plot is shown below and reproduces the computer-
based solution quite well.  
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P.4.25 c Solution 
From one-dimensional continuity, the average velocity U(x) may be 

expressed as 

( ) ( )0 02 tan 2 tanU bW Ub W x U W U W xθ θ= + → = +  

0

2 tan
U WU

W x θ
∴ =

+
 

0 (I)2 tan1

UU x
W

θ∴ =
+

 

Following Thwaites’ approach, we must find the position x at which 𝜆𝜆 
≈ −0.09, noting that, from Eq. (4-132), 

2 2U dU
dx

θ θλ
′

= =
ν ν

 

Replacing 𝜃𝜃 with (4-138), 

2
5

6 0

0.45 xU dU U dx
dxU

θλ
′

= = ∫ν
 

with U given by Eq. (I). We could program the derivative and integral in the 
expression above with Mathematica, but, with reference to (I), note that the 
velocity profile has the form (1 + x)–1; Table 4-5 indicates that the exact 
laminar-separation-point position for such a distribution occurs at x ≈ 0.158. 
Accordingly, we set 

sep sep
sep

2 tan 0.0790.158
tan

x Wx L
W

θ
θ

≈ → = ≈  

so that, if L = 1.5W,  

( )
sep

0.079 1.5
tan

L
L

θ
×

=  

( )
sep

0.079 1 1.5
1

tanθ
×

∴ =  

septan 0.0527θ∴ =  

sep 3.02ºθ∴ =  

Laminar flow has much less resistance to separation than turbulent 
flow.  

P.5.1 c Solution 
Equation (5-9) in the textbook is stated as 

( )
( ) ( )2

1 2 1 22
1 2

1 2
(I)

g
U U

ρ ρ α ρ ρ

αρ ρ

 − + + − >
T

 

Differentiating with respect to 𝛼𝛼, we obtain 

 

Setting to zero the first term in parentheses in the numerator would 
lead to a negative density, which is absurd. Thus, we zero out the second 
term in parentheses instead, so that 

2
1 2 0g gα ρ ρ− + =T  
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( )2
1 2 0gα ρ ρ∴ − − =T  

( )1 2g ρ ρ
α

−
∴ =

T
 

as we intended to show. To see that this is indeed a minimum, we may 
obtain the second derivative of (I) and substitute the solution above, 

 

Note that all parameters in the numerator and denominator of the 
expression above are positive, which confirms that the optimum we’ve 
found is a minimum.  

For air blowing over gasoline, 𝜌𝜌1 ≈ 680 kg/m3, 𝜌𝜌2 ≈ 1.2 kg/m3, and 𝔗𝔗 
= 0.022 N/m. The minimum corresponds to an 𝛼𝛼 such that 

( ) 19.81 680 1.2
550m

0.022
α −× −

∴ = =  

The corresponding wavelength is 

2 2π πα λ
λ α

= → =  

2 0.0114m
550
πλ∴ = =  

Lastly, the corresponding difference U1 – U2 is determined as 

( )
( ) ( )2

1 2 1 2
1 2

1 2

g
U U

ρ ρ α ρ ρ

αρ ρ

 − + + − =
T

 

( )
( ) ( )2

1 2

9.81 680 1.2 550 0.022 680 1.2
4.495m/s

550 680 1.2
U U

 × − + × × + ∴ − = =
× ×

 

( )1 2 4.50m/sU U∴ − ≈  

P.5.2 c Solution 
If surface tension and the velocities are negligible, then we are 

studying the effect of gravity on an interface between two still fluids of 
different density. The expression for wave frequency, from Eq. (5-8), reduces 
to 

( )
( )

1 2

1 2

gα ρ ρ
σ

ρ ρ
−

= −
+

 

If an interfacial wave is produced, its propagation speed is 

2
2

TC
T
λ π σ

π λ α
= = =  

Combining the two foregoing expressions yields 

( )
( ) ( )

( )

1 2

1 2 1 2
2

1 2

g
g

α ρ ρ
ρ ρ α ρ ρσ

α α α ρ ρ

−
−

+ −
= = −

+
 

( )
( )

1 2

1 2

g
C

ρ ρ
α ρ ρ

−
∴ = −

+
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( )
( )

1 2

1 2

g
C i

ρ ρ
α ρ ρ

−
∴ =

+
 

( )
( )

1 2

1 22
g

C i
λ ρ ρ
π ρ ρ

−
∴ =

+
 

This is the speed of a deep-water wave, far from any upper or lower 
boundaries. For air layered over fresh water, 𝜌𝜌1 ≈ 1000 kg/m3, 𝜌𝜌2 ≈ 1.2 
kg/m3, and 𝜆𝜆 may be taken as, say, 3 m; accordingly, 

( )
( )

9.81 3.0 1000 1.2
2.16m/s

2 1000 1.2
C i

π
× × −

∴ = =
× +

 

If 𝜌𝜌1 < 𝜌𝜌2, then the argument of the square root is positive and the 
wave is unstable. Presumably the two layers will overturn so that the heavy 
fluid goes to the bottom.  

P.5.7 c Solution 
Referring to Table 5-1 of the textbook, we see that stagnation flow (𝛽𝛽 

= 1.0) becomes unstable at 𝑅𝑅𝑒𝑒𝜃𝜃 = 5636. Meanwhile, from the Falkner-Skan 
solutions in Table 4-2, the dimensionless momentum thickness in stagnation 
flow is 𝜃𝜃⋆ = 0.29235, as shown below.  

 

 

As a result, we may write, with m = 1, 

1 21 21 0.294 0.294
2

m U U
x x

θ θ+   = → =   
   ν ν

 

1 2
0.294 x

U
θ  ∴ =  

 
ν

 

Dividing both sides by x: 

( )1 2
0.294

x Ux
θ
=

ν
 

Solving for 𝑅𝑅𝑒𝑒𝜃𝜃 and setting it to the critical value mentioned above, 

( )1 2
1 20.294 Re 0.294Rexx Ux

θ
θ
= → =

ν
 

,crit
1 20.294Re 5936x∴ =  

8
,crit

25936Re 4.08 10
0.294x

 ∴ = = × 
 
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This very large Reynolds number, of the order of 100 million, 
underscores the stability of the favorable-gradient stagnation-flow velocity 
profile in focus. We can check this result by comparing it to the Wazzan et 
al. (1981) shape factor correlation in Fig. 5-31. From Table 5-1, 𝑅𝑅𝑒𝑒𝛿𝛿crit⋆  = 

12,490, so that H = 𝛿𝛿⋆/𝜃𝜃 = 12,490/5636 = 2.22. Entering this value into Fig. 
5-31, we read 𝑅𝑅𝑒𝑒𝑥𝑥,crit ≈ 2×108, which is in good agreement with the estimate 
above.  

P.5.9 c Solution 
This is not a similarity solution, so we need estimates of 𝜃𝜃(x) and H(x) 

along the wall, assuming that instability occurs before boundary-layer 
separation. We could use Thwaites’ method from Sect. 4-6.7, noting that, for 
Howarth decelerating flow, 

2

0

6
0.075 1 1L x

U L
νθ

−  = − −  
   

 

but  

6
0.075 1 1 (I)x

L
λ

−  = − − −  
   

 

so that 

( ) ( ) ( )6 1 21 2 1 2Re Re 10 1000 (II)Lθ λ λ λ= − = − × = −  
 

Suppose that x/L = 0.01. The corresponding 𝜆𝜆 can be obtained from 
eq. (I), giving 

( ) 60.075 1 0.01 1 0.00466λ − = − − − = −  
 

so that, substituting in (II), 
 

( ) 1 2Re 1000 0.00466 68.3θ = − − =    

Noting that z = 0.25 – 𝜆𝜆 = 0.25 + 0.00466 = 0.2547, shape factor 
H(𝜆𝜆) can be determined with Eq. (4-141), 

( ) 2 3 4 52.0 4.14 83.5 854 33337 4576H z z z z zλ ≈ + − + − +  

( ) 2 3

4 5

0.2547 2.0 4.14 0.2547 83.5 0.2547 854 0.2547

3337 0.2547 4576 0.2547 2.610

H λ∴ = ≈ + × − × + ×

− × + × =
 

The corresponding 𝑅𝑅𝑒𝑒𝛿𝛿⋆ = H × 𝑅𝑅𝑒𝑒𝜃𝜃 = 2.610 × 68.3 = 178. Then, we 
may enter H = 2.610 into Fig. 5-12 to read a critical Reynolds number 
𝑅𝑅𝑒𝑒𝛿𝛿⋆,crit ≈ 300, which is substantially greater than 178; accordingly, instability 
does not occur at x/L = 0.01. We proceed to another value of x/L – say, x/L 
= 0.03. The corresponding 𝜆𝜆 is calculated as (equation (I)) 

( ) 60.075 1 0.03 1 0.0150λ − = − − − = −  
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Next, Reynolds number 𝑅𝑅𝑒𝑒𝜃𝜃 is computed as (equation (II)) 

( )1 2Re 1000 0.0150 122θ
 = − − = 

 

Next, z = 0.25 – 𝜆𝜆 = 0.25 + 0.0150 = 0.265, and shape factor H 
follows as 

( ) 2 3

4 5

0.2650 2.0 4.14 0.2650 83.5 0.2650 854 0.2650

3337 0.2650 4576 0.2650 2.650

H λ∴ = ≈ + × − × + ×

− × + × =
 

so that 𝑅𝑅𝑒𝑒𝛿𝛿⋆ = H × 𝑅𝑅𝑒𝑒𝜃𝜃 = 2.650 × 122 = 323. Entering shape factor H = 2.650 
onto Fig. 5-12, we read a critical Reynolds number 𝑅𝑅𝑒𝑒𝛿𝛿⋆,crit ≈ 350; this is 
within 8% of our calculated 𝑅𝑅𝑒𝑒𝛿𝛿⋆ of 323, so we may surmise that instability 
takes hold at a position close to x/L = 0.03; of course, we could continue to 
iterate to improve the solution further, but the resolution of Fig. 5-12 is too 
poor to allow for substantial improvement.  

P.5.11 c Solution 
This is a variation of Prob. 5-9, in that the goal is the same – namely, 

to find the position at which instability ensues – but the velocity distribution 
is different. We’ve already discussed a similar velocity profile in Problem 4.23. 
Recall that Thwaites’ factor is expressed as 

2 dU
dx

θλ  =  
 ν

 

which, noting that dU/dx = 2U0cos(x/𝑎𝑎)/𝑎𝑎 and solving for momentum 
thickness, 

2
02 cosU x

a a
θλ  = ×  

 ν
 

( )
2

02 cos
a

U
λθ∴ =
ν

ζ
 

where we have used the substitution 𝜁𝜁 = x/𝑎𝑎. Also note that 𝜆𝜆 was found to 
be  

( )
( )

( )5
6 0

0.45cos
sin (II)

sin
dλ = ∫

ζζ
ζ ζ

ζ
 

where  

( ) ( ) ( )5 6
0

4sin sin 19 18cos 3cos 2
15 2

d  = + +     ∫
ζ ζζ ζ ζ ζ  

Assume first that 𝜁𝜁 = 30o = 0.524 rad. Substituting in (II), 𝜆𝜆 is 
calculated to be 

( )
( )

( )5
6 0

0.5240.45cos 0.524
sin 0.0721

sin 0.524
dλ = =∫ ζ ζ  

Noting that 𝑅𝑅𝑒𝑒𝐷𝐷 = 106 as given, we may determine 𝑅𝑅𝑒𝑒𝜃𝜃 as 

( ) ( ) ( )6 1 21 2Re sin Re cos sin 30º 0.0721 10 cos30º 144Dθ λ= = × × =  ζ ζ  

Noting that z = 0.25 – 𝜆𝜆 = 0.25 – 0.0721 = 0.178, we appeal to Eq. (4-
141) and compute the shape factor H, 

( ) 2 3

4 5

2.0 4.14 83.5 854

3337 4576

H z z z z

z z

≈ + − +

− +
 

( ) 2 3

4 5

0.0721 2.0 4.14 0.0721 83.5 0.0721 854 0.0721

3337 0.0721 4576 0.0721 2.103

H z∴ = ≈ + × − × + ×

− × + × =
 

so that 

Re Re 2.103 144 303H θδ ∗ = × = × =  

and  
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( ) ( )6 5Re Re sin 10 1.05 sin 1.05 9.11 10x D= = × × = ×ζ ζ  

Now, we turn to Fig. 5-12; entering a shape factor H ≈ 2.10, we read 
𝑅𝑅𝑒𝑒𝛿𝛿⋆,crit ≈ 30,000, which is much greater than the 𝑅𝑅𝑒𝑒𝛿𝛿⋆ calculated above, so 
we may surmise that instability has not ensued. Also, we can enter H into Fig. 
5-31 to read 𝑅𝑅𝑒𝑒𝑥𝑥,crit ≈ 8×108, which is also much greater than the 𝑅𝑅𝑒𝑒𝑥𝑥 
computed above, so instability likewise has not been attained relatively to 
Wazzan’s correlation.  

Now, let 𝜁𝜁 equal, say, 60o = 1.05 rad. Substituting in (II) gives 
parameter 𝜆𝜆: 

( )
( )

( )5
6 0

1.050.45cos 1.05
sin 0.0588

sin 1.05
dλ = =∫ ζ ζ  

Reynolds number 𝑅𝑅𝑒𝑒𝜃𝜃 is, in turn, 

( ) ( ) ( )6 1 21 2Re sin Re cos sin 60º 0.0588 10 cos 60º 298Dθ λ= = × × =  ζ ζ  

Noting that z = 0.25 – 𝜆𝜆 = 0.25 – 0.0588 = 0.191, we proceed to 
determine shape factor H(z), 

( ) 2 3

4 5

0.191 2.0 4.14 0.191 83.5 0.191 854 0.191

3337 0.191 4576 0.191 2.417

H z = ≈ + × − × + ×

− × + × =
 

so that 

Re Re 2.417 298 720H θδ ∗ = × = × =  

and  

( ) ( )6 5Re Re sin 10 1.05 sin 1.05 9.11 10x D= = × × = ×ζ ζ  

With reference to Fig. 5-12, we enter shape factor H and read 𝑅𝑅𝑒𝑒𝛿𝛿⋆,crit 
≈ 4000, which is substantially greater than our 𝑅𝑅𝑒𝑒𝛿𝛿⋆ and hence indicates that 
instability has not ensued. Also, referring to Fig. 5-31, we read 𝑅𝑅𝑒𝑒𝑥𝑥,crit ≈ 
5×106, which is substantially greater than our Rex and likewise indicates that 
instability has not been attained.  

Now, let 𝜁𝜁 equal, say, 80o = 1.40 rad. The corresponding 𝜆𝜆 is 

( )
( )

( )5
6 0

1.400.45cos 1.40
sin 0.0306

sin 1.40
dλ = =∫ ζ ζ  

so that 

( ) ( ) ( )6 1 21 2Re sin Re cos sin80º 0.0306 10 cos80º 418Dθ λ= = × × =  ζ ζ  

Noting that z = 0.25 – 𝜆𝜆 = 0.25 – 0.0306 = 0.219, we proceed to 
update the shape factor H(z), 

( ) 2 3

4 5

0.219 2.0 4.14 0.219 83.5 0.219 854 0.219

3337 0.219 4576 0.219 2.501

H z = ≈ + × − × + ×

− × + × =
 

so that 

Re Re 2.501 418 1050H θδ ∗ = × = × =  

and 

( ) ( )6 6Re Re sin 10 1.40 sin 1.40 1.38 10x D= = × × = ×ζ ζ  

Referring yet again to Fig. 5-12, we enter shape factor H and read 
𝑅𝑅𝑒𝑒𝛿𝛿⋆,crit ≈ 1100, which is reasonably close to our estimate of 𝑅𝑅𝑒𝑒𝛿𝛿⋆. As in the 
case of the previous problem, further improvement is made difficult by the 
poor resolution of Fig. 5-12. In turn, entering H into Fig. 5-31, we read 𝑅𝑅𝑒𝑒𝑥𝑥,crit 
≈ 8×105, which is also reasonably close to the Rex computed above. We 
make no further improvement to the solution and take 𝜁𝜁 ≈ 80o or (x/𝑎𝑎)crit = 
1.40 as our final result.  
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P.5.15 c Solution 
Referring to Table 5-1, we see that for separating flow 𝛽𝛽 = –0.1988 

the system becomes unstable when 𝑅𝑅𝑒𝑒𝜃𝜃 = 17. In turn, we can refer to Table 
4-2 and read that the dimensionless momentum thickness for separating 
flow is 𝜃𝜃⋆ = 0.58544.  

 

Noting that m = –0.09043 for the stagnation point, we can refer to 
Eq. (4-70) and write 

 

1 2 1 21 0.09043 10.585 0.585
2 2

m U U
x x

θ θ+ − +   = → =   
   ν ν

 

1 2
0.674 0.585U

x
θ  ∴ × × = 

 ν
 

1 2Re 0.868xx
θ

∴ × =  

1 2Re 0.868Re 17xθ∴ = =  

217Re 384
0.868x

 ∴ = = 
 

 

This awfully low Reynolds number underscores the fact that the S-
shaped separating-flow velocity profile is remarkably unstable. Note that we 
cannot check this result against the Wazzan et al. (1981) correlation because 
H in Fig. 5-31 only goes up to 3.1, and the shape factor for Falkner-Skan 
separating flow is H = 𝛿𝛿⋆/𝜃𝜃 = 2.35885/0.58544 = 4.03.  

P.6.4 c Solution 
For air at 24oC and 1 atm, take 𝜌𝜌 = 0.00230 slug/ft3 and 𝜈𝜈 = 1.65×10–4 

ft2/s. We begin by plotting u versus log(y) to get a preliminary understanding 
of the data at hand: 

 

The plot shows a linear trend for the first five or six points – the 
logarithmic overlap. Thus, we may appeal to the log-law correlation, 

1 lnu u y B
u κ

∗

∗

 
= +  

 ν
 

where von Kármán’s constant 𝜅𝜅 ≈ 0.41 and B ≈ 5.0. To obtain an estimate of 
friction velocity, we may substitute one of the first few points of u(y) versus y 
data in the log-law and solve for 𝑢𝑢⋆. Take, for instance, y = 0.15 in. and u(y) = 
17.02 ft/s; noting that 𝜈𝜈 = 1.66×10–4 ft2/s and using Mathematica’s FindRoot 
command: 
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FindRoot[17.02/uStar-1/0.41*Log[(uStar*0.15/12)/(1.66*10-4)]-
5.0,{uStar,0.5}] 
{uStar->1.08186}  

That is, 𝑢𝑢⋆ ≈ 1.08 ft/s. It is appropriate to check the inner variable y+ 
that corresponds to this friction velocity: 

( )
4

0.15 12 1.08
81.3

1.66 10
yvy

∗

−
+ ×
= = =

×ν
 

Since 30 < y+ < 300, we are in the logarithmic overlap range. We 
proceed to compute the wall shear stress: 

( )2 20.00230 1.08 0.00268 psfw vτ ρ ∗= = × =  

Before computing Clauser’s parameter 𝛽𝛽, we need an estimate of the 
thickness 𝛿𝛿⋆. To obtain such an estimate, we may integrate the velocity data 
numerically to obtain 𝛿𝛿⋆; in doing so, we find 𝛿𝛿⋆ ≈ 0.60 in. Accordingly, we 
substitute the pertaining variables into the definition of Clauser’s parameter 
to obtain 

( )2w

dp dUU
dx dxv

δ δβ ρ
τ ρ

∗ ∗

∗

 = = − 
 

 

( ) ( )2
0.60 12

32.50 1.06 1.48
1.08

β∴ = × − × − =    

Coles and Hirst (1968) found 𝛽𝛽 = 1.358 for the same dataset. Now, to 
find Coles’ wake parameter Π, we evoke Eq. (6-47): 

( )1 2ln yu y B f
κ κ δ

+ + Π  ≈ + +  
 

 

where we take f(y/𝛿𝛿) ≈ sin2(𝜋𝜋𝜋𝜋/2) as recommended in Eq. (6-46). Let us fit 
parameter Π with Mathematica’s FindFit function. We first normalize the 
data, as shown below; then, we evoke FindFit to compute the parameter Π: 

uPlus = u/1.08; 
yPlus = y*1.08/(1.66*10-4)/122; 
dataList=Transpose@{yPlus,uPlus}; 
FindFit[dataList,1/0.41*Log[Y]+5.0+(2Π)/0.41*Sin[Pi/2 
Y/(3.5/12)]2,{Π},Y] 
{Π->2.4234} 

That is, the value of the Coles parameter for the data at hand is close 
to 2.42.  

P.6.6 c Solution 
The desired formula is hidden within Eq. (6-53), which computes 

average pipe-flow velocity by integrating across the entire pipe: 

avg
1 3ln

2
avu v B

κ κ

∗
∗
  
 = + −     ν

 

The underscored terms are actually equal to umax/𝑣𝑣⋆ (neglecting the 
slight ‘wake’ at the centerline). Accordingly, we may rearrange the equation 
as follows: 

max
avg max

3 3
2 2

uu v u v
v κ κ

∗ ∗
∗

 = − = −  
 

avg max
3

2
u v u

κ
∗∴ + =  

max

avg avg

31
2

u v
u uκ

∗

∴ = +  

However, 𝑣𝑣⋆/uavg = �Λ 8⁄ , so that 

max

avg

31
2 8

u
u κ

Λ
= +  
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max

avg

31
2 0.41 8

u
u

Λ
∴ = +

×
 

max

avg
1 1.29u

u
∴ = + Λ  

as we intended to show.  

P.6.7 c Solution 
Dividing the flow rate Q by the cross-sectional area A gives the 

average velocity of the flow: 

avg 2
30/3600 11.8m/s

0.03
4

u
π

= =
 ×
 
 

 

Checking the Reynolds number: 

avg 1000 11.8 0.03Re 354,000
0.001D

u Dρ
µ

× ×
= = =  

That is, ReD ≫ 2000 and the flow is well into the turbulent regime. We 
proceed to apply the friction factor correlation 

( )10
1 2.0 log Re 0.8D= Λ −
Λ

 

We could use a design chart or solve the equation above numerically. 
Taking the latter approach, we employ the MATLAB code 

function fct = darcy(L) 
%L is the friction factor and ReD is the Reynolds number 
ReD = 354000; 
fct = L^(-0.5) - 2*log10(ReD*L^0.5) + 0.8; 
>> fun = @darcy; 
>> x0 = [0.1]; 
>> x = fsolve(fun,x0) 
x = 

    0.0140 

That is, Λ = 0.0140. The wall shear is then 

2 2
avg

1 10.0140 998 11.8 243Pa
8 8w uτ ρ= Λ = × × × =  

The pressure drop per unit length Δx = 1 m is, in turn, 

4 4 1.0243 32,400Pa/m 32.4 kPa/m
0.03w

xp
D

τ ∆ ×
∆ = × = × = =  

Lastly, the centerline velocity can be obtained by dint of the equation 
we were told to demonstrate in the previous problem: 

( ) ( )max avg 1 1.29 11.8 1 1.29 0.0140 13.6m/su u= + Λ = × + × =  

To find the maximum flow rate for which laminar flow holds, we first 
set the Reynolds number to 2000 and solve for average velocity: 

avg avg998 0.03
Re 2000 2000

0.001D
u D uρ
µ

× ×
= ≤ → =  

avg,max 0.0668m/su∴ =  

This corresponds to a flow rate such that 

2 5 3
max avg,max 0.0668 0.03 4.72 10 m /s

4
Q u A π − = = × × = × 

 
 

3
max 0.170m /hQ∴ =  
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Finding the flow rate at which the wall shear equals 100 Pa is more 
intricate, because at first we have neither the velocity nor the friction factor 
Λ. We shall use two equations; the first one is the wall shear, which can be 
expressed as 

2 2
avg avg

1 1100 998 100
8 8w u uτ ρ= Λ = → × ×Λ =  

2
avg 0.802 (I)u∴Λ =  

The second one is the Prandtl formula 

( )1 2
10

1 2.0 log Re 0.8D= Λ −
Λ

 

where ReD = 998 × 0.03 × 𝑢𝑢avg/0.001 = 29,940𝑢𝑢avg. Accordingly, we set up 

the following MATLAB code: 

function ff = prandtl(x) 
%x(1) is the average velocity, and x(2) is the friction factor 
ReD = 29940*x(1); 
ff(1) = x(2)*x(1)^2 - 0.802; 
ff(2) = x(2)^(-0.5) - 2.0*log10(ReD*x(2)^0.5) + 0.8; 
>> fun = @prandtl; 
>> x0 = [1, 0.1]; 
>> x = fsolve(fun, x0) 
x = 

    7.2151    0.0154 

That is, uavg ≈ 7.22 m/s and Λ = 0.0154. The corresponding flow rate is 

2 3
avg 7.22 0.03 0.00510m /s

4
Q u A π = = × × = 

 
 

3
100 18.36m /h

w
Qτ → =  

A flow rate of approximately 18.4 cubic meters per hour would yield a 

wall shear of 100 Pa. 

P.6.9 c Solution 
By double symmetry, we need to 

consider only one-eighth of the duct 
cross-section, as shown to the side. 
Although the flow in this region is three-
dimensional (owing to secondary 
circulation toward the corners), the mean 
velocity u in the duct-axis direction is 
well-represented by the log-law, Eq. (6-
38𝑎𝑎), based on the distance y from the 
wall, as sketched in the figure. In general, however, the wall shear stress 
varies with z along the wall, being zero in the corners and rather flat near z = 
𝑎𝑎/2. 

The total volume flow rate in the duct is 8 times the flow rate in the 
shaded area: 

( )
0

2

0
18 ln

za yvQ dz v z B dy
κ

∗
∗

    = +         
∫ ∫ ν

 

If, as a first approximation, we assume a constant shear velocity 𝑣𝑣⋆(z) 
around the cross-section, so that the integration yields 

*

avg avg2
1 3ln ; where 

2 2
Q a avu v B a
a κ κ

+
∗ +  

= = + − =       ν
 

Now, by definition, the friction factor Λ for any duct is such that 

𝑣𝑣⋆avg/𝑢𝑢avg = �Λ 8⁄ . Therefore, the above relation may be restated as a friction 

factor formula: 
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8 1 3ln Re
32 2a B

κ κ
 Λ

= + −  Λ  
 

where 𝑅𝑅𝑒𝑒𝑎𝑎 is a Reynolds number based on the side 𝑎𝑎 of the square cross-
section. With 𝜅𝜅 = 0.41 and B = 5.0, the equation may be simplified as 

( )8 1 3 2.83 1 3ln Re ln Re 0.177 5.0
32 2 0.41 2 0.41a aB

κ κ
 Λ

= + − → = × Λ + −  Λ ×Λ 
 

( ) ( )2.83 2.44 ln Re ln 0.177 1.34a
 ∴ = Λ + + Λ

 

( ) ( )2.83 2.44ln Re 2.44ln 0.177 1.34a∴ = Λ + +
Λ

 

( )2.83 2.44ln Re 2.89a∴ = Λ −
Λ

 

( )1 0.862ln Re 1.02a∴ = Λ −
Λ

 

( )10
1 1.99log Re 1.02a∴ = Λ −
Λ

 

Interestingly, these are the same numbers as those for turbulent pipe 
flow, as shown in the simplified form of Eq. (6-53) in the textbook. The 
difference, of course, is that the Reynolds number 𝑅𝑅𝑒𝑒𝑎𝑎 is based on the side 
of the square cross-section, 𝑎𝑎. This is reasonable in view of the fact that the 
hydraulic diameter of such a cross-section is  

( )
24 Area 4

Perimeter 4h
aD a
a

× ×
= = =  

as expected. The friction formula may be made more accurate if we 
modified our approach to account for a variable 𝑣𝑣⋆(z) that satisfies the 
condition that 𝜏𝜏𝑤𝑤 = 0 (or shear velocity 𝑣𝑣⋆ = 0) in the duct corners. However, 
this requires modelling how 𝑣𝑣⋆(z) varies; one possibility would be to use the 
power law 𝑣𝑣⋆/𝑣𝑣max⋆  = (2z/𝑎𝑎)1/7.  

P.6.13 c Solution 
We could equate total thickness 𝛿𝛿 or momentum thickness 𝜃𝜃 at the 

transition point, thereby defining an effective origin x0 for the ensuing 
turbulent boundary layer: 

0

6 71 2
trEquate : 5.0Re 0.16Re (I)xδ =  

0

6 71 2
trEquate : 0.664Re 0.01555Re (II)xθ =  

Both give about the same estimate of the “virtual” turbulent origin x0, 
but equating 𝜃𝜃 is more realistic. Downstream of Retr, local boundary layer 
parameters are computed on the basis of the effective local Reynolds 
number 

0,eff trRe Re Re Rex x x= − +  

This Reynolds number can then be substituted into thickness and 
coefficient correlations, as in 

eff ,eff
1 7 1 7

,eff

0.16 0.027;
Re Ref

xx
C

x
δ

= =  

Schlichting’s classic textbook Boundary Layer Theory suggests 
modifying turbulent drag formulas as follows: 

( )tr 1 7
0.031

ReReD
LL

AC L x> = −  
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One computes “A” by equating the above formula to the laminar drag 

at transition, CD = 1.328/𝑅𝑅𝑒𝑒𝑡𝑡𝑡𝑡
1 2⁄ . 

Let us compare the two approaches for an assumed value of 𝑅𝑅𝑒𝑒tr
1 2⁄  = 

500,000. Equating 𝜃𝜃 as written in (II), we obtain 

0

6 71 20.664 500,000 0.01555Rex× =  

0

7
61 20.664 500,000Re 168,000

0.01555x
 ×

∴ = =  
 

 

We proceed to list some tabulated values of friction coefficient as 
computed from the ‘effective’ Reynolds number approach (blue column) or 
from the fully-turbulent flow assumption (red column). A graph comparing 
the two approaches is also provided. 

 

 

Clearly, there is substantial disagreement between the two 

approaches near the onset of turbulence; as the Reynolds number becomes 

larger, however, the results become increasingly similar. We leave the 

analysis of 𝛿𝛿(x) to the reader.  

P.6.14 c Solution 
For water at 20oC and 1 atm, we may take 𝜌𝜌 = 998 kg/m3 and 𝜇𝜇 = 

0.001 Pa∙s. The corresponding Reynolds number is 

6998 6.0 1.0Re 5.99 10
0.001L

uLρ
µ

× ×
= = = ×  

Since ReL ≈ 6,000,000, the first one-sixth of the plate flow is laminar, 
whereas the rest is turbulent. Out of convenience, we ignore laminar flow 
and assume that flow is fully turbulent. Then, we appeal to Eqs. (6-70) and 
write 

( )1 7 1 7
0.16 0.16
Re ReL L

Lx L
x
δ δ= → = =  

( )
( )6 1 7

0.16 1.01.0 0.0172m
5.99 10

xδ ×
∴ = = =

×
 

0.0172 0.00215m
8 8
δδ ∗ ≡ = =  

Re x Re x0 Re x,eff Cf (Eff.) Cf (F.T.)
5.00E+05 1.68E+05 1.68E+05 0.004838 0.004142
7.50E+05 1.68E+05 4.18E+05 0.004249 0.003909
1.00E+06 1.68E+05 6.68E+05 0.003974 0.003752
2.00E+06 1.68E+05 1.67E+06 0.003487 0.003398
5.00E+06 1.68E+05 4.67E+06 0.003010 0.002981
1.00E+07 1.68E+05 9.67E+06 0.002713 0.002700
1.00E+08 1.68E+05 9.97E+07 0.001944 0.001943
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( )
( )1 7 6 1 7

0.027 0.027 0.00291
Re 5.99 10

f
L

C x L= = = =
×

 

The wall shear at x = L is then 

( ) ( )
2 2

18,000

998 6.00.00291 52.3Pa
2 2w f
ux L C x L ρτ × = = = = × = 


 

Referring to Eq. (6-80), the drag coefficient is one-sixth larger than 
the trailing-edge value of Cf: 

( )7 7 0.00291 0.00340
6 6D fC C x L= = = × =  

so that 

( )0.00340 18,000 1.0 0.6 36.7 ND = × × × =  

Alternatively, we may compute 𝐶𝐶𝑓𝑓 with Eq. (6-78): 

( ) ( )2 2 6

0.455 0.455 0.00278
ln 0.06Re ln 0.06 5.99 10

f
L

C ≈ = =
 × × 

 

so that 

( ) 0.00278 18,000 49.9Paw x Lτ = = × =  

and 𝐶𝐶𝐷𝐷 = 7𝐶𝐶𝑓𝑓/6 = 7 × 0.00278/6 = 0.00324, with the result that 

( )0.00324 18,000 1.0 0.6 35.0 ND = × × × =  

P.6.15 c Solution 
From Prob. 6-14, we found the Reynolds number to be ReL = 

5.99×106. With roughness height k = 0.1 mm = 10–4 m, we have the ratio L/k 
= 1.0/10–4 = 10,000, and it is difficult to verify whether the flow is ‘fully 
rough’. From Eq. (6-61), the criterion for fully-rough flow would be  

 
Re 1/

Re 60

k

kku kU uk
U
λ

λ

∗ ∗
+

= =

= = = >
ν ν

 

That is, 

Re 60k λ>  

With 𝜆𝜆 in the range of 20 to 40, the inequality above becomes Rek ≳ 
1200 or so. For the case at hand, the roughness Reynolds number Rek = 
𝜌𝜌uk/𝜇𝜇 = 998 × 6.0 × 10–4/0.001 = 598.8, which places us in the 
“intermediate roughness” regime, for which Eq. (6-82) is valid. The equation 
in question is 

( ) ( )2 0.3Re 1.73 1 0.3 4 6 1
1 0.3

Z
x

kk e Z Z Z
k

+
+

+

 
≈ + − + − − 

+ 
 

where Z = 𝜅𝜅𝜅𝜅 = 0.41𝜆𝜆 and k+ = Rex(k/x)/𝜆𝜆 = (5.99×106) × (10–4/1.0)/𝜆𝜆 = 
599/𝜆𝜆. Substituting above brings to 

( ) ( ) ( ) ( )26 0.41 0.3 5995.99 10 1.73 1 0.3 599 0.41 4 0.41 6 0.41 1
1 0.3 599

e λ λλ λ λ λ
λ

 ×
× ≈ + × × × − × + − − + × 

 

We can solve this nonlinear equation with Mathematica’s FindRoot 
command: 
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Thus, 𝜆𝜆(L) = 22.07. The corresponding shear velocity 𝑢𝑢⋆ is determined 
as 

( )
( )

( ) ( )
U UL u L

Lu L
λ

λ
∗

∗= → =  

( ) 6.0 0.272m/s
22.07

u L∗∴ = =  

The wall shear is then 

( )2w
wu uτ

τ ρ
ρ

∗ ∗= → =  

2998 0.272 73.8Pawτ∴ = × =  

Further, k+(L) = k𝑢𝑢⋆/𝜈𝜈 = 10–4 × 0.272/10–6 = 27.2, which is between 4 
and 60 and hence places us in the transitional-roughness regime. We may 
calculate ΔB from Eq. (6-62), namely 

( ) ( ) ( )1 1ln 1 0.3 ln 1 0.3 27.2 5.40
0.41

B L k
κ

+∆ = + = × + × =  

Then, appealing to the law-of-the-wall, Eq. (6-60), and neglecting 
any ‘wake’, we may solve for the thickness 𝛿𝛿: 

1 ln 22.07U u B B
u

δ
κ ν

∗

∗

 
= + −∆ =  

 
 

6
1 0.272ln 5.0 5.40 22.07

0.41 10
δ

−
× ∴ + − = 

 
 

( )2.44ln 272,000 22.07 0.40δ∴ = +  

( )ln 272,000 9.209δ∴ =  

( )exp 9.209
0.0367 m

272,000
δ∴ = =  

This is about 2.1 times greater than the thickness predicted in Prob. 6-
14 (𝛿𝛿 ≈ 0.0172 m).   

Now, there is no simple method to calculate the drag in the 
intermediate-roughness regime. One way to go is to compute 𝜏𝜏𝑤𝑤 for several 
positions x along the plate and check for some mathematical trend. The 
data we need are tabulated below. 

 

We can attempt to fit this 𝜏𝜏𝑤𝑤 versus x data to a power law with 
Mathematica’s FindFit command: 

 

x

0.01 59880 13.37 0.449 200.988
0.05 299400 16.23 0.370 136.394
0.1 598800 17.53 0.342 116.915
0.2 1197600 18.86 0.318 101.007
0.4 2395200 20.23 0.297 87.789
0.6 3592800 21.04 0.285 81.160
0.8 4790400 21.62 0.278 76.864
1 5988000 22.07 0.272 73.761

𝑅𝑅𝑒𝑒𝑥𝑥 𝜆𝜆 𝑢𝑢⋆ 𝜏𝜏𝑤𝑤
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Thus, the data are found to follow the power law 

( ) 0.22271.55w x xτ −=  

with x ∈ (0.01; 1.0) m. Integration of the above formula from x = 0 to x = L = 
1.0 m should yield the drag force on one side of the plate: 

( ) ( )1m 1m0.222 0.222
0 0

Drag 71.55 Width 71.55 0.6
L L

x dx x dx
= =− −= × = ×∫ ∫  

Drag 55.2 N∴ =  

Recall that the drag on the plate without roughness was 35.0 N; the 
result above is about 58% higher.  

P.6.17 c Solution 
First, we note that the quantity 𝑣𝑣𝑤𝑤+𝑢𝑢+ in Eq. (6-86), when evaluated at 

y = 𝛿𝛿, u = U, actually yields the blowing parameter 𝛽𝛽: 

( )
2

2*

2w w w
w

f

v v vU Uv U
U U Cv v v

β+ +
∗ ∗

 
= = = =  

 
 

Further, the quantity 𝑣𝑣𝑤𝑤+ itself is related to local skin friction: 

( )1 2
2w w w

w f
v v vUv C

U Uv v
+

∗ ∗= = =  

Accordingly, Eq. (6-86) can be stated as 

( ) ( )
( ) ( )1 2

1 2
1 22 22 11 1 1 1 lnf

w
w

C
v u B

v
β δ

β κ
+ + +

+
   + − = + − = +    

 

or  

( )
( ) 0

,0

1 2
1 2

1 2
2 2 21 1 iff

f

C

C
β δ δ

β
+ +  + − = ≈     

 

where this latter substitution follows since [ln(𝛿𝛿+)/𝜅𝜅 + B] exactly equals the 
no-blowing ratio U/𝑣𝑣⋆ – we assume, without proof, that this dimensionless 
thickness is not affected by the blowing. Bear in mind that the Greek letter 𝛽𝛽 
refers to the ‘blowing parameter’, whereas Latin B refers to the log-law 
constant B ≈ 5.0. We can solve the equation above for the skin friction ratio 
𝐶𝐶𝑓𝑓/𝐶𝐶𝑓𝑓0, giving: 

( )
( )

,0

1 2
1 2

21 2 2
2 2 21 1f

f

C

C
β

β

        + − =             

 

( )1 2

,0

22 1 1f

f

C
C

β
β

  ∴ = + −   
 

This is to be compared to the result by Kays and Crawford, namely 

( )
,0

ln 1f

f

C
C

β
β
+

=  

We can then plot the two relations in the range –0.5 < 𝛽𝛽 < 2.0 with 
the following Mathematica code: 

p1 = Plot[(2/\[Beta]*((1 + \[Beta])^(1/2) - 1))^( 1/2), {\[Beta], -0.5, 
2.0}, PlotStyle -> Blue] 

p2 = Plot[Log[1 + \[Beta]]/\[Beta], {\[Beta], -0.5, 2.0}, PlotStyle -> 
Red] 

Show[p1, p2, PlotRange -> All, Frame -> True, GridLines -> Automatic] 
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We see that suction (𝛽𝛽 < 0) increases friction (and heat transfer), while 
blowing (𝛽𝛽 > 0) decreases friction (and heat transfer). This was also the case 
for laminar flat-plate flow, as shown in Fig. 4-15b, but turbulent flow does 
not “blow off” at finite 𝛽𝛽.  

P.6.18 c Solution 
As usual, for water at 20oC, 𝜌𝜌 = 998 kg/m3 and 𝜇𝜇 = 0.001 Pa∙s. We first 

compute the average flow velocity, 

2
0.06 11.9m/s
0.08

4

QV
A

π
= = =

×
 

We were told that the ratio of average to centerline velocity is 0.85, 
so the maximum flow velocity is Vmax = 11.9/0.85 = 14.0 m/s. Now, we evoke 
Stevenson’s logarithmic-law of the wall with suction or blowing: 

( ) ( )1 22 11 1 lnw
w

v u y B
v κ

+ + +
+
 + − ≈ +  

 

max
1 22 11 1 ln 5.0

0.41w
w

V Rvv
v v

ρ
µ

∗
+

+ ∗

    ∴ + × − = +           
 

1 22 14.0 1 998 0.041 1 ln 5.0
0.41 0.001w

w

vv
v v

∗
+

+ ∗

   × × ∴ + × − = +           
 

( )
1 2

2 1 14.0 1 2.44ln 39,900 5.0 (I)w

w

v v
v v

+
∗

+ ∗

  
 ∴ + − = +     

 

with 𝑣𝑣𝑤𝑤+ = 𝑣𝑣𝑤𝑤/𝑣𝑣⋆ = +0.01/𝑣𝑣⋆, We can easily solve the equation above with 
Mathematica’s FindRoot command: 

vw=0.01/vs; 
FindRoot[2/vw*((1+14.0*vw/vs)1/2-1)-2.44*Log[39900*vs]-
5.0,{vs,0.1}] 
{vs->0.415881} 

That is, 𝑣𝑣⋆ = 0.416 m/s. The corresponding wall shear stress is: 

( )2 2998 0.416 173Paw vτ ρ ∗= = × =  

Now, we set 𝑣𝑣𝑤𝑤+ to 0.0 and apply FindRoot a second time; note that, in 
order to avoid a division by zero in equation (I), we write 𝑣𝑣𝑤𝑤+ = 0.000001/𝑣𝑣⋆ 
instead of 𝑣𝑣𝑤𝑤+ = 0/𝑣𝑣⋆: 

vw=0.000001/vs; 
FindRoot[2/vw*((1+14.0*vw/vs)1/2-1)-2.44*Log[39900*vs]-
5.0,{vs,0.1}] 
{vs->0.481637} 

That is, 𝑣𝑣⋆ = 0.482 m/s. The corresponding wall shear stress is: 
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( )2 2998 0.482 232Paw vτ ρ ∗= = × =  

Finally, we set 𝑣𝑣𝑤𝑤+ to −0.01 m/s and appeal to FindRoot a third time: 

FindRoot[2/vw*((1+14.0*vw/vs)1/2-1)-2.44*Log[39900*vs]-
5.0,{vs,0.1}] 
{vs->0.549825 +1.8084*10-24 I} 

The imaginary part is tiny and can be attributed to the solution 
algorithm; thus, 𝑣𝑣⋆ = 0.550 m/s, so that 

( )2 2998 0.550 302Paw vτ ρ ∗= = × =  

P.6.20 c Solution 
The two formulas we need to compare are Eq. (6-62), 

( )1 ln 1 0.3B k
κ

+∆ ≈ +  

and Bergstrom’s expression 

( )1 ln 3.5 ; 4.2B k k
κ

+ +∆ ≈ − ≥  

The pertaining MATLAB code is shown below. We use logspace to 
create a set of data from 100 to 103 and semilogx to create a logarithmic-
scale x-axis. 

x = logspace(0,3); 
eq1 = 1/0.41*log(1+0.3.*x); 
semilogx(x,eq1,'b','LineWidth',2); 
hold on 
grid on 
eq2 = 1/0.41*log(x) - 3.5; 
semilogx(x,eq2,'r','LineWidth',2); 
 

 

Note that the line for Bergstrom’s equation includes some k+ < 4.2, 
but the correlation is not valid below this range because it may yield 
negative ΔB’s. Now, recall that the average velocity in the pipe can be 
described by the simple log-law (6-53): 

*

avg
1 3ln

2
Rvu v B B

κ κ
∗   

= + −∆ −      ν
 

where we have included the ΔB correction and used the pipe radius R as the 
reference dimension 𝑎𝑎. Replacing ΔB with Bergstrom’s correlation, we write 

( )avg
1 1 3ln ln 3.5

2
Rvu v B k

κ κ κ
∗ +

∗  
= + − + −      ν

 

At this point, we employ the relations 

10 0 10 1 10 2 10 3

k
+
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Bergstrom
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avg 8 ; Re ; Re
32 32D D

u Rv kk
Dv

∗
+

∗
Λ Λ

= = =
Λ ν

 

and note that 𝜅𝜅 = 0.41 and B = 5.0, so that 

( )avg 1 1 3ln ln 3.5
2

u Rv B k
v κ κ κ

+
∗

∗ 
= + − + −  

 ν
 

8 1 1 3ln Re 5.0 ln Re 3.5
0.41 32 0.41 32 2 0.41D D

k
D

   Λ Λ
∴ = + − + −      Λ ×   

 

2.83 2.44ln Re 5.0 2.44 ln ln Re 0.16
32 32D D

k
D

    Λ Λ ∴ = + − + −        Λ       
 

2.83 2.44ln Re
32D

 Λ
∴ =   Λ  

5.0 2.44ln 2.44ln Re
32D

k
D

 Λ + − −        
0.16−  

2.83 2.44ln 4.84D
k

 ∴ = + Λ  
 

1 0.862ln 1.71D
k

 ∴ = + Λ  
 

10
1 1.99log 1.71D

k
 ∴ = + Λ  

 

Importantly, the Reynolds number vanished along the derivation. 
Accordingly, Bergstrom’s model predicts a fully rough wall friction for all 
Reynolds numbers. Its predictions, however, are considerably less, by 10 to 
25%, than the fully rough predictions of the Colebrook formula as ReD → ∞.  

P.6.21 c Solution 
Eq. (6-41) is Spalding’s generalized correlation for the turbulent 

boundary layer: 

( ) ( )2 3

1
2 6

uB u u
y u e e uκκ κ κ

κ
+

+ +
+ + +−

 
 = + − − − − 
  

 

Eq. (6-96) is van Driest’s integral for turbulent boundary layer in flat-
plate flow, 

( ) ( )
0 22

1 22

2

1 1 4 1 exp

y dyu

y y Aκ

+ +
+

+ +

=
  + + − −   

∫  

with A generally taken as 26. We can plot both expressions with the 
following MATLAB code: 
 

fun = @(y) (2./(1 + (1 + 4.*0.41.^2.*y.^2.*(1 - exp(-y./26)).^2).^0.5)); 
x = logspace(0,4,100); 
spaldingY = [0];  
i = 1; 
Y = [1]; 
for i = 1:100  
    Y(i) = integral(fun,0,x(i));  
    Z = 0.41.*Y(i); 
    spaldingY(i) = Y(i) + exp(-0.41*5.0).*(exp(Z)-1-Z-(Z.^2)/2-(Z.^3)/6); 
    if i == 100 
        Y(100) = integral(fun,0,x(100)); 
        Z = 0.41*Y(100); 
        spaldingY(100) = Y(100) + exp(-0.41*5.0).*(exp(Z)-1-Z-(Z^2)/2-
(Z^3)/6); 
        semilogx(x,Y) 
        grid on 
        hold on 
        semilogx(spaldingY,Y); 
        ylim([0 25]); 
        hold off 
    end 
end 
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  The resulting plot is shown below. Notice that the two law-of-the-
wall approaches yield very similar results.  

 

Although the two models yield very similar results, the van Driest 
model is more flexible, in that it can be used to fit other conditions – 
pressure gradient, blowing/suction, roughness, etc. – by changing the value 
of the damping constant A. 

P.6.22 c Solution 
The profile is broken into 

an upper and a lower part, as 
shown to the side. The lower 
log-law begins at u = 0 and 
rises to u = U/2 at the center, y 
= h/2. The upper part begins at 
u = U and drops down to u = 
U/2 at the center. In both the upper and lower region, the log-law must 
satisfy the centerline condition 

2 1 ln
2

U hv B
v κ

∗

∗

 
= +  

 ν
 

This is a relation between shear stress, velocity, and plate separation 
distance. In dimensionless friction-factor/Reynolds-number form, we may 
rewrite the above as 

1 2Re 1 1ln Re
4 2

h
h Bφ

φ κ
   = +  

  
 

where Reh = Uh/𝜈𝜈 and 𝜙𝜙 = 𝜏𝜏𝑤𝑤h/𝜇𝜇U. Setting the Reynolds number Reh to 105 
and solving for 𝜙𝜙, we employ the Mathematica code 

FindRoot[(Subscript[Re, h]/(4*ϕ))1/2-1/0.41*Log[1/2 ]-
5.0,{ϕ,10}] 
{ϕ->50.983} 

That is, 𝜙𝜙 ≈ 50.98. Solving for other Reynolds numbers, we prepare 
the following table. 

𝑅𝑅𝑒𝑒ℎ 105 106 107 108 109 1010 
𝜙𝜙 51.0 337 2370 17,600 135,000 1.07×106 
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Now, the velocity profiles may be obtained by computing U+ = 

�𝑅𝑅𝑒𝑒ℎ 𝜙𝜙⁄  and h+ = �𝑅𝑅𝑒𝑒ℎ × 𝜙𝜙 and then referring to the following two log-laws: 

Lower layer 
0 < y < h/2 

1 ln yu h B
hκ

+ + = × + 
 

 

Upper layer 
h/2 < y < h  

1 ln h yU u h B
hκ

+ + + − − = × + 
 

 

 

Consider, as we were asked, Reh = 105. We first compute  

Re 100,000 44.3
51.0

hU
φ

+ = = =  

and  

Re 100,000 51.0 2260hh φ+ = × = × =  

Then, we define a piecewise function with Mathematica’s Piecewise 
command and proceed to plot it: 

 

The velocity profile is indeed S-shaped:  

 

P.6.30 c Solution 

Noting that the mean velocity may be expressed as 𝑢𝑢� = Umax × 
sech2(𝜂𝜂) (Eq. (6-151)), we integrate to obtain the mass flow 𝑚́𝑚: 

( ) ( )2
max sechm udy U d xρ ρ η η σ

+∞ +∞

−∞ −∞
= =∫ ∫  

Here, we may use the following result, 

 

so that 

max

max

2
2

U x mm x
U

ρ σ
σ ρ

= → =


  

800 7.67 1.02m
2 998 3.0

x ×
∴ = =

× ×
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Then, at 2 m further downstream, we have x = 1.02 + 2 = 3.02 m; the 
formulas from Sect. 6-9.1.1 may be used to evaluate the desired flow 
conditions. First, the width b is 

tan13º tan13ºb b x
x
= → =  

3.02 tan13º 0.697 m 69.7cmb∴ = × = =  

The maximum velocity is, in turn, 

1 2 1 2

max 1.02
1.02 1.023.0 1.74 m/s
3.02 3.02xU U =

   = = × =   
   

 

Finally, the mass flow is determined as 

max2 2 998 1.74 3.02Mass flow 1370kg/s m
7.67

U xρ
σ

× × ×
= = = ⋅  

P.6.31 c Solution 
For air, take 𝜌𝜌 ≈ 1.2 kg/m3. The air velocity may be obtained from the 

expression for mass flow rate: 

0 0
mm AU U
A

ρ
ρ

= → =


  

0
2

0.001 66.3m/s
1.20 0.004

4

U
π

∴ = =
 × × 
 

 

To estimate the jet momentum issuing from the orifice, in turn, we 
make use of the integral 

2 2 2 2
0 0orifice

1.20 66.3 0.004 0.0663kg m s
4

J u dA U A πρ ρ  = = = × × × = ⋅ 
 ∫  

Then, the maximum velocity 1 m downstream from the jet may be 
estimated with Eq. (6-152): 

( ) ( )
max

1 2 1 20.0663 1.20
7.4 7.4 1.74m/s

1.0
J

U
x
ρ

≈ = × =  

Also from (6-152), we may determine the width of the jet 1.0 m away 
from the entrance: 

1%
1%15.2

15.2
xy b

x
ηη ≈ → =  

 1%
1.0 2.993 0.197 m 19.7cm

15.2
b ×

∴ = = =  

Lastly, the viscosity ratio, noting that K = 0.018 and 𝜇𝜇 = 1.8×10–5 Pa∙s 
for air at 20oC, is calculated to be: 

max
5

0.018 1.20 1.74 0.197 411
1.8 10

t K U bµ ρ
µ µ −

× × ×
= = =

×
 

P.6.32 c Solution 
With reference to Sect. 6-9.3 of the text, we see that  

( )
1 2

1 2 max
1 20.30 ; 1.63 (I, II)y x u U

x
θθ  ≈ ∆ =  
 

 

We have x = 1000 m, so it remains to calculate the momentum 
thickness 𝜃𝜃  of the wake. Recall that the momentum thickness is related to 
the drag on the cylinder by the simple expression 

2F Uρ θ=  

However, the drag is also given by the product of drag coefficient and 
dynamic pressure, that is, 
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21
2DF C U Dρ=  

so that, equating the two expressions and solving for 𝜃𝜃, we obtain 

2F Uρ= 21
2DC Uθ ρ= D  

(III)
2
DC Dθ∴ =  

Noting that 𝜌𝜌 ≈ 1025 kg/m3 and 𝜇𝜇 ≈ 0.0011 Pa∙s for seawater at 20oC, 
we compute the Reynolds number  

61025 0.6 5.0Re 2.80 10
0.0011D

UDρ
µ

× ×
= = = ×  

Entering this Reynolds number into the chart in Figure 3-38(𝑎𝑎), we 
read a drag coefficient CD ≈ 0.5, so that, substituting in (III), we obtain 

0.5 5.0 1.25m
2 2
DC Dθ ×

= = =  

Then, we substitute the pertaining variables into (I) to compute the 
wake width y1/2: 

( ) ( )1 2
1 2 1 20.30 0.30 1000 1.25 10.6my xθ= = × × =  

Likewise for the wake velocity defect, 

max

1 2 1 21.251.63 1.63 0.60 0.0346 m/s
1000

u U
x
θ   ∆ = = × × =   
   

 

max 3.5 cm/su∴ ∆ ≈  

These results were obtained via uncertain correlations, to which we 
fed a simple estimate of the momentum thickness 𝜃𝜃. Thus, at best, our 
results are crude approximations of wake width and velocity defect.  
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